EP2342062A2 - Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen - Google Patents

Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen

Info

Publication number
EP2342062A2
EP2342062A2 EP09782893A EP09782893A EP2342062A2 EP 2342062 A2 EP2342062 A2 EP 2342062A2 EP 09782893 A EP09782893 A EP 09782893A EP 09782893 A EP09782893 A EP 09782893A EP 2342062 A2 EP2342062 A2 EP 2342062A2
Authority
EP
European Patent Office
Prior art keywords
plastic
profile
extrusion
air
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09782893A
Other languages
English (en)
French (fr)
Inventor
Leopold Hackl
Josef Dobrowsky
Georg Zacher
Miron I. Gorilovskiy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Battenfeld-Cincinnati Austria GmbH
Battenfeld Cincinnati Austria GmbH
Original Assignee
Battenfeld-Cincinnati Austria GmbH
Battenfeld Cincinnati Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Battenfeld-Cincinnati Austria GmbH, Battenfeld Cincinnati Austria GmbH filed Critical Battenfeld-Cincinnati Austria GmbH
Publication of EP2342062A2 publication Critical patent/EP2342062A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/275Recovery or reuse of energy or materials
    • B29C48/276Recovery or reuse of energy or materials of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/793Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling upstream of the plasticising zone, e.g. heating in the hopper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/86Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/904Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using dry calibration, i.e. no quenching tank, e.g. with water spray for cooling or lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/905Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using wet calibration, i.e. in a quenching tank
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/908Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article characterised by calibrator surface, e.g. structure or holes for lubrication, cooling or venting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9115Cooling of hollow articles
    • B29C48/912Cooling of hollow articles of tubular films
    • B29C48/913Cooling of hollow articles of tubular films externally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the invention relates to an extrusion line for the production of plastic profiles, preferably plastic pipes, comprising at least one extruder, a tool, a calibration and further downstream devices. Furthermore, the invention relates to a method for increasing the cooling capacity of an extrusion line for extruding a plastic profile, in particular a plastic tube comprising the steps of: a) melting plastic in an extruder, b) molding a plastic strand and feeding the plastic strand to a tool, c) Forming a plastic profile by means of the tool, d) calibrating and curing by cooling the profile in a calibration, wherein in addition to the external cooling in the calibration, the profile is cooled in the interior.
  • the invention relates to a method for energy-efficient extrusion of a plastic profile, in particular a plastic tube, comprising the steps of a) melting plastic in an extruder, b) molding a plastic strand and supplying the plastic strand to a tool, c) forming a plastic profile by means of Tooling and d) Calibration and curing by cooling the profile in a calibration, which in addition to the external cooling in the calibration, the profile is cooled inside.
  • the present invention therefore provides the possibility of offering an extrusion line with the aim of removing the heat arising during internal and / or external cooling from the process and making it as useful as possible. Furthermore, the invention encompasses the invention of offering a corresponding method.
  • the solution of the object with regard to the extrusion line is characterized in that at least the tool has at least one opening and, viewed in the extrusion direction, an extraction is arranged in front of the tool, by means of the air in the interior of the Kunststoffpro fils interchangeable is.
  • the extracted warm air is supplied to a consumer for energy recovery.
  • This countercurrent principle has the advantage that, compared to the tube temperature at the end of the extrusion section, colder air is sucked through the interior of the tube counter to the direction of extrusion. This air warms up on the way through the pipe to the pipe inner wall, wherein the tube temperature also increases counter to the extrusion direction. Thus, there is always a temperature difference between the air and pipe inner wall, resulting in a permanent heat flow from the pipe into the air. The heat thus removed from the process is returned to the process and contributes to energy optimization. The heat is thus used meaningfully and does not evaporate in the atmosphere.
  • the solution proposed in connection with the preamble of claim 2 is that after the calibration around the extruded tube, a chamber is arranged, wherein a fan is arranged on the chamber, by means of the air against the extrusion direction at the Outside wall of the extruded tube can be passed over.
  • the chamber is sealed at least on one side.
  • a preheating station for the raw material to be fed to the extruder.
  • a raw material is primarily plastic granules used, but it can also be used for preheating other materials such as PVC powder.
  • This has the advantage that the raw material already has a higher temperature than the room temperature and thus less energy in the form of heating energy in the extruder. which must be applied. This is especially true for the introduced mechanical energy.
  • the heating energy that is introduced via the cylinder wall is not so relevant for melting, since above all the mechanical energy (drive energy) is converted into frictional heat.
  • the temperature must not be in an area where the plastic granules used already glued.
  • This can be controlled, for example, in that the exhaust device can be controlled and / or regulated in the volume flow, but also in that the energy not required for heating the material is supplied to a heat exchanger and / or for driving further units, for example a Stirling engine, and / or or for the production of process refrigeration is used.
  • the dissipated heat can only be used exclusively for driving the aggregates.
  • the solution of the object with regard to the method is characterized in conjunction with the preamble of claim 8 in that, for the internal cooling of the profile, the air is sucked in counter to the extrusion direction by means of a suction device.
  • the air is supplied to a consumer for the use of heat.
  • a consumer the preheating of granules or the operation of ben of aggregates as well as the supply to a heat exchanger or for generating process refrigeration provided.
  • At least one flow velocity is achieved, which is located in the turbulent range.
  • the best possible turbulence of the air in the interior and / or on the outer wall of the profile is achieved, resulting in a high exchange of air on the inner and / or outer wall of the Pro files and thus draws a good cooling performance.
  • the methods are particularly useful when extruding a thick-walled plastic tube, since relatively long residence times of the extrudate in the line are required here, and thus the volume of air can be exchanged several times, which results in a particularly high level of effectiveness. It is therefore proposed that heat occurring in or on the extruded tube be returned to the extrusion process by passing air along the surface of the extruded tube in the opposite direction to the extrusion direction and with the amount of heat gained for preheating the plastic granulate required for the extrusion process or Drive is used by aggregates such as a Stirling engine or for generating process refrigeration.
  • the proposed extrusion lines and the proposed methods are particularly suitable for thick-walled plastic pipes and pipes with large to very large diameters whose residence time within the extrusion line is in the hour range, so it is relatively large.
  • the cooling capacity is increased in an extrusion line, with which considerable advantages are associated.
  • the overall cooling length is shortened if one leaves an existing output power unchanged, or one can increase the output power, as long as the entire cooling length is maintained.
  • this energy-efficient extrusion of a plastic profile is achieved because the energy extracted from the profile is at least partially recycled to the process.
  • the extracted air does not affect the melting behavior in the extruder because it does not come into contact with the extruder.
  • the air is sucked through the extruder and measures taken that there is no interference. Due to the proposed turbulent flow, a particularly effective cooling is achieved.
  • cooling is known with full water tanks or water spray tanks.
  • the external air cooling can be an effective retrofit, even if the pipe interior cooling is not possible because of lack of breakthrough in the pipe head.
  • the aim is to keep the highest possible percentage of the heat generated in the system, not only by preheating, but also e.g. via conversion into mechanical drive energy.
  • Fig. 2 is an external cooling of the profile
  • FIG. 3 shows an alternative to FIG. 2
  • FIG. 1 schematically shows an extrusion line, the extruder 1 being arranged laterally on the extrusion die 2. Viewed in the direction of extrusion 7, the tool 2 is followed by the calibration 3, which in turn follows the trigger 4.
  • Calibration 3 comprises a vacuum tank with built-in calibration sleeve. The calibration can also be followed by additional cooling baths.
  • a separator in the form of a saw 5 follows.
  • Extrusion line a pipe 9 is manufactured.
  • the suction 6 is arranged at the beginning of the extrusion line directly on the tool.
  • the corresponding suction direction is indicated schematically by the arrow.
  • the tool 2 has an opening 8, the opening 8 communicates with the suction 6 in connection, so that the suction 6, the air volume in the interior of the tube 9 can suck through to the end of the extrusion line in the region of the separator 5.
  • a consumer 10 Arranged on the suction 6 is a consumer 10, which is an example of a preheating station for the extruder 1 to be supplied plastic granules. But it can just as a Stirling engine are operated so that in turn controls the trigger 4 or other drives of the extrusion line.
  • the suction can be operated intermittently. It is thus sucked a time tl air, possibly in the turbulent range, followed by a period t2, where not sucked off (annealing time).
  • the heat can thus migrate again from the middle of the tube wall to the inside, whereby the tube on the inside gets warmer again. This is followed again by a time interval t 1 in which the heat is extracted.
  • the entire process can be repeated several times. The same applies to the air flow along the outer wall of the profile during external cooling.
  • FIG. 2 schematically shows an external cooling of the extrusion line exemplified in FIG. 1, which in turn consists of the extruder 1, the tool 2, a calibration 3, the trigger 4 and a separating device 5.
  • a chamber is arranged around the extruded tube 9, which in turn is connected to a fan 12.
  • the chamber is expediently sealed in the direction of the calibration 3, so that by means of the fan 12 an extraction is carried out counter to the extrusion direction. that can.
  • the air in the room is thus sucked at the end of the chamber, ie opposite the trigger 4, along the surface of the tube 9 against the extrusion direction to the exit of the chamber 11, that is, where the fan 12 is arranged, sucked through and on this route heated and at the same time cooled the outer wall of the tube 9.
  • the air thus heated is supplied to the consumer 10 via the connecting pipes.
  • FIG. 3 shows a similar embodiment, in turn, an extrusion line with an extruder 1, an extrusion die 2, the calibration 3, the trigger 4 and a separation device 5 is shown.
  • further cooling baths can be arranged on the calibration. This is shown here by way of example in FIG. 3 over three cooling baths. These cooling baths are arranged so that there is a connection between these and in turn viewed on the first cooling bath after the calibration 3 in the extrusion direction, a fan 12 is arranged. Each of these cooling baths is designed so that in turn around the tube 9, a chamber 11 is formed.
  • FIG. 1 shows a similar embodiment, in turn, an extrusion line with an extruder 1, an extrusion die 2, the calibration 3, the trigger 4 and a separation device 5 is shown.
  • further cooling baths can be arranged on the calibration. This is shown here by way of example in FIG. 3 over three cooling baths. These cooling baths are arranged so that there is a connection between these and in turn viewed on the first cooling bath after the calibration 3 in the
  • the room air can now be sucked in via the fan 12 on the end face of the chamber 11, which lies opposite the outlet 4, and sucked against the extrusion direction along the surface of the tube 9 in the direction of the fan 12. Again, the air heats up in this way and is supplied to the consumer 10 via the connecting pipes.

Abstract

Die Erfindung betrifft eine Extrusionslinie zur Herstellung von Kunststoffprofilen, vorzugsweise Kunststoffrohren, umfassend mindestens einen Extruder (1), ein Werkzeug (2), eine Kalibrierung (3) sowie weitere Nachfolgeeinrichtungen (4, 5). Erfindungsgemäß ist dabei vorgesehen, dass zur Kühlung des Profils (9) das Werkzeug (2) einen Durchbruch aufweist und/oder um das extrudierte Rohr eine Kammer (11) angeordnet ist, um Luft entgegen der Extrusionsrichtung (7) austauschen zu können. Weiterhin betrifft die Erfindung ein Verfahren zum energieeffizienten Extrudieren eines Kunststoffprofils, insbesondere eines Kunststoffrohres, das die Schritte umfasst, a) Aufschmelzen von Kunststoff in einem Extruder (1), b) Formen eines Kunststoffstranges und Zuführen des Kunststoffstranges zu einem Werkzeug (2), c) Formen eines Kunststoffprofiles mittels des Werkzeuges (2) und d) Kalibrieren und Aushärten mittels Kühlung des Profils in einer Kalibrierung (3), wobei zusätzlich zur Außenkühlung in der Kalibrierung (3) das Profil (9) im Inneren gekühlt wird. Hierbei ist erfindungsgemäß vorgesehen, dass zur Kühlung des Profils (9) die Luft entgegen der Extrusionsrichtung (7) durchgesaugt wird.

Description

Vorrichtung und Verfahren zum energieeffizienten Extrudieren von Kunststoffprofilen
Beschreibung:
Die Erfindung betrifft eine Extrusionslinie zur Herstellung von Kunst- stoffprofilen, vorzugsweise Kunststoffrohren, umfassend mindestens einen Extruder, ein Werkzeug, eine Kalibrierung sowie weitere Nachfolgeeinrichtungen. Weiterhin betrifft die Erfindung ein Verfahren zum Erhöhen der Kühlleistung einer Extrusionslinie zum Extrudieren eines Kunststoffprofiles, insbesondere eines Kunststoffrohres, das die Schritte umfasst: a) Aufschmelzen von Kunststoff in einem Extruder, b) Formen eines Kunststoffstranges und Zuführen des Kunststoffstranges zu einem Werkzeug, c) Formen eines Kunststoffprofiles mittels des Werkzeuges, d) Kalibrieren und Aushärten mittels Kühlung des Profiles in einer Ka- librierung, wobei zusätzlich zur Außenkühlung in der Kalibrierung das Profil im Inneren gekühlt wird.
Weiterhin betrifft die Erfindung ein Verfahren zum energieeffizienten Extrudieren eines Kunststoffprofils, insbesondere eines Kunststoffrohres, das die Schritte umfasst, a) Aufschmelzen von Kunststoff in einem Extruder, b) Formen eines Kunststoffstranges und Zuführen des Kunststoffstranges zu einem Werkzeug, c) Formen eines Kunststoffprofiles mittels des Werkzeuges und d) Kalibrieren und Aushärten mittels Kühlung des Profils in einer Kalibrierung, wobei zusätzlich zur Außenkühlung in der Kalibrierung das Profil im Inneren gekühlt wird.
Aus dem Stand der Technik sind Möglichkeiten der Rohrinnenkühlung bekannt. So schlägt beispielsweise die DE 69 403 693 vor, die Innenwandung des Rohres mit einem Sprühnebel zu versehen und dadurch eine Verdampfung der Flüssigkeit an der Innenwandung des Rohres und damit eine Kühlung zu erreichen. Derartige Kühlungen haben sich jedoch nicht als praktisch erwiesen, da der heiße Wasserdampf in Extrusi- onsrichtung mitgeführt wird und so zwar in der Kalibrierung das Abküh- len des Rohres unterstützt, aber dann am Ende der Extrusionslinie, beispielsweise im Bereich der Säge, das Rohr auf einer Temperatur hält, so dass dieses zwar formstabil, jedoch für den Trennprozess zu weich ist. Gleichzeitig liegt bis heute kein Konzept für die weiterführende Nutzung der durch die Innenkühlung anfallenden Wärme vor.
Die vorliegende Erfindung stellt sich daher die A u f g a b e , eine Extrusionslinie anzubieten mit dem Ziel, die bei der Innen- und/oder Außenkühlung anfallende Wärme dem Prozess zu entziehen und möglichst nutzbar zu machen. Weiterhin umfasst die A u f g a b e der Erfindung, ein entsprechendes Verfahren anzubieten.
Die L ö s u n g der Aufgabe bezüglich der Extrusionslinie ist in Verbindung mit dem Oberbegriff des Anspruches 1 dadurch gekennzeichnet, dass mindestens das Werkzeug mindestens einen Durchbruch aufweist und in Extrusionsrichtung gesehen vor dem Werkzeug eine Absaugung angeordnet ist, mittels der Luft im Inneren des Kunststoffpro fils austauschbar ist. Durch diesen Durchbruch wird erreicht, dass eine Absaugung entgegen der Extrusionsrichtung ermöglicht wird und die im Inneren des Profils entstehende Wärme dem Prozess entzogen werden kann.
Vorteilhafterweise wird die abgesaugte warme Luft zur Energierückge- winnung einem Verbraucher zugeführt.
Dieses Gegenstromprinzip hat den Vorteil, dass im Vergleich zur Rohrtemperatur am Ende der Extrusionsstrecke kältere Luft entgegen der Extrusionsrichtung durch das Rohrinnere durchgesaugt wird. Diese Luft wärmt sich auf dem Wege durch das Rohr an der Rohrinnenwand auf, wobei die Rohrtemperatur ebenfalls entgegen der Extrusionsrichtung zunimmt. Somit ist immer eine Temperaturdifferenz zwischen Luft und Rohrinnenwand gegeben, was einen permanenten Wärmefluss vom Rohr in die Luft zur Folge hat. Die so dem Prozess entzogene Wärme wird dem Prozess wieder zugeführt und trägt zur Energieoptimierung bei. Die Wärme wird somit sinnvoll genutzt und verpufft nicht in der Atmosphäre.
Alternativ wird als L ö s u n g in Verbindung mit dem Oberbegriff des Anspruchs 2 vorgeschlagen, dass im Anschluss an die Kalibrie- rung um das extrudierte Rohr eine Kammer angeordnet ist, wobei an der Kammer ein Ventilator angeordnet ist, mittels dem Luft entgegen der Extrusionsrichtung an der Außenwandung des extrudierten Rohres vorbei geführt werden kann.
Auch hier ist es von Vorteil, wenn die so erwärmte Luft zur Energie- rückgewinnung einem Verbraucher zugeführt wird.
Mit dem Ventilator kann entweder eine Absaugung oder ein Durchblasen der Luft entgegen der Extrusionsrichtung ermöglicht und dadurch die an der Außenwand des Profils vorhandene Wärme dem Prozess entzogen werden. Selbstverständlich kann der gesamte Prozess auch in Extrusionsrichtung betrieben werden.
Vorteilhafterweise ist die Kammer zumindest an einer Seite abgedichtet.
Als Verbraucher, dem die Wärme zugeführt wird, wird vorgeschlagen, eine Vorwärmstation für das dem Extruder zuzuführende Rohmaterial einzusetzen. Als Rohmaterial kommt in erster Linie Kunststoffgranulat zum Einsatz, sie kann aber auch zum Vorwärmen anderer Materialien wie z.B. PVC-Pulver eingesetzt werden. Dies hat den Vorteil, dass das Rohmaterial bereits eine höhere Temperatur als die Raumtemperatur aufweist und damit weniger Energie in Form von Heizenergie im Extru- der aufgebracht werden muss. Dies gilt insbesondere auch für die eingebrachte mechanischer Energie. Zum Beispiel bei einem Einschneckenextruder ist die Heizenergie, die über die Zylinderwand eingebracht wird, zum Aufschmelzen nicht so relevant, da hier vor allem die mecha- nische Energie (Antriebsenergie) in Reibungswärme umgewandelt wird.
Selbstverständlich darf die Temperatur nicht in einem Bereich liegen, bei dem das verwendete Kunststoffgranulat bereits verklebt. Dies lässt sich beispielsweise dadurch steuern, dass die Absaugvorrichtung im Volumenstrom Steuer- und oder regelbar ist, aber auch dadurch, dass die zur Aufwärmung des Materials nicht benötigte Energie einem Wärmetauscher zugeführt wird und/oder zum Antrieb weiterer Aggregate, beispielsweise eines Stirlingmotors, und/oder zur Erzeugung von Prozesskälte Verwendung findet. Selbstverständlich kann natürlich die abgeführte Wärme auch nur ausschließlich für den Antrieb der Aggregate ge- nutzt werden.
Die L ö s u n g der Aufgabe bezüglich des Verfahrens ist in Verbindung mit dem Oberbegriff des Anspruches 8 dadurch gekennzeichnet, dass zur inneren Kühlung des Profils die Luft entgegen der Extrusi- onsrichtung mittels einer Absaugung durchgesaugt wird.
Alternativ wird vorgeschlagen, in Verbindung mit dem Oberbegriff des Anspruchs 9 zur äußeren Kühlung des Profils die Luft entgegen der Extrusionsrichtung mittels eines Ventilators durch eine Kammer an der Außenwandung des extrudierten Rohres vorbei zu führen.
Weiterbildungsgemäß wird vorgeschlagen, dass die Luft einem Verbraucher zur Nutzung der Wärme zugeführt wird. Als Verbraucher sind, wie bereits oben ausgeführt, die Vorwärmung von Granulat oder das Betrei- ben von Aggregaten ebenso wie die Zuführung an einen Wärmetauscher oder zur Erzeugung von Prozesskälte vorgesehen.
Wie bereits oben erwähnt, hat das Betreiben im Gegenstromprinzip den Vorteil, dass im Vergleich zur Rohrtemperatur am Ende der Extrusi- onsstrecke kältere Luft entgegen der Extrusionsrichtung durch das Rohrinnere durchgesaugt wird. Diese Luft wärmt sich auf dem Wege durch das Rohr an der Rohrinnenwand auf, wobei die Rohrtemperatur ebenfalls entgegen der Extrusionsrichtung zunimmt. Somit ist immer eine Temperaturdifferenz zwischen Luft und Rohrinnenwand gegeben, was einen permanenten Wärmefluss vom Rohr in die Luft zur Folge hat.
Um eine möglichst hohe Abkühlungsleistung zu erreichen, ist weiterbildungsgemäß vorgesehen, dass mindestens eine Strömungsgeschwindigkeit erreicht wird, die sich im turbulenten Bereich befindet. Durch diese turbulente Strömung wird eine bestmögliche Verwirbelung der Luft im Inneren und/oder an der Außenwandung des Profiles erreicht, was zu einem hohen Austausch der Luft an der Innen- und/oder Außenwandung des Pro files fuhrt und somit eine gute Kühlleistung nach sich zieht.
Unterstützend ist fortbildungsgemäß vorgesehen, dass nicht nur die im Inneren des Rohres vorherrschende Wärme über die Luft teilweise abge- saugt und dem Verbraucher zugeführt wird, sondern auch die Luft am Umfang des Rohres, vorzugsweise entgegen der Extrusionsrichtung, am Rohr entlang geführt wird, welche sich wie bereits oben beschrieben erwärmt und dabei dem Rohr auch am Außendurchmesser Wärme entzieht und diese dem Verbraucher zuführt.
Die Verfahren sind besonders sinnvoll beim Extrudieren eines dickwandigen Kunststoffrohres, da hier relativ lange Verweilzeiten des Extruda- tes in der Linie erforderlich sind und somit das Luftvolumen mehrfach ausgetauscht werden kann, was eine besonders hohe Effektivität zur Folge hat. Es wird also vorgeschlagen, dass im oder am extrudierten Rohr anfallende Wärme dem Extrusionsprozess wieder zugeführt wird, indem Luft entlang der Oberfläche des extrudierten Rohres entgegen der Extrusions- richtung geführt wird und wobei die gewonnene Wärmemenge zur Vor- wärmung des zum Extrusionsprozess benötigten Kunststoffgranulates oder zum Antrieb von Aggregaten wie einem Stirlingmotor bzw. zur Erzeugung von Prozesskälte genutzt wird.
Die vorgeschlagenen Extrusionslinien sowie die vorgeschlagenen Verfahren eignen sich insbesondere für dickwandige Kunststoffrohre sowie Rohre mit großen bis sehr großen Durchmessern, deren Verweilzeit innerhalb der Extrusionslinie im Stundenbereich liegt, also relativ groß ist.
Mittels der vorgeschlagenen Erfindung wird bei einer Extrusionslinie die Kühlleistung erhöht, womit erhebliche Vorteile verbunden sind. Einerseits wird die gesamte Kühllänge verkürzt, wenn man eine vorhandene Ausstoßleistung unverändert lässt, oder man kann die Ausstoßleistung erhöhen, sofern die gesamte Kühllänge beibehalten wird. Weiterhin wird damit ein energieeffizientes Extrudieren eines Kunststoffprofils erreicht, da die dem Profil entzogene Energie mindestens teilweise dem Prozess wieder zugeführt wird.
Die abgesaugte Luft beeinflusst das Aufschmelzverhalten im Extruder nicht, da sie mit dem Extruder nicht in Berührung kommt. Bei im Stand der Technik bekannten Lösungen wird die Luft durch den Extruder gesaugt und Maßnahmen ergriffen, dass es keine Beeinflussung gibt. Durch die vorgeschlagene turbulente Strömung wird eine besonders ef- fektive Kühlung erzielt.
In Erweiterung der inneren Luftabsaugung ist vorgesehen, auch oder alternativ außen über das Rohr Luft vorzugsweise, aber nicht ausschließlich, im Gegenstrom zu führen. Der Vorteil besteht darin, dass eine weit größere Wärmemenge dem Rohr entzogen werden kann, welche teils wieder verwertbar sein kann. Die Luftkühlung am Rohraußendurchmesser kann auch allein eingesetzt werden.
Im Stand der Technik ist eine Kühlung mit Wasservolltanks oder Wassersprühtanks bekannt. Insbesondere bei bestehenden Anlagen kann die Außenluftkühlung eine wirkungsvolle Nachrüstung sein, auch wenn die Rohrinnenkühlung wegen fehlendem Durchbruch im Rohrkopf nicht möglich ist.
Ziel ist es, einen möglichst hohen Prozentsatz der anfallenden Wärme im System zu halten, nicht nur über Vorwärmung, sondern auch z.B. über Umwandlung in mechanische Antriebsenergie.
In den Zeichnungen sind schematisch Ausführungsbeispiele der Erfindung wiedergegeben.
Fig. 1 zeigt ein Extrusionslinie,
Fig. 2 eine Außenkühlung des Profils und
Fig. 3 eine Alternative zu Figur 2
In der Figur 1 ist schematisch eine Extrusionslinie dargestellt, wobei der Extruder 1 seitlich am Extrusionswerkzeug 2 angeordnet ist. In Extrusi- onsrichtung 7 betrachtet schließt sich ans Werkzeug 2 die Kalibrierung 3 an, der wiederum der Abzug 4 folgt. Die Kalibrierung 3 umfasst einen Vakuumtank mit eingebauter Kalibrierhülse. An die Kalibrierung können sich auch noch weitere Kühlbäder anschließen.
Eine weitere Nachfolgeeinrichtung, hier eine Trennvorrichtung in Form von einer Säge 5, schließt sich an. In der beispielhaft dargestellten Extrusionslinie wird ein Rohr 9 gefertigt. Die Absaugung 6 ist am Anfang der Extrusionslinie direkt am Werkzeug angeordnet. Die entsprechende Saugrichtung ist durch den Pfeil schematisch angezeigt. Das Werkzeug 2 weist einen Durchbruch 8 auf, der Durchbruch 8 steht mit der Absaugung 6 in Verbindung, so dass die Absaugung 6 das Luftvolumen im Inneren des Rohres 9 bis zum Ende der Extrusionslinie im Bereich der Trennvorrichtung 5 durchsaugen kann.
An die Absaugung 6 angeordnet ist ein Verbraucher 10, der hier beispielhaft eine Vorwärmstation für das dem Extruder 1 zuzuführende Kunststoffgranulat ist. Es kann aber genauso ein Stirlingmotor damit betrieben werden, der wiederum den Abzug 4 oder sonstige Antriebe der Extrusionslinie ansteuert.
Die Absaugung ist intermittierend betreibbar. Es wird also eine Zeitspanne tl Luft abgesaugt, möglichst im turbulenten Bereich, gefolgt von einer Zeitspanne t2, wo nicht abgesaugt wird (Temperzeit). Die Wärme kann so wieder von der Mitte der Rohrwand an die Innenseite wandern, wodurch das Rohr an der Innenseite wieder wärmer wird. Im Anschluss folgt wieder eine Zeitspanne tl, in der die Wärme abgesaugt wird. Der gesamte Prozess kann mehrfach wiederholt werden. Analoges gilt für die Luftströmung entlang der Außenwandung des Profils bei der Außenkühlung.
Figur 2 zeigt schematisch eine Außenkühlung der in Figur 1 beispielhaft dargestellten Extrusionslinie, die wiederum aus dem Extruder 1, dem Werkzeug 2, einer Kalibrierung 3, dem Abzug 4 und einer Trenn vorrich- tung 5 besteht. Zwischen der Kalibrierung 3 und dem Abzug 4 ist um das extrudierte Rohr 9 eine Kammer angeordnet, die wiederum mit einem Ventilator 12 verbunden ist. Die Kammer ist sinnvoller Weise in Richtung zu der Kalibrierung 3 abgedichtet, so dass mittels des Ventilators 12 eine Absaugung entgegen der Extrusionsrichtung vollzogen wer- den kann. Die im Raum befindliche Luft wird also am Ende der Kammer, sprich gegenüber dem Abzug 4, angesaugt, entlang der Oberfläche des Rohres 9 entgegen der Extrusionsrichtung zum Ausgang der Kammer 11, also dort, wo der Ventilator 12 angeordnet ist, durchgesaugt und auf dieser Strecke erwärmt und gleichzeitig die Außenwand des Rohres 9 abgekühlt. Die so erwärmte Luft wird über die Verbindungsrohre dem Verbraucher 10 zugeführt.
Figur 3 zeigt eine ähnliche Ausführungsform, in der wiederum eine Extrusionslinie mit einem Extruder 1, einem Extrusionswerkzeug 2, der Kalibrierung 3, dem Abzug 4 und einer Trenn Vorrichtung 5 dargestellt ist. Wie bereits zu Figur 1 beschrieben können sich an die Kalibrierung weitere Kühlbäder anordnen. Dies ist hier in Figur 3 beispielhaft über drei Kühlbäder dargestellt. Diese Kühlbäder sind so angeordnet, dass zwischen diesen eine Verbindung besteht und wiederum am ersten Kühlbad nach der Kalibrierung 3 in Extrusionsrichtung betrachtet, ein Ventilator 12 angeordnet ist. Jedes dieser Kühlbäder ist so ausgeführt, dass wiederum um das Rohr 9 eine Kammer 11 entsteht. Wie bereits bei Figur 2 beschrieben kann nun über den Ventilator 12 auf der Stirnfläche der Kammer 11, die dem Abzug 4 gegenüber liegt, die Raumluft ange- saugt werden und entgegen der Extrusionsrichtung entlang der Oberfläche des Rohres 9 Richtung Ventilator 12 durchgesaugt werden. Auch hier erwärmt sich die Luft auf diesem Weg und wird über die Verbindungsrohre dem Verbraucher 10 zugeführt.
Diese vorgeschlagene Ausfuhrungsform ist beispielsweise bei bestehen- den Rohrextrusionslinien denkbar, in denen die vorhandenen Kühlbäder durch leichte Modifikation zu derartigen Kammern umfunktioniert werden können und die vorhandenen Kühlanschlüsse mit dem Ventilator 12 verbunden werden können. Selbstverständlich ist es auch hier denkbar, die Rohrverbindung zum Verbraucher 10 genau an der anderen Seite der Kammern 11, also kurz vor dem Abzug 4, anzuordnen und dann die Luft nicht durchzusaugen, sondern durchzublasen. Das würde bedeuten, dass dann in dem Ausfuhrimgsbeispiel gemäß Figur 2 bzw. 3 der Ventilator 12 die Raumluft ansaugt und durch die Kammern entlang der Oberfläche des Rohres 9 bläst, wo sie am anderen Ende den Verbindungsroh- ren zugeführt und an den Verbraucher 10 weitergeleitet wird.
Bezugszeichenliste :
1 Extruder
2 Werkzeug
3 Kalibrierung
4 Abzug
5 Trennvorrichtung
6 Absaugung
7 Extrusionsrichtung
8 Durchbruch
9 Kunststoffprofil
10 Verbraucher
11 Kammer
12 Ventilator

Claims

Patentansprüche :
1. Extrusionslinie zur Herstellung von Kunststoffprofilen, vorzugsweise Kunststoffrohren, umfassend mindestens einen Extruder (1), ein Werkzeug (2), eine Kalibrierung (3) sowie weitere Nachfolgeeinrichtungen (4, 5),
dadurch gekennzeichnet, dass
mindestens das Werkzeug (2) mindestens einen Durchbruch (8) aufweist und in Extrusionsrichtung (7) gesehen vor dem Werkzeug (2) eine Absaugung (6) angeordnet ist, mittels der Luft aus dem Inneren des Kunststoffprofils (9) austauschbar ist.
2. Extrusionslinie zur Herstellung von Kunststoffprofilen, vorzugsweise Kunststoffrohren, umfassend mindestens einen Extruder (1), ein Werkzeug (2), eine Kalibrierung (3) sowie weitere Nachfolgeeinrichtungen (4, 5),
dadurch gekennzeichnet, dass
im Anschluss an die Kalibrierung (3) um das extrudierte Rohr eine Kammer (11) angeordnet ist, wobei an der Kammer (11) ein Ventilator (4) angeordnet ist, mittels dem Luft entgegen der Extrusionsrichtung (7) an der Außenwandung des extrudierten Rohres vorbei geführt werden kann.
3. Extrusionslinie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die abgesaugte warme Luft zur Energierückgewinnung einem Verbraucher (10) zuführbar ist.
4. Extrusionslinie nach Anspruch 2, dadurch gekennzeichnet, dass die Kammer (11) zumindest an einer Seite abgedichtet ist.
5. Extrusionslinie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verbraucher (10) ein Wärmetauscher ist.
6. Extrusionslinie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verbraucher eine Vorwärmstation für das dem Extru- der (1) zuzuführende Rohmaterial ist.
7. Extrusionslinie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verbraucher ein Stirlingmotor ist.
8. Extrusionslinie nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verbraucher eine Absorptionskühlmaschine ist.
9. Verfahren zum energieeffizienten Extrudieren eines Kunststoffpro- fils, insbesondere eines Kunststoffrohres, das die Schritte umfasst, a) Aufschmelzen von Kunststoff in einem Extruder (1), b) Formen eines Kunststoffstranges und Zuführen des Kunst- Stoffstranges zu einem Werkzeug (2), c) Formen eines Kunststoffprofiles mittels des Werkzeuges (2) und d) Kalibrieren und Aushärten mittels Kühlung des Profils in einer Kalibrierung (3), wobei zusätzlich zur Außenkühlung in der Kalibrierung (3) das Profil (9) im Inneren gekühlt wird,
dadurch gekennzeichnet, dass
zur inneren Kühlung des Profils (9) die Luft entgegen der Extrusi- onsrichtung (7) mittels einer Absaugung (6) durchgesaugt wird.
10. Verfahren zum energieeffizienten Extrudieren eines Kunststoffpro- fils, insbesondere eines Kunststoffrohres, das die Schritte umfasst, a) Aufschmelzen von Kunststoff in einem Extruder (1), b) Formen eines Kunststoffstranges und Zufuhren des Kunststoff- Stranges zu einem Werkzeug (2), c) Formen eines Kunststoffprofiles mittels des Werkzeuges (2) und d) Kalibrieren und Aushärten mittels Kühlung des Profus in einer Kalibrierung (3), wobei zusätzlich zur Außenkühlung in der Kalibrierung (3) das Profil (9) im Inneren gekühlt wird,
dadurch gekennzeichnet, dass
zur äußeren Kühlung des Profils (9) die Luft entgegen der Extrusi- onsrichtung (7) mittels eines Ventilators durch eine Kammer (11) an der Außenwandung des extrudierten Rohres vorbei geführt wird.
11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Luft einem Verbraucher (10) zur Nutzung der Wärme zugeführt wird.
12. Verfahren nach Anspruch 9, 10 oder 11, dadurch gekennzeichnet, dass die Luft mindestens mit einer Strömungsgeschwindigkeit abgesaugt wird, die im turbulenten Bereich liegt.
13. Verfahren zum Extrudieren eines dickwandigen Kunststoffrohres, bei dem die am extrudierten Rohr anfallende Wärme dem Extrusi- onsprozess wieder zugeführt wird, wobei die gewonnene Wärmemenge zur Vorwärmung des zum Extrusionsprozess benötigten Rohmaterials oder zum Antrieb von Aggregaten wie einem Stir- lingmotor genutzt wird.
EP09782893A 2008-09-15 2009-09-10 Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen Withdrawn EP2342062A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008047207.7A DE102008047207B4 (de) 2008-09-15 2008-09-15 Extrusionslinie und Verfahren zum energieeffizienten Extrudieren von Kunststoffprofilen
PCT/EP2009/061780 WO2010029141A2 (de) 2008-09-15 2009-09-10 Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen

Publications (1)

Publication Number Publication Date
EP2342062A2 true EP2342062A2 (de) 2011-07-13

Family

ID=41668442

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09782893A Withdrawn EP2342062A2 (de) 2008-09-15 2009-09-10 Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen

Country Status (6)

Country Link
US (1) US20110285051A1 (de)
EP (1) EP2342062A2 (de)
CN (1) CN102159375A (de)
CA (1) CA2737242A1 (de)
DE (1) DE102008047207B4 (de)
WO (1) WO2010029141A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010025524A1 (de) 2010-06-29 2011-12-29 Kraussmaffei Technologies Gmbh Vorrichtung zum Erzeugen eines hohlen Kunststoffprofiles
DE202010018606U1 (de) * 2010-07-15 2018-06-05 Battenfeld-Cincinnati Germany Gmbh Vorrichtung zum Reinigen der Kühlluft bei der Extrusion von Kunststoffteilen
CN103182756A (zh) * 2011-12-28 2013-07-03 富泰华工业(深圳)有限公司 供料系统
DE102013202997A1 (de) * 2013-02-24 2014-08-28 Battenfeld-Cincinnati Germany Gmbh Verfahren zur Nutzung der in einem Extrusionsprozess abgegebenen Wärmemenge
DE102013202996A1 (de) * 2013-02-24 2014-08-28 Battenfeld-Cincinnati Germany Gmbh Verfahren zur Nutzung der in einem Extrusionsprozess abgegebenen Wärmemenge
US9776354B2 (en) 2013-02-24 2017-10-03 American Maplan Corporation Extrusion process
DE102013107809A1 (de) * 2013-07-22 2015-02-19 Egeplast International Gmbh Verfahren zur Abkühlung von Kunststoffprofilen
CN104527013A (zh) * 2014-12-13 2015-04-22 四川清川管业有限公司 一种塑胶管材生产线余热回收利用系统及方法
DE102015106398A1 (de) * 2015-04-26 2016-10-27 Battenfeld-Cincinnati Germany Gmbh Verfahren und Vorrichtung zum Kühlen von extrudierten Profilen
CN107662328A (zh) * 2016-07-27 2018-02-06 上海纳川核能新材料技术有限公司 塑料管材挤出生产过程内壁冷却装置
CN108297379B (zh) * 2018-03-19 2023-12-05 江苏昊晟塑业科技有限公司 挤塑机出料加热系统
CN108381893A (zh) * 2018-04-03 2018-08-10 贵州枫叶管业有限公司 一种pe管材连续挤出成型冷却装置
CN109454847A (zh) * 2018-12-24 2019-03-12 福州启辰阳光建材有限公司 集成墙板的生产线
CN113858588A (zh) * 2021-09-02 2021-12-31 武汉市王冠医疗器械有限责任公司 一种基于医疗器材的输液器生产系统
CN116330607B (zh) * 2023-05-12 2023-07-28 广东盟信塑胶实业有限公司 Pok塑料棒材多腔分段控温熔融挤出成型装置及工艺

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1063288B (it) 1976-06-18 1985-02-11 Bandera Luigi Cost Mecc Spa Dispositivo calibratore di profilati cavi estrusi,in particolare tubi di plastica
NL8105045A (nl) 1981-11-07 1983-06-01 Stamicarbon Werkwijze voor het extruderen van een hol kunststofprofiel.
SU1412985A1 (ru) 1986-09-18 1988-07-30 Украинский Научно-Исследовательский Институт По Разработке Машин И Оборудования Для Переработки Пластмасс,Резины И Искусственной Кожи Способ охлаждени полимерных погонажных трубчатых изделий
JPH0761684B2 (ja) * 1989-04-13 1995-07-05 タジマエンジニアリング株式会社 インフレーションフィルム製造に於けるフィルム成形用冷風の供給方法及びその冷風供給装置
DE4117221C2 (de) 1991-05-27 1996-02-22 Schueco Int Kg Verfahren und Vorrichtung zum Herstellen von strangförmigen Hohlkammerprofilen aus thermoplastischem Werkstoff
BE1006729A3 (fr) 1993-02-24 1994-11-29 Eupen Kabelwerk Procede et dispositif pour refroidir un tuyau lors de sa fabrication par extrusion a l'aide de dispersions successives d'un liquide sur la paroi interne.
FI108117B (fi) 1996-04-17 2001-11-30 Uponor Innovation Ab Menetelmä ja sovitelma suulakepuristetun onton tuotteen jäähdyttämiseksi
US20060288699A1 (en) * 2005-06-23 2006-12-28 Corbett Bradford G Jr Energy recovery system for rubber and plastic molding machines
US8287786B2 (en) 2006-11-17 2012-10-16 Thomas Michael R Method of cooling extrusions by circulating gas
DE102007039799B3 (de) 2007-08-23 2009-04-02 Cincinnati Extrusion Gmbh Verfahren und Vorrichtung zur Energieeinsparung in der Extrusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010029141A2 *

Also Published As

Publication number Publication date
US20110285051A1 (en) 2011-11-24
DE102008047207A1 (de) 2010-04-15
DE102008047207B4 (de) 2022-10-20
CA2737242A1 (en) 2010-03-18
WO2010029141A3 (de) 2010-06-17
CN102159375A (zh) 2011-08-17
WO2010029141A2 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
EP2342062A2 (de) Vorrichtung und verfahren zum energieeffizienten extrudieren von kunststoffprofilen
DE102008047210B4 (de) Extrusionslinie und Verfahren zum Kühlen von Kunststoffprofilen
AT409737B (de) Kühl- und kalibriereinrichtung
EP3300486B1 (de) Verfahren und vorrichtung zum kühlen von extrudierten profilen
WO1997027991A1 (de) Extrusionsanlage mit einer formgebungseinrichtung
AT408969B (de) Verfahren sowie vorrichtung zum kühlen und gegebenenfalls kalibrieren von gegenständen aus kunststoff
DE3211833C2 (de) Blaskopf für die Herstellung einer Kunststoffblasfolie durch Flachlegen eines Blasfolienschlauches
DE102013220746A1 (de) Vorrichtung und Verfahren zum Kühlen von Kunststoffprofilen
AT414317B (de) Formgebungseinrichtung sowie verfahren zur formgebung und abkühlung von hohlprofilen
EP2448742B1 (de) Vorrichtung und verfahren zum kühlen von kunststoffprofilen
EP2769824B1 (de) Verfahren zur nutzung der in einem extrusionsprozess abgegebenen wärmemenge
DE19815276A1 (de) Behandlungsvorrichtung
AT412767B (de) Verfahren zum herstellen von länglichen gegenständen sowie mit diesem verfahren hergestellter gegenstand
DE19837110C1 (de) Schalung für einen Betonformkörper und Verfahren zur Herstellung eines Betonformkörpers
DE102008047208B4 (de) Extrusionslinie, Verfahren zum Kühlen von Kunststoffprofilen und Kunststoffrohr
WO2010029143A2 (de) Vorrichtung und verfahren zum kühlen von kunststoffprofilen
DE102008028218B4 (de) Verfahren zum Abkühlen von extrudierten Werkstücken aus Kunststoff
DE102005015683A1 (de) Abdichtung am Ausgang eines Unterdruck-Kalibrierbades
EP2769823A2 (de) Verfahren zur Nutzung der in einem Extrusionsprozess abgegebenen Wärmemenge
DE2709395C2 (de) Verfahren und Vorrichtung zum kontinuierlichen Herstellen eines Rippenrohres mit glattem Innenkanal
AT407506B (de) Verfahren zum abkühlen von extrudierten hohlprofilen
DE2048759A1 (de) Verfahren zur Herstellung von geschlos senen Hohlprofilteilen aus Kunststoff
EP3291961A1 (de) VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG GROßVOLUMIGER BEHÄLTER MIT FLANSCH DURCH KUNSTSTOFF-BLASFORMEN
DE60309696T2 (de) Verfahren und system zur herstellung eines zweigs in einem polymerrohr unter verwendung erwärmter flüssigkeit zur plastifizierung eines rohrwandabschnitts, der zur bildung des zweigs nach aussen verschoben werden soll
AT411236B (de) Profil - nachbearbeitung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110415

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111129