EP2297538B1 - Systèmes de stockage d'énergie - Google Patents

Systèmes de stockage d'énergie Download PDF

Info

Publication number
EP2297538B1
EP2297538B1 EP09746088.5A EP09746088A EP2297538B1 EP 2297538 B1 EP2297538 B1 EP 2297538B1 EP 09746088 A EP09746088 A EP 09746088A EP 2297538 B1 EP2297538 B1 EP 2297538B1
Authority
EP
European Patent Office
Prior art keywords
thermal energy
heat
bank
banks
store
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09746088.5A
Other languages
German (de)
English (en)
Other versions
EP2297538A2 (fr
Inventor
Andrew Bissell
John Field
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sunamp Ltd
Original Assignee
Sunamp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunamp Ltd filed Critical Sunamp Ltd
Publication of EP2297538A2 publication Critical patent/EP2297538A2/fr
Application granted granted Critical
Publication of EP2297538B1 publication Critical patent/EP2297538B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D20/0039Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/02Machines, plants or systems, using particular sources of energy using waste heat, e.g. from internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/026Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat with different heat storage materials not coming into direct contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/003Details of machines, plants or systems, using electric or magnetic effects by using thermionic electron cooling effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/02Details of machines, plants or systems, using electric or magnetic effects using Peltier effects; using Nernst-Ettinghausen effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • This invention relates to energy storage systems. More particularly, the present invention relates to thermal energy storage systems and use of energy storable material such as phase change material in the provision of heating and/or cooling systems in, for example, domestic dwellings.
  • Heating Space heating
  • hot water are an expected facility in homes, offices, factories, hotels, shops, etc around the world.
  • Recent common practice has been to deliver this type of heating on-demand by burning storable energy sources (e.g. oil, gas and the like) or by using electrical energy (typically generated from gas or coal) in a heating element.
  • storable energy sources e.g. oil, gas and the like
  • electrical energy typically generated from gas or coal
  • fossil fuels are convenient stores of "fossil sunlight.” Their energy originates from the sun, via photosynthesis in plants which were ultimately trapped underground. They were laid down over millions of years but we are burning them in hundreds. As a result we face major problems in continuing to use these fossil fuels:
  • heat pumps can be used to move and concentrate naturally occurring or waste heat energy. To drive heat pumps requires electrical energy. Fossil-free energy sources driven from the sun include:
  • Another approach proposed as an application of the current invention, is to convert surplus electrical energy from intermittent renewable sources into heat or cool when the electricity is available, store the heat or cool in a thermal store and then make it available as useful heat and cool on demand.
  • Thermal energy storage technologies store heat, for example from active solar collectors, in an insulated repository for later use in space heating, domestic or process hot water, or to generate electricity Most practical active solar heating systems have storage for a few hours to a day's worth of heat collected. There are also a small but growing number of seasonal thermal stores, used to store summer heat for use during winter.
  • Phase change materials have previously been employed in energy storage devices using the solid -liquid phase change.
  • the liquid -gas phase change material is usually not practical for use as thermal storage due to the large volumes or high pressures required to store the materials when in their gas phase.
  • phase change materials perform like conventional storage materials; their temperature rises as they absorb heat. Unlike conventional storage materials, however, when phase change materials reach the temperature at which they change phase (their melting point) they absorb large amounts of heat without a significant rise in temperature. When the ambient temperature around a liquid material falls, the phase change material solidifies, releasing its stored latent heat. Within the human comfort range of 200 to 30°C, some phase change materials are very effective. They can store about 5 to 14 times more heat per unit volume than conventional storage materials such as water, masonry, or rock.
  • Phase change materials can be broadly grouped into two categories: organic compounds (such as waxes, vegetable extract, polyethylene glycol); and salt-based products (such as Glauber's salt).
  • organic compounds such as waxes, vegetable extract, polyethylene glycol
  • salt-based products such as Glauber's salt
  • the most commonly used phase change materials are salt hydrates, fatty acids and esters, and various paraffins (such as octadecane).
  • ionic liquids were investigated as phase change materials. As most of the organic solutions are water free, they can be exposed to air, but all salt based phase change materials solutions must be encapsulated to prevent water evaporation. Both types offer certain advantages and disadvantages for certain applications.
  • Eutectic salts a class of phase change materials, have also been used since the late 1800s as a medium for thermal storage applications. They have been used in such diverse applications as refrigerated transportation for rail and road applications and their physical properties are, therefore, well-known.
  • phase change material technology provides a new horizon for building services and refrigeration engineers regarding medium and high temperature energy storage applications.
  • the scope of these thermal energy applications are wide ranging such as solar heating, hot water, heating rejection, air conditioning and thermal energy storage applications.
  • phase change materials there are a number of problems with practical use of phase change materials including achieving suitable rates of heat transfer in and out and acceptable levels of thermodynamic efficiency.
  • DE 4419887 relates to a heat accumulator for a system for accumulating thermal energy and cryogenic (refrigerating) energy.
  • the disclosed system fails to disclose the control aspects of the present invention and the control system which can choose and/or switch a source and/or destination of thermal energy transfer in succession and/or in parallel amongst one or more thermal energy sources/sinks and one or more thermal energy storage banks of the thermal energy store.
  • thermo energy store capable of accepting, storing and releasing thermal energy at a range of more than one temperature to/from at least one thermal energy source and/or sink, said thermal energy store comprising:
  • the heating and/or cooling system forms part of or may include within it a thermal energy store.
  • phase transitions may be reversible without substantial loss of energy absorbing and/or storing and/or releasing capacity across at least more than one reversible cycle or cycles.
  • the heat storage (i.e. thermal energy storage) material may undergo a solid -liquid phase change and may store/release energy on undergoing a phase change. This process may occur a plurality of times.
  • the present invention therefore relates to a thermal energy store and resulting thermal energy storage.
  • the technology described in the present invention may be used in a number of technologies that store energy in, for example, a thermal reservoir for later re-use.
  • a particular advantage of using solid -liquid phase change material as set out in the present invention is to balance energy demand between day time and night time.
  • a thermal reservoir may be maintained at a temperature above (i.e. hotter) or below (i.e. colder) than that of the ambient environment.
  • the present invention can therefore be used in both a heating and/or a refrigeration system.
  • a particular use of the present invention is in air conditioning units or in central heating systems.
  • the thermal energy store comprise banks which may contain one or more heat exchanger means that may permit thermal energy to be transferred (e.g. by conduction and/or radiation and/or convection and/or heat pipe and/or thermal energy transfer indirectly via a thermal energy transfer fluid and/or any other means of thermal energy transfer) to and/or from at least one thermal energy sources and/or sinks.
  • thermal energy e.g. by conduction and/or radiation and/or convection and/or heat pipe and/or thermal energy transfer indirectly via a thermal energy transfer fluid and/or any other means of thermal energy transfer
  • the heat exchanger means in at least one bank may permit thermal energy to be simultaneously or substantially simultaneously transferred (and, for example, with the same heat exchanger means, also on other occasions, non-simultaneously transferred) to and/or from two or more thermal energy sources and/or sinks.
  • the heat exchanger means in at least one bank may permit thermal energy to be simultaneously (and, for example, with the same heat exchanger means, also on other occasions, non-simultaneously and/or simultaneously only in relation to some subset of the possible set of thermal energy sources/sinks) transferred to and/or from three or more thermal energy sources/sinks.
  • the number of potentially simultaneous thermal energy sources and/or sinks may be four or more, five or more, six or more, seven or more, eight or more, nine or more, or ten or more. There may therefore be a plurality of thermal energy sources and/or sinks.
  • the thermal store may comprise four or more banks, five or more banks, six or more banks, seven or more banks, eight or more banks, nine or more banks, or ten or more banks. There may therefore be a plurality of banks.
  • the thermal store and/or each bank and/or a plurality of banks may be capable of accepting and/or storing and/or releasing thermal energy at a range of one or more temperatures to and/or from one or more thermal energy sources and/or sinks simultaneously or at different times.
  • At least one or all of the banks in the thermal store may be nested.
  • a configuration of banks may be wholly and/or partially nested within one another.
  • At least one of the one or more outer banks may be at or substantially near the temperature of the one or more local environments enclosing the thermal energy store.
  • the one or more hottest banks may be at least one of the one or more innermost nested banks (meaning that bank or those banks for which no other bank is wholly and/or mostly enclosed within it/them).
  • the one or more coldest banks may be at least one of the one or more innermost nested banks (meaning that bank or those banks for which no other bank is wholly and/or mostly enclosed within it/them).
  • the thermal energy store may include at least one coldest bank and one hottest bank, each of which may be an innermost bank.
  • nesting, and/or wholly and/or partially enclosing banks within one another may reduce the thermal energy lost from the thermal energy store to its one or more surrounding local environments compared to the case where no nesting is used.
  • At least one thermal energy sources/sinks may be external to the thermal store. At least one thermal energy source/sink may be within at least one bank of the thermal energy store.
  • the thermal energy store comprises at least one thermal energy transfer connection between at least one thermal energy source and one thermal energy sink.
  • any thermal energy source/sink within a bank comprises at least some thermal energy storage material in thermal contact (whether directly physically in contact or radiatively in thermal contact or otherwise) with the one or more heat exchanger means within the bank.
  • the heat exchanger means may permit thermal energy to be removed from and/or delivered to (by conduction and/or radiation and/or convection and/or heat pipe and/or thermal energy transfer indirectly via a thermal energy transfer fluid and/or any other means of thermal energy transfer) the thermal energy storage material within the bank by transfer to/from at least one thermal energy transfer connection comprising at least one thermal energy transfer medium (including but not limited to thermally conductive metal and/or high thermal conductivity plastic and/or gas and/or refrigerant and/or electromagnetic radiation and/or liquid and/or other heat transfer fluid).
  • thermal energy transfer medium including but not limited to thermally conductive metal and/or high thermal conductivity plastic and/or gas and/or refrigerant and/or electromagnetic radiation and/or liquid and/or other heat transfer fluid.
  • the at least one thermal energy transfer connection comprising at least one thermal energy transfer medium permits thermal energy to be transferred from/to at least one thermal energy source/sink external to the thermal store which is in thermal contact (whether directly physically in contact or radiatively in thermal contact or otherwise) with the at least one thermal energy transfer connection.
  • the thermal energy transfer medium of the thermal energy transfer connection may be contained within and/or enclosed by and/or directed by one or more pipes and/or other vessels and/or enclosures (which may be closed and/or open, and may be point-to-point in nature and/or form a loop and/or form all or part of a network) to promote and/or assist and/or ensure the thermal energy transfer medium's function to transfer thermal energy from the thermal energy source at one end of the thermal energy transfer connection to the thermal energy sink as the thermal energy transfer medium may be pumped and/or otherwise caused to move by the application of external energy and/or by natural processes (such as but not limited to convection and/or thermosyphoning and/or capillary action) in such a way as to promote and/or assist and/or ensure its function to transfer thermal energy from the thermal energy source at one end of the thermal energy transfer connection to the thermal energy sink at the other or vice-versa.
  • pipes and/or other vessels and/or enclosures which may be closed and/or open, and may be point-to-point
  • At least one thermal energy transfer connection may comprise and/or include a heat pipe or a pipe circuit containing heat transfer fluid driven by a pump.
  • Thermal energy may be caused to move within and/or through the thermal energy transfer connection by the application of external energy (such as but not limited to heat pumping and/or thermoelectric effects and/or thermionic emission) and/or by natural processes (such as but not limited to convection and/or thermosyphoning and/or capillary action) in such a way as to promote and/or assist and/or ensure the thermal energy transfer medium's function to transfer thermal energy from the thermal energy source at one end of the thermal transfer connection to the thermal energy sink at the other or vice-versa.
  • external energy such as but not limited to heat pumping and/or thermoelectric effects and/or thermionic emission
  • natural processes such as but not limited to convection and/or thermosyphoning and/or capillary action
  • the thermal energy transfer connection may comprise and/or incorporate one or more devices for transferring heat from a lower temperature body to a higher temperature body wherein such devices may include, but are not limited to:
  • the thermal store may incorporate integrally within its function and/or structure and/or control logic one or more devices for transferring heat from a lower temperature body to a higher temperature body wherein such devices may include, but are not limited to:
  • the heating and/or cooling system may incorporate integrally within its function and/or structure and/or control logic one or more devices for transferring heat from a lower temperature body to a higher temperature body wherein such devices may include, but are not limited to:
  • the thermal energy transfer connection may link two or more banks and may comprise and/or incorporates one or more devices for transferring heat from a lower temperature body to a higher temperature body wherein such devices may include, but are not limited to:
  • the ability to transfer thermal energy of a thermal energy transfer connection and/or a part of a thermal energy transfer connection and/or heat exchanger means within a bank connected to such a thermal energy transfer connection and/or heat exchanger means external to the thermal energy store connected to such a thermal energy transfer connection may be modulated between a state in which it is maximally resistant to and/or completely incapable of transferring thermal energy and a state in which it is at its minimal resistance to transferring thermal energy and/or modulated to any degree of permissiveness between the minimum and maximum levels.
  • Changes of thermal permissiveness may be accomplished by, for example, but not limited to, varying the amount of motivating energy, whether electrical or otherwise, applied to a pump and/or a heat pump and/or thermoelectric device and/or other apparatus, and/or by varying the rate of flow of a thermal energy transfer fluid, and/or by selecting from the available set of channels and/or pipes capable of carrying thermal energy transfer fluid through heat exchange means and/or thermal energy transfer connections a subset that are at a specific moment opened to carry thermal energy transfer fluid using, for example, but not limited to, valves and/or motor-driven valves and/or manifolds and/or solenoids.
  • Change of thermal permissiveness may occur by changes to the physical configuration of the structure of the heat exchanger and/or thermal energy transfer connection means and/or the thermal energy transfer fluid in response to, for example, but not limited to, the physical state of the thermal store and/or some part of the thermal store, and/or the physical state of the environment surrounding the thermal store and/or some other stimulus, for instance, but not limited to, temperature changes at either end of a thermosyphon or heat pipe switching on or off and/or modulating its ability to transfer thermal energy, and/or a specially designed heat pipe with a reservoir for its thermal energy transfer fluid having that reservoir opened and/or closed, and/or a bi-metallic strip acting in response to a temperature change to open and/or close a valve.
  • the modulation may be controlled and/or influenced by, for instance, but not limited to, user stimulus and/or the action of a thermostat and/or mechanical and/or electrical controller and/or control program running on a programmable computation system, responding in turn to the physical state of the thermal store and/or some part of the thermal store, and/or the physical state of the environment surrounding the thermal store.
  • At least some of the banks may have overlapping and/or identical usual operating temperature ranges.
  • At least some of the banks may have distinct, non-overlapping usual operating temperature ranges.
  • At least two banks and/or at least one bank and at least one external thermal energy source/sink may be connected by at least one thermal energy transfer connection constituting a network and/or directed graph wherein the banks may constitute nodes and the thermal energy transfer connections may constitute edges.
  • At least one thermal energy transfer connection may transfer thermal energy in only one direction and/or can transfer with much higher permissiveness in one direction and very low permissiveness in the other (for example, but not limited to, from a first bank to a second bank, only when at that moment the thermal energy storage material within the first bank is at a temperature higher than the thermal energy storage material within with the second bank, but never from said second bank to said first bank).
  • One or more single-direction-only thermal energy transfer connections may comprise and/or include, for instance, but not limited to, heat diodes and/or specially configured heat pipes and/or thermosyphons, and/or pumped circuits operating only when thermostats and/or thermocouples in the banks and/or thermal energy sources/sinks at either end of report a temperature higher at one end than at the other but not when the temperature difference goes the other way, and/or selective emissivity surfaces and/or selective emissivity glass and/or double glazing and/or triple glazing and/or inert gas and/or vacuum.
  • Every external heat source/sink may be directly connected by thermal energy transfer connection means to every bank within the thermal store.
  • Every bank within the thermal store may be connected to every other bank within the thermal energy store by thermal energy transfer connection means.
  • At least one external thermal energy source/sink it may be connected to at least one bank within the thermal energy store but it may not be connected to every bank within the thermal energy store.
  • At least one bank within the thermal store it may be connected to at least one other bank within the thermal energy store but it may not be connected to every other bank within the thermal energy store.
  • Every bank within the thermal store may be connected to only the next bank hotter/colder than the given bank, wherein the temperature of each bank means, for example, but not limited to, phase transition temperature of thermal storage material within each bank, and/or the minimum and/or maximum and/or centre of each bank's usual operating temperature range.
  • At least one thermal energy source external to the thermal energy store and/or at least one source bank within the thermal energy store may lack a direct thermal energy transfer connection to/from at least one destination bank within the thermal energy store and/or at least one thermal energy sink external to the thermal energy store.
  • Thermal energy can still be transferred between the source and destination (or vice-versa) by utilising as a substitute for the missing direct thermal energy transfer connection at least a sequence of a first thermal energy transfer connection leading to a first intermediate bank followed by a second thermal energy transfer connection leading to the original destination.
  • Transfer of thermal energy from the source using the first thermal energy transfer connection causes the thermal energy to be added to the energy stored in the at least one intervening bank, where it may be stored temporarily. Simultaneously and/or previously and/or later thermal energy may be removed from the said intervening bank and transferred using the second thermal energy transfer connection to the destination.
  • the sequence of intermediate transfers may include at least two intermediate banks and at least three thermal energy transfer connections.
  • At least three sources/destinations for thermal energy transfers may share a single thermal energy transfer connection.
  • the thermal energy transfer connection may be shared by virtue of being continuously connected to the heat exchangers of each of the at least three sources/destinations.
  • the thermal energy transfer connection may be shared at some times by virtue of being on at least some occasions connected to the heat exchangers of at least two of the at least three sources/destinations.
  • One or more thermal energy storage banks may be connected to another set of one or more thermal energy storage banks by thermal energy transfer connection means wherein said means may permit the controlled and/or deliberate and/or uncontrolled transfer of thermal energy between banks.
  • the thermal energy transfer connections between banks may be changed during the use of the system by, for example but not limited to, physically making and/or breaking pipe-work and/or other connections, and/or by switching on and/or off and/or into intermediate positions valves and/or pumps and/or heat pumps and/or other switchable and/or controllable elements and/or by changing the ability to transfer thermal energy of heat pipes and/or any other means of controlling heat transfer known to the art.
  • a source may at another time and/or at the same time also be a destination
  • the sources and/or destinations of thermal energy transfers can be switched in succession and/or in parallel amongst one or more thermal energy sources/sinks (whether external to a thermal energy store and/or thermal energy storage banks within a thermal energy store) and one or more thermal energy storage banks of a thermal energy store.
  • the switching of sources/destinations may result from physical changes to properties (for example, but not limited to temperature) of the system and/or the environment surrounding the system and/or the component parts of the system (such as, but not limited to, thermal energy storage banks and/or thermal energy sources/sinks) causing natural physical changes to some element of the system (for example, but not limited to, expansion of a metal and/or variable expansion of a bi-metallic strip, and/or density change and/or evaporation and/or condensation of a thermal energy transfer fluid) that may result in change to the function of some part of the system (such as, but not limited to, opening and/or closing and/or variation of the state of a valve, and/or variation of the ability of a heat pipe to transmit heat) wherein such changes were intended by a system designer.
  • properties for example, but not limited to temperature
  • the environment surrounding the system and/or the component parts of the system such as, but not limited to, thermal energy storage banks and/or thermal energy sources/sinks
  • a control system chooses and/or switches the sources and/or destinations of thermal energy transfers in succession and/or in parallel amongst one or more thermal energy sources/sinks (whether external to a thermal energy store and/or thermal energy storage banks within a thermal energy store) and one or more thermal energy storage banks of a thermal energy store.
  • control system may calculate the relative overall system coefficient of performance and/or efficiency and/or any other performance metric for one or more potential thermal energy transfers at any time and the control system may choose a more beneficial or the most optimal choice of such transfers in relation to parameters set by an over-arching control system and for according to criteria established by the thermal energy storage system designer and/or user and/or purchaser and/or legal criteria and/or safety criteria and/or any other design and/or usage and/or benefit criteria, and switch the sources and/or destinations accordingly.
  • the amount and/or temperature of thermal energy available from/acceptable by a thermal energy source/sink external to the thermal energy store may be variable over time.
  • the amount and/or temperature of thermal energy available from/acceptable by a thermal energy source/sink external to the thermal energy store may be variable over time due to user choices, for example but not limited to: the decision of a user to light and/or not light and/or increase/decrease the fuel flow rate to and/or increase/decrease the oxidiser flow rate to and/or extinguish a source of combustion, for example but not limited to, the burning of wood and/or natural gas; and/or the decision of a user to deploy a solar panel and/or modify its position to increase and/or decrease its ability to capture sunlight and/or service it to remove dirt; and/or the decision of a user to switch on and/or off a pump causing cold lake water to be available at an external heat exchanger as a thermal energy sink.
  • the amount and/or temperature of thermal energy available from/acceptable by a thermal energy source/sink external to the thermal energy store may be variable over time due to the process of operation of the thermal energy source, for example but not limited to:
  • the amount and/or temperature of thermal energy available from/acceptable by a thermal energy source/sink external to the thermal energy store may be variable over time due to intrinsic or natural variability of the source/sink itself, for example but not limited to:
  • At least some sources and/or destinations of thermal energy transfers can be switched in succession and/or parallel such that at least at some times thermal energy may be transferred from one external source of thermal energy to a selected bank that has at said times a lower average and/or maximum and/or minimum temperature in its thermal energy storage material than the temperature at said times of the external source of thermal energy.
  • the selected bank may be chosen because it is, at that time, the hottest bank (i.e. that bank having the highest average and/or maximum and/or minimum temperature of its thermal energy storage material) amongst all banks of the thermal energy store that have temperatures lower than the external thermal energy source.
  • the selected bank may be chosen because it is, at that time, the bank most depleted in thermal energy by some measure, for example, but not limited to the bank having the lowest average and/or maximum and/or minimum temperature of its thermal energy storage material, and/or wherein the thermal energy storage material may be a phase change material being the closest (whether on an absolute measure and/or proportional to the maximum possible for that bank) to being entirely in its lowest energy state, for example but not limited to, frozen.
  • thermal energy transfer fluid that has already been directed by one thermal energy transfer connection from the external thermal energy source to a first bank
  • additional thermal energy transfer connections in sequence to heat exchanger means in one or more additional banks wherein the one or more additional banks are visited in descending sequence of average and/or maximum and/or minimum temperature of the thermal energy storage material within each bank.
  • At least some sources and/or destinations of thermal energy transfers can be switched in succession and/or parallel such that at least at some times thermal energy is transferred to one external sink of thermal energy from a selected bank that has at said times a higher average and/or maximum and/or minimum temperature in its thermal energy storage material than the temperature at said times of the external sink of thermal energy.
  • the selected bank may be chosen because it is, at that time, the coldest bank (i.e. that bank having the lowest average and/or maximum and/or minimum temperature of its thermal energy storage material) amongst all banks of the thermal energy store that have temperatures higher than the external thermal energy sink.
  • the coldest bank i.e. that bank having the lowest average and/or maximum and/or minimum temperature of its thermal energy storage material
  • the selected bank may be chosen because it is, at that time, the bank containing the largest quantity of thermal energy by some measure, for example, but not limited to the bank having the highest average and/or maximum and/or minimum temperature of its thermal energy storage material, and/or wherein the thermal energy storage material may be a phase change material being the closest (whether on an absolute measure and/or proportional to the maximum possible for that bank) to being entirely in its highest energy state, for example but not limited to, molten.
  • thermal energy may be transferred to the external thermal energy sink from the selected bank
  • potential to transfer thermal energy from other banks in the thermal energy store remains, and a further bank and/or banks may be selected to provide some and/or all of the remaining thermal energy that could be potentially transferred in sequence and/or at the same time by, for example, but not limited to, causing a thermal transfer fluid to be first directed by an arrangement of one or more additional thermal energy transfer connections in sequence to heat exchanger means in one or more additional banks, wherein the one or more additional banks may be visited in descending and/or ascending sequence of average and/or maximum and/or minimum temperature of the thermal energy storage material within each bank before it is directed by a final thermal energy transfer connection to the external thermal energy sink from the last bank.
  • Thermal energy transfer fluid may flow around a circuit that may include an external source/sink of thermal energy and at least one bank of a thermal energy store selected from the full set of such banks.
  • the number and/or order and/or phase transition temperature and/or current average and/or maximum and/or minimum temperature of banks to include in the transfer of thermal energy from/to an external source/sink may be chosen such that the return temperature of any thermal energy transfer fluid that may flow back from the thermal energy store may be better adapted to and/or optimally matched to some characteristic of the external source/sink, for example, but not limited to, the temperature at which thermal energy transfer fluid flowing into the external source/sink may deliver and/or collect and/or reject and/or generate and/or convert thermal energy most optimally, for example, but not limited to:
  • the objective to better and/or optimally match some characteristic of the external source/sink is balanced against the objective to maintain certain target quantities of, for example but not limited to, thermal energy in each bank and/or certain target temperatures, which may be changed from time-to-time, by changing from time-to-time the number and/or order and/or phase transition temperature and/or current average and/or maximum and/or minimum temperature of banks to include in the thermal energy transfers between the thermal energy store and at least one external sources/sinks.
  • certain target quantities of, for example but not limited to, thermal energy in each bank and/or certain target temperatures which may be changed from time-to-time, by changing from time-to-time the number and/or order and/or phase transition temperature and/or current average and/or maximum and/or minimum temperature of banks to include in the thermal energy transfers between the thermal energy store and at least one external sources/sinks.
  • the objective to maintain and/or achieve certain target quantities of, for example but not limited to, thermal energy in each bank and/or certain target temperatures, which may be changed from time-to-time, may be achieved by a control system adapting the thermal energy transfers within and to/from the store.
  • Such adaptation may be performed having reference to current and/or historical information and/or future-looking projections about physical parameters and/or user behaviour related to the thermal energy store itself and/or its banks and/or its thermal energy storage materials, and/or the environment immediately surrounding the thermal energy store, and/or the demand patterns of any services supplied by the thermal energy store (for example, but not limited to, the schedule of production of a factory using such thermal energy), and/or the wider environment (for example, but not limited to, current/projected outdoor temperature and/or solar insolation and/or cloud cover and/or projected and/or actual availability of fuel and/or electrical energy), and/or user behaviour (for example, but not limited to, user presence or absence and/or user preferences for comfort temperature).
  • the thermal energy store for example, but not limited to, the schedule of production of a factory using such thermal energy
  • the wider environment for example, but not limited to, current/projected outdoor temperature and/or solar insolation and/or cloud cover and/or projected and/or actual availability of fuel and/or electrical energy
  • the external source of thermal energy may be a fluid and/or environment containing waste and/or excess thermal energy from a process (for example, but not limited to, exhaust warm air from a building in a cold environment and/or exhaust cool air from a building in a warm environment and/or waste warm water from bathing and/or showering and/or oil in a heat engine requiring cooling before re-use and/or cooling fluid from a fuel cell and/or a biogas digester and/or a bio-fuel production plant).
  • a process for example, but not limited to, exhaust warm air from a building in a cold environment and/or exhaust cool air from a building in a warm environment and/or waste warm water from bathing and/or showering and/or oil in a heat engine requiring cooling before re-use and/or cooling fluid from a fuel cell and/or a biogas digester and/or a bio-fuel production plant).
  • the external source of thermal energy may be a fluid and/or environment containing waste and/or excess thermal energy and this thermal energy may be transferred to at least one bank that may be chosen specifically for having a phase transition temperature of its thermal energy storage material that makes it well adapted to absorbing the waste thermal energy.
  • thermal energy sinks/sources external to the thermal energy store there may exist, from the at least one bank that absorbs waste and/or excess thermal energy, no direct thermal energy transfer connections to thermal energy sinks/sources external to the thermal energy store (apart from the one or more thermal energy transfer connections to the waste and/or excess thermal energy source).
  • At least one thermal energy transfer connection may exist, from the at least one bank that absorbs waste and/or excess thermal energy, at least one thermal energy transfer connection (specifically including those where machines are used to transfer thermal energy from lower to higher temperature) to at least one other banks within the thermal energy store.
  • the effect may be to capture waste and/or excess heat from a fluid and/or environment at a temperature below that at which such waste/excess heat could usefully directly contribute to a useful service of the thermal energy system and to effect such capture at an energy transfer rate that is adapted to the availability of waste/excess heat into one or more banks containing thermal energy storage materials at temperatures below those at which waste/excess heat could usefully directly contribute thermal energy to a useful service of the thermal energy system and to use devices (for example but not limited to heat pumps) to transfer thermal energy from these one or more lower temperature banks to one or more higher temperature banks (which are at temperatures from which they can usefully directly contribute thermal energy to a useful service of the thermal energy system) at a rate that may differ substantially from the waste/excess energy capture rate.
  • devices for example but not limited to heat pumps
  • the rate of thermal energy transfer from lower to higher temperature banks may be lower than the peak rate at which thermal energy transfers to the lower temperature banks from the waste/excess energy sources.
  • thermal energy may be removed from at least one bank and delivered to at least one other bank of the thermal energy store, and at the same time no thermal energy may be added to and/or removed from the thermal energy store from/to any thermal energy source/sink external to the thermal energy store.
  • the configuration of the system may be such that it may be possible that on at least some occasions thermal energy may be removed from at least one bank and delivered to at least one other bank of the thermal energy store, and at the same time no thermal energy is added to and/or removed from the thermal energy store from/to any thermal energy source/sink external to the thermal energy store.
  • the amount of thermal energy added to each bank may be kept in perfect balance with the amount of thermal energy removed from each bank (including any lost by unwanted and/or unintended thermal transfers and/or other losses) over a cycle which may be of any duration, for example but not limited to, some seconds and/or some minutes and/or one hour and/or several hours and/or one day and/or several days and/or one week and/or several weeks and/or one month and/or several months and/or one year and/or several years.
  • One or more thermal energy transfer fluids may be re-routed and/or re-cycled through and/or via heat exchangers in thermal contact with a configuration of banks in an order intended and/or selected from time-to-time to maximise and/or enhance the thermal energy extracted from the thermal energy transfer fluid and stored into the thermal energy storage material of the banks and/or extracted from the thermal energy storage material of the banks and transferred into the thermal energy transfer fluid.
  • the physical configuration of the thermal energy store may be changed during the use of the system by any of the following:
  • the addition and/or connection to the thermal energy store of one or more banks may add further stored thermal energy to the thermal energy store wherein such additional thermal energy results from:
  • thermal energy storage material in one or more thermal energy storage banks may be added to and/or exchanged wholly and/or partially by replacement thermal energy storage material.
  • Heat may be allowed to flow in a controlled and/or an uncontrolled way from one or more banks at a higher temperature to one or more banks at a lower temperature, and/or from one or more banks at a higher temperature to one or more ambient environments in thermal contact with the thermal store, and/or from the one or more ambient environments in thermal contact with the thermal store to one or more banks at a lower temperature, by means of conduction and/or radiation and/or convection and/or heat pipe and/or transfer through a thermal transfer fluid and/or any other known physical mechanism of heat transfer.
  • One or more banks may be equipped with insulation means to:
  • One or more banks may be physically separated from one or more other banks of the same thermal energy store.
  • Physically separated banks may be controlled by the control system as part of the same thermal energy store.
  • Thermal energy transfers may be possible between said physically separated banks and one or more other banks of the same thermal energy store.
  • the system of the present invention may be used as a heating system and/or to provide a heating service (wherein the system may be used to add heat to at least one body and/or at least one environment external to the thermal energy store).
  • the system of the present invention may be used as a cooling system and/or to provide a cooling service (wherein the system is used to remove heat from at least one body and/or at least one environment external to the thermal energy store).
  • the system of the present invention may be used as a combined heating and cooling system used at the same and/or at different times as both a cooling system and a heating system and/or to provide at different and/or the same times heating and/or cooling services (wherein the system is used to add heat to at least one body and/or at least one environment external to the thermal energy store and, at the same and/or different times, is used to remove heat from at least one body (which may be a different and/or the same body) and/or at least one environment (which may be a different and/or the same environment) external to the thermal energy store).
  • the heating and/or combined system and/or service may be used as a central and/or distributed space heating system (for example, but not limited to use in, a building and/or a vehicle and/or an outdoor space).
  • the heating and/or combined system and/or may be used for water heating (for example, but not limited to use in, heating clean water for washing and/or bathing and/or cooking and/or drinks preparation and/or swimming pool heating).
  • the heating and/or cooling and/or combined system and/or service may be used for heating and/or cooling thermal energy transfer fluids to provide industrial process-heat and/or cooling, and/or directly and/or indirectly heating and/or cooling working fluids of an industrial process.
  • the heating and/or cooling and/or combined system and/or service may be used for heating heat-transfer fluids for use in a machine that converts thermal energy and/or temperature differences into electrical and/or mechanical energy (for example, but not limited to, a steam piston and/or a Stirling engine and/or Rankine cycle engine and/or steam turbine, whether on its own and/or attached to an electric alternator and/or dynamo, and/or a thermoelectric and/or thermionic device used as an electrical generator).
  • a steam piston and/or a Stirling engine and/or Rankine cycle engine and/or steam turbine whether on its own and/or attached to an electric alternator and/or dynamo, and/or a thermoelectric and/or thermionic device used as an electrical generator.
  • the cooling and/or combined system and/or service may be used as a central and/or distributed space cooling and/or air conditioning system (for example, but not limited to use in, a building and/or a vehicle and/or an outdoor space).
  • a central and/or distributed space cooling and/or air conditioning system for example, but not limited to use in, a building and/or a vehicle and/or an outdoor space.
  • the cooling and/or combination system and/or service may be used as a refrigeration system (for example, but not limited to use in, a domestic refrigerator and/or freezer, and/or commercial and/or industrial chilled and/or frozen storage and/or temperature controlled storage, such as but not limited to, a potato store, and/or cryogenic system).
  • a refrigeration system for example, but not limited to use in, a domestic refrigerator and/or freezer, and/or commercial and/or industrial chilled and/or frozen storage and/or temperature controlled storage, such as but not limited to, a potato store, and/or cryogenic system.
  • the thermal energy transfer fluid of the heating and/or cooling and/or combined system and/or service may be a liquid (for example, but not limited to, water and/or water-glycol mixture and/or water with other additives and/or a flowable oil) and/or a refrigerant (for example, but not limited to, butane and/or propane and/or ammonia and/or R-12 and/or R-22 and/or R-134a) and/or a gas (for example, but not limited to, air).
  • a liquid for example, but not limited to, water and/or water-glycol mixture and/or water with other additives and/or a flowable oil
  • a refrigerant for example, but not limited to, butane and/or propane and/or ammonia and/or R-12 and/or R-22 and/or R-134a
  • a gas for example, but not limited to, air
  • At least one bank of the thermal energy store may be used as a thermal store for at least one heating and/or cooling and/or combined service.
  • At least one bank of the thermal energy store may be used as a thermal store for at least one service that may be used at least some of the time for heating and the same service may be used at least some of the time for cooling.
  • At least one bank may be greatly increased in size to act as a bulk thermal energy reservoir for at least one service.
  • the at least one service may be space heating and/or cooling delivered through (for example, but not limited to) radiant walls and/or under-floor heating and/or radiant ceilings and/or chilled beams and/or radiators and/or over-sized radiators and/or fan-coil radiators and/or air handling systems.
  • At least one bank and/or at least one sub-parts of at least one bank of the thermal energy store may be physically co-located with and/or close to the point of delivery of the service for which it is a thermal energy reservoir and is selected to have a usual operating temperature range and/or ranges suitable to directly drive said service (for example but not limited to, one or more banks distributed at one or more taps where hot water is drawn in a domestic hot water system and/or one or more radiators and/or areas of radiant wall and/or ceiling and/or under-floor heating comprising parts of one or more banks directly in radiative and/or conductive and/or convective exchange with the one or more environments and/or bodies to be heated/cooled).
  • a usual operating temperature range and/or ranges suitable to directly drive said service for example but not limited to, one or more banks distributed at one or more taps where hot water is drawn in a domestic hot water system and/or one or more radiators and/or areas of radiant wall and/or ceiling and/or under-floor heating comprising parts of one or
  • the system may be used inside domestic and/or commercial and/or industrial appliances and/or machinery, for example but not limited to, a dishwasher, washing machine, etc; a hot drinks machine that also delivers chilled water and/or cold drinks; a hot/cold vending machine for food and/or drinks; a system incorporating reusable, re-chargeable heated/cooled cups which may incorporate phase change material in their operation.
  • a dishwasher washing machine
  • a hot drinks machine that also delivers chilled water and/or cold drinks
  • a hot/cold vending machine for food and/or drinks
  • a system incorporating reusable, re-chargeable heated/cooled cups which may incorporate phase change material in their operation.
  • At least one bank and/or the whole thermal energy store may be used as a heat/cool battery.
  • At least one thermal energy source may be an environmental and/or natural and/or waste source of heat and/or cool.
  • At least one thermal energy source may be variable in temperature and/or thermal energy available over time.
  • At least one thermal energy source/sink may be at least one solar thermal collector (wherein the at least one solar thermal collector may be used at different times to collect solar heat and/or reject heat to the environment), for example including but not limited to, flat plate solar collectors using a pumped loop of ethylene glycol solution in water as thermal energy transfer fluid and/or evacuated tube solar collectors using heat pipes as thermal energy transfer connection and/or roof tiles and/or dedicated solar air heaters using air as thermal energy transfer fluid and/or photovoltaic panels and/or hybrid solar thermal photovoltaic panels using heat pipes and/or direct conduction and/or air and/or a pumped loop of ethylene glycol solution in water as thermal energy transfer fluid, all heated by the sun and/or cooled by night-time radiation and/or convection and/or conduction.
  • flat plate solar collectors using a pumped loop of ethylene glycol solution in water as thermal energy transfer fluid and/or evacuated tube solar collectors using heat pipes as thermal energy transfer connection and/or roof tiles and/or dedicated solar air heaters using air
  • At least one thermal energy source/sink may be at least one ground source (wherein the at least one ground source may be used at different times to collect heat from the earth and/or reject heat to the earth).
  • At least one thermal energy source/sink may be at least one air source (wherein the at least one air source may be used at different times to collect heat from the air and/or reject heat to the air).
  • At least one thermal energy source may be at least one combustion system (for example but not limited to a wood burning stove and/or a natural gas burner and/or an oil burner).
  • a combustion system for example but not limited to a wood burning stove and/or a natural gas burner and/or an oil burner.
  • At least one thermal energy source may be at least one electrical heater (for example but not limited to an electric water heater, heating water as a thermal energy transfer fluid and/or a resistance element in direct thermal contact with the thermal energy storage material in a bank).
  • an electrical heater for example but not limited to an electric water heater, heating water as a thermal energy transfer fluid and/or a resistance element in direct thermal contact with the thermal energy storage material in a bank.
  • At least one thermal energy source may be the waste heat (that would otherwise be dissipated and/or vented via, for example but not limited to, a fan coil to a first environment) from at least one air conditioner and/or refrigeration system and/or heat pump external to the thermal energy store (wherein the primary purpose is to cool a second environment).
  • At least one thermal energy source may be the waste heat (that would otherwise be dissipated and/or vented via, for example but not limited to, a fan coil and/or a cooling tower to a first environment and/or into a river and/or the sea) from at least one external system that is a heating system and/or industrial process and/or thermal electricity generation system and/or machine (for example, but not limited to, an internal combustion engine and/or a jet engine) and/or any other system of energy conversion that is less than 100% efficient and wherein some of the in-efficiency is manifested as waste heat.
  • a heating system and/or industrial process and/or thermal electricity generation system and/or machine for example, but not limited to, an internal combustion engine and/or a jet engine
  • At least one thermal energy source may be the waste heat (that would otherwise need to be managed and/or dissipated and/or vented via, for example but not limited to, a fan coil and/or a cooling tower and/or an active cooling system and/or a heat sink to a first environment) from at least one electronic assembly and/or other machine that generates waste heat in its operation including, for example, but not limited to, computer processors and/or micro-processors and/or amplifiers and/or batteries and/or lighting equipment and/or LED lighting and/or an electric motor and/or an internal combustion engine and/or photovoltaic solar cells, wherein the waste heat is not merely managed and/or dissipated and/or vented by these means, but is also used as a way for a bank or thermal energy store or thermal energy system to gain useful thermal energy.
  • At least one piece of equipment that generates waste heat may be wholly and/or partially directly embedded inside one or more banks and/or directly in thermal contact with one or more banks.
  • the at least one piece of equipment that generates waste heat may be at least one chemical battery for example, but not limited to, a configuration of lithium ion battery cells, wherein the thermal energy storage material of a bank and/or sub-bank within which the batteries are embedded and/or in thermal contact is chosen to enhance the likelihood in operation and/or storage of the batteries remaining within a preferred operating temperature range thereby enhancing one or more of the safety and/or effectiveness and/or efficiency of the one or more batteries.
  • At least one thermal energy source may be the waste thermal energy embodied in waste fluids, for example but not limited to exhaust air and/or waste water (that would otherwise be dissipated and/or vented via, for example but not limited to, exhaust air ducts and/or waste pipes, from a first environment into a second environment) including, for example but not limited to, waste water from domestic bathing and/or ventilation air extracted from a building at a temperature above and/or below that of a second environment and/or rainwater collected on a roof and vented to a storm drain.
  • waste fluids for example but not limited to exhaust air and/or waste water (that would otherwise be dissipated and/or vented via, for example but not limited to, exhaust air ducts and/or waste pipes, from a first environment into a second environment) including, for example but not limited to, waste water from domestic bathing and/or ventilation air extracted from a building at a temperature above and/or below that of a second environment and/or rainwater collected on a roof and vente
  • a high rate of waste thermal energy can be absorbed over a short period into the thermal energy storage material of one or more banks of the thermal energy store, and later and/or at the same time, at a different, for example but not limited to lower, rate the thermal energy absorbed can be transferred to other banks of the same thermal energy store and/or sources/sinks external to it.
  • a smaller capacity active cooling system for example but not limited to a heat pump, may be required because peak cooling loads for waste thermal energy are reduced by temporal buffering in the thermal energy storage material of one or more banks of the thermal energy store.
  • At least one thermal energy source may be at least one connection to at least one district heating system.
  • At least one thermal energy source may be at least one room and/or other internal environment, wherein waste heat accumulates as a result of, for example but not limited to, occupancy by metabolising people and/or animals, and/or use of equipment that generates waste heat, and/or solar gain as a result of solar energy passing through windows and/or other apertures open to the ingress of visible and/or ultra-violet and/or infra-red radiation and being absorbed by one or more surfaces internal to the room with a resultant rise in thermal energy and/or temperature and/or re-radiated as longer wavelength infra-red and/or other thermal radiation and/or warming the air in the room.
  • the at least one thermal energy source which is at least one room and/or other environment, wherein waste heat accumulates, may be connected to the thermal energy store by at least one thermal energy transfer connection that comprises all and/or part of a system designed to extract waste thermal energy from the at least one room and/or other environment, comprising, for example but not limited to, an air conditioning and/or comfort cooling and/or radiant cooling system and/or designed to alternate between extracting waste thermal energy at some times and delivering desired heat at others, present in the one or more room and/or other environment.
  • a thermal energy transfer connection that comprises all and/or part of a system designed to extract waste thermal energy from the at least one room and/or other environment, comprising, for example but not limited to, an air conditioning and/or comfort cooling and/or radiant cooling system and/or designed to alternate between extracting waste thermal energy at some times and delivering desired heat at others, present in the one or more room and/or other environment.
  • At least one thermal energy sink may be a room and/or environment requiring to be heated and/or cooled.
  • the thermal energy transfer connection between the whole of and/or at least one banks of the thermal energy store and a room and/or environment requiring to be heated and/or cooled may comprise at least one of, for example but not limited to a circuit and/or network of pipes and/or ducts carrying thermal transfer fluid such as ethylene glycol and/or R134a and/or air, and/or heat pipes and/or direct conduction and/or radiative transfer, transferring thermal energy to at least one of radiant walls and/or under-floor heating and/or radiant ceilings and/or chilled beams and/or radiators and/or over-sized radiators and/or fan-coil radiators and/or air handling systems.
  • thermal transfer fluid such as ethylene glycol and/or R134a and/or air
  • heat pipes and/or direct conduction and/or radiative transfer transferring thermal energy to at least one of radiant walls and/or under-floor heating and/or radiant ceilings and/or chilled beams and/or radiators and/or over-sized radiators and/or fan-coil radiators
  • the room and/or environment may constitute a location wherein perishable articles, for example but not limited to food and/or biological specimens and/or formerly living beings, are kept to delay processes of decay and/or promote freshness, for example, but not limited to, a larder room and/or domestic and/or commercial and/or industrial refrigerator and/or freezer and/or chiller and/or vehicle and/or container and/or cryogenic storage and/or morgue.
  • perishable articles for example but not limited to food and/or biological specimens and/or formerly living beings, are kept to delay processes of decay and/or promote freshness, for example, but not limited to, a larder room and/or domestic and/or commercial and/or industrial refrigerator and/or freezer and/or chiller and/or vehicle and/or container and/or cryogenic storage and/or morgue.
  • One or more banks of a thermal energy store may be connected to a source/sink of thermal energy comprising equipment that uses thermal energy to control the humidity of air by, for example but not limited to, using removal of thermal energy to cool humid air below its dew point and thereby cause water vapour to condense out and thereby reduce the humidity of the air, and/or thereafter adding thermal energy to re-heat the now dried air to a user comfort temperature, and/or adding thermal energy to water to evaporate some water and thereby add humidity to air.
  • One or more banks of a thermal energy store may be used to store excess and/or waste heat from a cooling system during the daytime (and/or any other period of peak heat load) so that the heat can be dumped at a later time when conditions allow that to be done with lower use of additional pumping and/or heat pumping energy, for example, but not limited to, during the night when air temperatures are colder and/or a solar panel can radiate heat to the night sky.
  • One or more banks of a thermal energy store may be used to store excess and/or waste heat from a cooling system during the daytime (and/or any other period of peak heat load) so that the heat can be dumped at a later time selected such that any required additional pumping and/or heat pumping energy will have a lower cost and/or be more available, for example but not limited to, when a lower costs night-time tariff from an electric utility is in force and/or when the wind blows on a wind turbine to generate electrical and/or mechanical power.
  • Any heat pumping and/or pumping of thermal energy between banks and/or to/from banks and thermal energy sinks/sources may be, in at least some cases and/or on at least some occasions, made to occur at a time selected such that any required additional pumping and/or heat pumping and/or heating and/or cooling energy will have a lower cost and/or be more available, for example but not limited to, when a lower costs night-time tariff from an electric utility is in force and/or when the wind blows on a wind turbine and/or the sun shines on a photovoltaic panel to generate electrical and/or mechanical power.
  • Any heat pumping and/or pumping of thermal energy between banks and/or to/from banks and thermal energy sinks/sources may be, in at least some cases and/or on at least some occasions, selected to occur when the temperatures of the banks and/or the thermal energy sinks/sources are such as to make the temperature difference between the source and destination of each thermal energy transfer optimal and/or preferable and/or better than at other times (whether on the basis of historical record and/or predicted future performance), so as to reduce the use of additional pumping and/or heat pumping and/or heating and/or cooling energy.
  • the phase transition utilised for thermal energy storage may be one or more of:
  • the phase transition may absorb and/or release substantially more energy at the said one or more temperatures or one or more sub-ranges of temperatures than would be the case taking account solely of the thermal energy absorbed and/or released as specific heat at the said one or more temperatures or one or more sub-ranges of temperatures.
  • One or more thermal energy storage materials may be combined with one or more additives to promote desirable properties and/or suppress undesirable properties and/or otherwise modify the phase transition wherein the effect of the additives is, for example but not limited to, one or more of:
  • One or more thermal energy storage materials and/or additives may be chosen to improve and/or optimise a trade off between their cost and/or safety and/or physical density and/or phase transition temperature and/or the energy absorbed and/or released during phase transition and/or the characteristics of the phase transition and/or the minimisation of volume change from one side to the other of the phase transition and/or narrowness of their phase transition temperature range and/or similarity and/or difference of their phase transition temperatures when absorbing and/or releasing energy and/or repeatability of releasing and/or absorbing thermal energy and/or loss of energy associated with absorbing and subsequently releasing thermal energy and/or thermal conductivity and/or materials compatibility and/or other physical properties according to criteria established by the thermal energy storage system designer and/or user and/or purchaser and/or legal criteria and/or safety criteria and/or any other design and/or usage and/or benefit criteria.
  • the system of the present invention may be self-powering for at least some of its functions by allowing for heat transfers from hotter to colder banks via, for example, but not limited to, a steam piston and/or a Stirling engine and/or Rankine cycle engine and/or steam turbine, whether on its own and/or attached to an electric alternator and/or dynamo, and/or a thermoelectric and/or thermionic device used as an electrical generator.
  • a steam piston and/or a Stirling engine and/or Rankine cycle engine and/or steam turbine whether on its own and/or attached to an electric alternator and/or dynamo, and/or a thermoelectric and/or thermionic device used as an electrical generator.
  • the system of the present invention may also compensate dynamically for change in the thermal energy storage materials properties (e.g. melting temperature; sharpness of melting temperature) over time.
  • thermal energy storage materials properties e.g. melting temperature; sharpness of melting temperature
  • the system of the present invention may also be for both heating and cooling and wherein at least one bank may act as a source of thermal energy so as to increase the temperature of one or more thermal energy sinks and simultaneously and/or at a different time may act as a sink of thermal energy so as to reduce the temperature of one or more thermal energy sources.
  • the thermal store of the present invention may also comprise two banks so there is no heat pumping apparatus in the thermal energy transfer connection between them.
  • Using the present invention also allows water heating by passing through several banks at rising phase transition temperatures. This allows mixed grade heat to be used for water heating.
  • Thermal energy storage as described in the present application can refer to a number of technologies that store energy in a thermal reservoir for later reuse.
  • the described technologies can be employed to balance energy demand between day time and night time.
  • the thermal reservoir may be maintained at a temperature above (hotter) or below (colder) than that of the ambient environment.
  • a method of heating and/or cooling an environment comprising: providing a thermal energy store capable of accepting and/or storing and/or releasing thermal energy at a range of one or more temperatures to/from at least one thermal energy source and/or sink, said thermal energy store comprising:
  • FIG. 1 is a representation of an energy storage system according to the present invention generally designated 100.
  • the heating/cooling system comprises a series and/or a collection of banks 102a, 102b, 102c, 102d, 102e, 102f, 102g and102h which are used to collect and store thermal energy from, for example, a solar thermal panel (not shown) and, for example, later deliver thermal energy to heat up cool water.
  • Figure 1 shows eight banks, the invention is intended to cover any suitable number of banks.
  • Each of the banks 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h contains a different phase change material which therefore has a different melting point to store heat.
  • Bank 102a is at temperature of about 15°C by virtue of containing a suitable phase change material with a phase transition temperature of 15°C.
  • bank 102b is at temperature of about 20°C
  • bank 102c is at temperature of about 25°C
  • bank 102d is at temperature of about 30°C
  • bank 102e is at temperature of about 35°C
  • bank 102f is at temperature of about 40°C
  • bank 102g is at temperature of about 45°C
  • bank 102h is at temperature of about 50°C.
  • each of the banks in the energy storage system 100 contain heat exchangers 109a, 109b, 109c, 109d, 109e, 109f, 109g, 109h .
  • Cold water is inserted from an inlet 106 into heat exchanger 109a and passes through heat exchangers 109b, 109c, 109d, 109e, 109f, 109g and 109h. Heated water may exit outlet 108 at about 45°C.
  • Heat from, for example, a solar thermal panel (not shown) and/or from the environment or other heat sources may be fed in from any of feed points 110 using heat exchange means (not shown).
  • the heat storage medium in each of banks 102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h could be water (or some other heat storage medium), but preferably the heat storage medium is a suitable phase change material (PCM)
  • PCM phase change material
  • the different banks of the multi-bank PCM heat store are kept in equilibrium (i.e. as much heat is added to any given bank as is extracted from the same bank via water heating and incidental losses) it can at any given moment accept heat from any environmental heat source at any temperature from over 15°C to over 50°C (for the example in Figure 1 ) and route it to the appropriate bank.
  • any environmental heat source at any temperature from over 15°C to over 50°C (for the example in Figure 1 ) and route it to the appropriate bank.
  • the control system of the thermal store can choose an appropriate heat transfer fluid flow rate and bank into which to load heat, for instance:
  • heat transfer fluid that started at the solar panel at say 60°C is, after it exits the heat exchanger in the 50°C bank, still at or above 50°C. This can be routed now to load heat to the 45°C bank, and so on down to the coolest bank.
  • heat transfer fluid can be made to return to the solar panel at around 15°C in this example to be warmed again. So almost all the useful heat collected by the solar panel can be extracted and stored. Also the solar thermal panel itself will perform more efficiently, with lower thermal losses, by virtue of the low temperature of heat transfer fluid entering it.
  • a further preferred embodiment is to nest the banks of PCM inside each other like Russian dolls.
  • Such an energy storage system 200 is shown in Figure 2 which has nested banks 202a, 202b, 202c, 202d, 202e, 202f, 202g, 202h.
  • Bank 202a is at temperature of about 15°C
  • bank 202b is at temperature of about 20°C
  • bank 202c is at temperature of about 25°C
  • bank 202d is at temperature of about 30°C
  • bank 202e is at temperature of about 35°C
  • bank 202f is at temperature of about 40°C
  • bank 202g is at temperature of about 45°C
  • bank 202h is at temperature of about 50°C.
  • the innermost bank 202h would be the hottest, with the outermost bank 202a the coolest. Of course there would still be maintained some insulation between each layer. In this case the loss of heat from each bank would be proportional to the much smaller ⁇ T between each bank and its outer neighbour.
  • Bank (°C) ⁇ T (°C) Derived by (°C) 55 5 55-50 50 5 50 - 45 45 5 45 - 40 40 5 40 - 35 35 5 35 - 30 30 5 30 - 25 25 5 25 - 20 20 5 20 - 15 15 -5 15 - 20
  • Figure 1 separately insulates each bank from the local environment. If the insulation is of identical type and thickness around each bank then the higher temperature banks will lose more heat to their surroundings than the lower temperature ones, because heat loss is proportional to the ⁇ T between the bank and its surroundings.
  • the embodiment of Figure 1 or a regular hot water tank, over time loses energy to the local environment.
  • the nested multi-bank PCM heat store of Figure 2 can, by suitable choice of outermost bank temperature to be equal to or lower than the local environment temperature, be made virtually neutral. For example in Figure 2 , if the local environment is at 20°C, the thermal store's outermost 15°C layer will slowly absorb heat from the local environment.
  • energy storage system 200 will store the heat put into it much better than energy storage system 100 (although over time the grade of heat it holds will reduce as heat flows from the high temperature core out to lower temperature banks around it). It will also be cool to the touch making it possible to integrate it into places one would not want to put a hot water tank.
  • FIG. 3 relates to an energy storage system 300.
  • Bank 302c is preferably the largest bank as this is connected to an underfloor heating system 310 which has insulation 312 around its pipes where they pass through other banks 302a and 302b in the energy storage system 300.
  • the energy storages system 300 contains an inlet 304 for mains cold water and heat exchangers 306 in each of the banks 302a, 302b, 302c, 302d, 302e, 302f.
  • There is also an outlet 308 for hot water which also benefits from insulation 312 when it passes through banks 302e, 302d, 302c, 302b and 302a.
  • FIG. 4 is a further energy storage system 400 according to the present invention.
  • MPCM multi-bank phase change material
  • the energy storage system 400 also has a heating loop 410 and a heating/cooling loop 412.
  • MPCM multi-bank phase change material
  • a heat pump 424 may be used to extract heat from selected banks (any of 422a, 422b, 422c, 422d) of cold store 420 and load it at higher temperatures into selected banks (any of 402a, 402b, 402c, 402d, 402e, 402f) of heat store 410 (for clarity purposes the heat exchangers to and from heat pump 424 have been omitted).
  • heat can be removed from a bank of the PCM cool store using a heat pump and concentrated to a suitable higher temperature. This higher temperature heat could be released to the environment; however an alternative is to add it to a bank of a PCM heat store that needs additional heat.
  • the highlighted path in Figure 4 shows heat being removed from 10°C bank 422b of cool store 420 via heat pump 424 and entering heat store 35°C bank 402c.
  • the benefit is high since this single use of a heat pump is both adding heat to the heat store 410 for later use (e.g. for hot water, space heating) and simultaneously (and with the same energy to drive the heat pump) removing heat from the cool store 420, thereby adding cool to it for later use (e.g. for air conditioning).
  • Figure 5 therefore shows a further energy storage system 500 with a cold store 510 and heat store 512 joined together, having two centres, one hot and one cold and an outermost bank at or close to room temperature (assuming it will be housed inside a building's thermal envelope).
  • FIG. 6 a similar shared heat and cold store 600 is shown which has a single time-shared heat pump with many-to-many connectivity, connected on its input side to all except the hottest bank (the connection is multiplexed, i.e. a choice can be made of which cold source to draw upon) and on its output side connected by a multiplexed connection to all except the coldest bank.
  • Multi-Bank PCM Heat/Cool Stores will need to re-balance the amount of heat stored between banks. Sometimes this will be possible purely by controlling the flow of heat from environmental sources to each bank; however it is likely that this will not always be possible.
  • a multi-bank PCM heat store could be configured with one or more heat pumps. These could be connected by heat exchangers, valves, etc in such a way that the heat pump(s) can pump heat from any bank to any warmer bank.
  • a heat pump can be time multiplexed to perform dual duty both as a bank to bank heat pump and also as an external heat pump as in practice, there will be occasions when it makes sense to transfer heat directly from colder to hotter banks of a thermal store, and others when it makes sense to remove heat to or extract heat from the surrounding environment. With suitable configuration of pipes and valves it is possible to allow for all these possibilities. In that case control algorithms can add this direct transfer to their repertoire and optimise for this as well, thus dynamically choosing it when appropriate. This is shown in Figure 7 where energy storage system 700 has a heat pump 706 performing this dual duty. There is an environmental heat source 708. (For clarity purposes the insulation and some of the valves have been omitted).
  • an alternative is to interpose a lower capacity heat pump between each bank.
  • This is illustrated in the energy storage system 800 shown in Figure 8 which has a series of banks 802a, 802b, 802c, 802d, 802e, 802f, 802g, 802h, 802i, 802j between which are interposed heat pumps 804. (For clarity pipework, heat exchangers connecting heat pumps 804 to the banks and insulation are omitted). There is also an external heat pump 806 allowing heat to be drawn from an environmental source.
  • An energy storage system 900 comprises a series of banks where heated water or other heat transfer fluids may be used for a variety of purposes.
  • Inlet 902 is used as a heating return; outlet 904 is used for underfloor heating; outlet 906 is used for fan-coil radiator flow; outlet 908 is used for radiator flow; inlet 912 is used for cold mains; outlet 910 is used for hot water; inlet 916 is used for air conditioning return and outlet 914 is used for air conditioning flow.
  • Inlet 918 is an environmental heat source.
  • Heat pump 920 may be used as a heat pump or by-passed if the environmental or solar heated water from a solar panel 922 is at a sufficiently high temperature. (The insulation has been omitted for clarity and multiplexing valves omitted for clarity. On the left-hand side of Figure 9 flows are only shown and returns are omitted for clarity. Furthermore, pathways for cooling via night-time radiation from solar panel are omitted for clarity).
  • a thermal store could instead be configured with one or more additional (colder) banks of PCM that have temperatures lower than the environmental source. The heat from the environmental source can flow into these colder banks without initial heat pumping.
  • Heat pumps interposed between each bank of the thermal store can be used to pump the heat so acquired to hotter banks; thereby making the heat useful and keeping the colder banks at a low enough temperature that they can continue to capture environmental heat thus eliminating the need for any external heat pumps.
  • Figures 10 and 11 which represent energy storage systems 1000, 1100, respectively.
  • FIG. 10 there is an external heat pump 1004 that raises the heat of the ground water 1020 to 35°C - 50°C+ in order that it can be loaded into the PCM banks 1002a, 1002b, 1002c, 1002d at 35, 40, 45, 50°C, respectively.
  • the heated water is fed to radiator 1006.
  • FIG. 11 there are PCM banks 1102a, 1102b, 1102c, 1102d which have heat pumps 1104 interposed between each bank. The heated water is fed to radiator 1106.
  • Bank 1102a specially configured with PCM with melting point 0°C, is introduced. Heat is captured from ground water 1120 by passing this 5°C fluid through heat exchange with the 0°C bank 1102a. Later or simultaneously, this heat is pumped to the warmer banks using heat pumps 1104.
  • phase change material any suitable type of phase change material may be used which can be used to store energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Photovoltaic Devices (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Claims (13)

  1. Système de stockage d'énergie thermique (100) capable d'accepter, stocker et libérer de l'énergie thermique à une plage de plus d'une température vers/depuis au moins une source et/ou un puits d'énergie, ledit système de stockage d'énergie thermique comprenant :
    une configuration d'au moins trois réservoirs de stockage d'énergie thermique (102a, 102b, 102c, 102d, 102e, 102f, 102g, 102h) chacun desdits réservoirs de stockage d'énergie thermique ayant une plage de température de fonctionnement ;
    au moins trois des réservoirs de stockage d'énergie thermique contiennent un matériau de stockage d'énergie thermique comprenant un seul matériau ou un mélange de matériaux;
    un système de commande capable de choisir et/ou commuter une source et/ou une destination de transfert d'énergie thermique en succession et/ou en parallèle parmi un ou plusieurs sources/puits d'énergie thermique et un ou plusieurs réservoirs de stockage d'énergie thermique du système de stockage d'énergie thermique et dans lequel le système de commande est capable d'adapter les transferts d'énergie thermique dans et vers/depuis le système de stockage d'énergie thermique ;
    dans lequel le matériau de stockage d'énergie thermique dans au moins un réservoir contient au moins certains d'un ou plusieurs types de matériau de stockage d'énergie thermique qui subissent au moins une transition de phase d'absorption et/ou de libération d'énergie à une ou plusieurs températures ou une ou plusieurs sous-plages de températures dans les plages de température de fonctionnement de chaque réservoir ;
    dans lequel chaque transition de phase est associée avec un changement de propriétés physiques et/ou chimiques dudit matériau de stockage d'énergie thermique ;
    une ou plusieurs liaisons de transfert d'énergie thermique, chaque liaison comprenant un ou plusieurs dispositifs pour transférer la chaleur d'un corps à température plus basse à un corps à température plus haute, chaque liaison reliant deux réservoirs ou davantage ;
    dans lequel la source ou la destination des transferts d'énergie thermique sont commutables en succession ou en parallèle entre transferts d'énergie internes et externes ;
    dans lequel la source est un emplacement d'où l'énergie est transférée et la destination est un emplacement auquel l'énergie est transférée ;
    dans lequel le transfert d'énergie interne est le point où l'énergie est transférable entre réservoirs de stockage à l'intérieur du système de stockage d'énergie thermique et où un ou plusieurs des réservoirs de stockage d'énergie thermique jouent le rôle de source d'énergie thermique et un ou plusieurs des réservoirs de stockage d'énergie thermique jouent le rôle de puits d'énergie thermique ; et
    où le transfert d'énergie externe est transféré vers ou depuis les réservoirs de stockage d'énergie thermique et où la source d'énergie thermique ou un puits d'énergie thermique est extérieur aux réservoirs de stockage d'énergie thermique.
  2. Système de stockage d'énergie thermique (100) selon la revendication 1, dans lequel le système de stockage thermique et/ou chaque réservoir et/ou une pluralité de réservoirs sont capable d'accepter et/ou de stocker et/ou de libérer l'énergie thermique à une plage d'une ou plusieurs températures vers et/ou depuis un ou plusieurs sources et/ou puits d'énergie thermique simultanément ou à des moments différents.
  3. Système de stockage d'énergie thermique (100) selon l'une quelconque des revendications précédentes, dans lequel une liaison de transfert d'énergie thermique comprend et/ou incorpore le ou les dispositifs pour transférer la chaleur d'un corps à température plus basse à un corps à température plus haute, dans lequel chacun desdits dispositifs comprend : une pompe à chaleur à compression de vapeur (424) ;
    une pompe à chaleur chimique ;
    un dispositif thermoélectrique ;
    un dispositif thermionique ; et/ou
    tout autre dispositif capable de déplacer la chaleur d'un corps à température plus basse à un corps à température plus haute en fonctionnant selon les lois de la thermodynamique.
  4. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications précédentes, dans laquelle l'énergie thermique est déplacée à l'intérieur et/ou par l'intermédiaire d'une liaison de transfert d'énergie thermique par l'application d'énergie externe incluant celle du pompage d'un fluide de transfert de chaleur et/ou du pompage de chaleur et/ou d'effets thermoélectriques et/ou d'émission thermionique et/ou par des procédés naturels incluant celui de convection et/ou de thermosiphonage et/ou d'action capillaire d'une manière favorisant et/ou assistant et/ou assurant la fonction du milieu de transfert d'énergie thermique pour transférer l'énergie thermique d'une source d'énergie thermique située à une extrémité de la liaison de transfert thermique à un puits d'énergie thermique situé à l'autre extrémité ou vice versa.
  5. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle le transfert d'énergie thermique à partir d'une source en utilisant une première liaison de transfert d'énergie thermique est capable de faire ajouter l'énergie thermique à l'énergie stockée dans le ou les réservoirs intermédiaires, où elle est stockée temporairement, et dans laquelle simultanément et/ou préalablement et/ou ultérieurement l'énergie thermique est enlevée dudit réservoir intermédiaire et transférée à une destination en utilisant une deuxième liaison de transfert d'énergie thermique.
  6. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle au moins à certains moments l'énergie thermique est transférée d'une source externe d'énergie thermique à un réservoir sélectionné qui a, auxdits moments, une température moyenne et/ou maximale et/ou minimale plus basse dans son matériau de stockage d'énergie thermique que la température auxdits moments de la source externe d'énergie thermique ; et
    dans laquelle un réservoir sélectionné est choisi parce qu'il est, à ce moment, le réservoir le plus chaud parmi tous les réservoirs du système de stockage d'énergie thermique qui ont des températures plus basses qu'une source d'énergie thermique externe et/ou que la température d'une source d'énergie thermique externe moins une diminution de température fixe ; et
    dans laquelle un réservoir sélectionné est choisi parce qu'il est, à ce moment, le réservoir le plus vidé d'énergie thermique.
  7. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle après et/ou en même temps que l'énergie thermique est transférée d'une source d'énergie thermique externe à un réservoir sélectionné, le potentiel de transfert de l'énergie thermique à d'autres réservoirs dans le système de stockage d'énergie thermique subsiste, et un et/ou d'autres réservoirs sont sélectionnés pour accepter une partie et/ou la totalité de l'énergie thermique restante qui pourrait être potentiellement transférée successivement et/ou simultanément pour être en outre dirigée par un agencement d'une ou plusieurs liaisons supplémentaires de transfert d'énergie thermique successivement à un moyen d'échange de chaleur dans un ou plusieurs réservoirs supplémentaires, où le ou les réservoirs supplémentaires sont visités dans l'ordre descendant de température moyenne et/ou maximale et/ou minimale du matériau de stockage d'énergie thermique à l'intérieur de chaque réservoir.
  8. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle au moins à certains moments l'énergie thermique est transférée à un puits externe d'énergie thermique depuis un réservoir sélectionné qui a, auxdits moments, une température moyenne et/ou maximale et/ou minimale plus haute dans son matériau de stockage d'énergie thermique que la température auxdits moments du puits externe d'énergie thermique.
  9. Utilisation d'un système de stockage d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle après et/ou en même temps que l'énergie thermique est transférée à un puits d'énergie thermique externe depuis un réservoir sélectionné, le potentiel de transfert de l'énergie thermique depuis d'autres réservoirs du système de stockage d'énergie thermique subsiste, et un autre réservoir et/ou d'autres réservoirs sont sélectionnés pour fournir une partie et/ou la totalité de l'énergie thermique restante qui pourrait être potentiellement transférée successivement et/ou simultanément à un ou plusieurs réservoirs supplémentaires, le ou les réservoirs supplémentaires étant visités en ordre descendant et/ou ascendant de température moyenne et/ou maximale et/ou minimale du matériau de stockage d'énergie thermique à l'intérieur de chaque réservoir avant d'être dirigée par une liaison finale de transfert d'énergie thermique au puits d'énergie thermique externe depuis le dernier réservoir.
  10. Système de stockage d'énergie thermique (100) selon les revendications 1 à 3, dans lequel le nombre et/ou l'ordre et/ou la température de transition de phase et/ou la température actuelle moyenne et/ou maximale et/ou minimale des réservoirs à inclure dans le transfert d'énergie thermique de/à une source/un puits externe est choisi de telle sorte que la température de retour de tout fluide de transfert d'énergie thermique qui revient du système de stockage d'énergie thermique soit mieux adaptée et/ou corresponde de façon optimale à une caractéristique de la source/du puits externe de l'une quelconque des conditions suivantes :
    la température à laquelle le fluide de transfert d'énergie thermique retournant dans la source/le puits externe fournira et/ou récupérera et/ou rejettera et/ou générera et/ou convertira l'énergie thermique de manière optimale ;
    le retour d'un fluide de transfert d'énergie thermique à un panneau solaire thermique (922) pendant le jour à une basse température de sorte que les pertes radiatives du panneau solaire soient minimisées et donc que le panneau solaire fonctionne avec un rendement aussi élevé que possible pour récupérer la chaleur ;
    le retour d'un fluide de transfert d'énergie thermique à un panneau solaire thermique pendant la nuit et/ou à un radiateur à température élevée de sorte que les pertes radiatives du panneau solaire et/ou du radiateur soient maximisées et donc que le panneau solaire et/ou le radiateur fonctionnent avec un rendement aussi élevé que possible pour rejeter la chaleur ;
    le retour d'un fluide de transfert d'énergie thermique à une chaudière à gaz à l'intérieur de la plage de température nominale pour laquelle son fonctionnement est conçu et prévu pour procurer le plus haut rendement ; et/ou le retour d'un fluide de transfert d'énergie thermique à une chaudière arrière dans un poêle à bois à une température à laquelle le fluide de transfert d'énergie thermique ne bout pas et à laquelle la structure du poêle ne se fissure pas sous l'effet des contraintes thermiques.
  11. Système de stockage d'énergie thermique (100) selon les revendications 1 à 3 ou 10, dans lequel une source externe d'énergie thermique est un fluide et/ou un environnement contenant de l'énergie thermique résiduelle et/ou excédentaire provenant d'un procédé incluant celui d'air chaud d'évacuation d'un immeuble dans un environnement froid et/ou d'air froid d'évacuation d'un immeuble dans un environnement chaud et/ou d'eau usée chaude de bain et/ou de douche et/ou d'huile dans un moteur thermique nécessitant un refroidissement avant réutilisation et/ou d'une pile à combustible et/ou d'un digesteur de biogaz et/ou d'une usine de production de biocarburant, et dans lequel le système de stockage d'énergie thermique est utilisé pour capturer la chaleur résiduelle et/ou excédentaire d'un fluide et/ou d'un environnement.
  12. Système de stockage d'énergie thermique (100) selon l'une quelconque des revendications 1 à 3, 10 ou 11, le système de stockage d'énergie thermique étant utilisé selon l'un quelconque des cas suivants ou une combinaison de ceux-ci :
    un système de chauffage et/ou pour fournir un service de chauffage ;
    un système de refroidissement et/ou pour fournir un service de refroidissement ;
    un système combiné de chauffage et de refroidissement utilisé en même temps qu'un système de refroidissement et qu'un système de chauffage ou à des moments différents et/ou pour fournir à des moments différents et/ou en même temps des services de chauffage et/ou de refroidissement ;
    un système de chauffage d'espace central et/ou réparti ;
    chauffage de l'eau ;
    des fluides de transfert d'énergie thermique de chauffage et/ou de refroidissement pour fournir le chauffage et/ou le refroidissement pour un procédé industriel, et/ou pour le chauffage et/ou le refroidissement directs de fluides de travail d'un procédé industriel ;
    chauffage de fluides de transfert de chaleur pour utilisation dans une machine qui convertit l'énergie thermique et/ou les différences de température en énergie électrique et/ou mécanique ;
    un système de refroidissement et/ou de climatisation d'espace central et/ou réparti ; et
    un système de réfrigération.
  13. Utilisation d'un système d'accumulation d'énergie thermique (100) selon l'une quelconque des revendications d'utilisation précédentes, dans laquelle au moins un réservoir du système d'accumulation d'énergie thermique est utilisé comme système d'accumulation thermique pour au moins l'un de : chauffage et/ou refroidissement et/ou service combiné ou est utilisé comme système d'accumulation thermique pour au moins un service qui est utilisé au moins une partie du temps pour chauffer et le même service est utilisé au moins une partie du temps pour refroidir, ou dans lequel le système d'accumulation d'énergie thermique est utilisé pour le chauffage et/ou le refroidissement d'un espace, fourni par l'intermédiaire de parois rayonnantes, et/ou chauffage par le sol et/ou plafonds rayonnants et/ou poutrelles de refroidissement et/ou radiateurs et/ou radiateurs surdimensionnés et/ou radiateurs ventilo-convecteurs et/ou systèmes de circulation d'air ; ou dans laquelle le système d'accumulation d'énergie thermique est utilisé à l'intérieur d'appareils et/ou machines domestiques et/ou commerciaux et/ou industriels, incluant un lave-vaisselle, une machine à laver, une machine à boissons chaudes qui fournit aussi de l'eau réfrigérée et/ou des boissons froides ; un distributeur d'aliments et/ou boissons chauds et/ou froids ; un système comportant des tasses chauffées/refroidies réutilisables et rechargeables ; ou
    dans laquelle au moins un réservoir et/ou le système de stockage d'énergie thermique tout entier sont utilisés comme batterie de chauffage/refroidissement ; ou
    dans laquelle au moins une source/un puits d'énergie thermique est au moins un capteur solaire thermique incluant celui de l'un quelconque des équipements suivants :
    capteurs solaires plans ;
    capteurs solaires à tubes à vide ; tuiles de toiture ; chauffeurs d'air solaires spécialisés ;
    panneaux photovoltaïques ; et panneaux photovoltaïques thermiques solaires hybrides ;
    ou dans laquelle au moins une source d'énergie thermique est la chaleur résiduelle provenant d'un ensemble électronique et/ou autre dispositif qui génère de la chaleur résiduelle dans son fonctionnement, y compris l'un quelconque ou une combinaison des suivants :
    processeurs d'ordinateurs ; microprocesseurs ; amplificateurs ; batteries ; équipement d'éclairage ; éclairage à LED ; un moteur électrique ; un moteur à combustion interne ; et des cellules solaires photovoltaïques.
EP09746088.5A 2008-05-16 2009-04-30 Systèmes de stockage d'énergie Active EP2297538B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0808930.2A GB0808930D0 (en) 2008-05-16 2008-05-16 Energy Storage system
PCT/GB2009/050449 WO2009138771A2 (fr) 2008-05-16 2009-04-30 Systèmes de stockage d’énergie

Publications (2)

Publication Number Publication Date
EP2297538A2 EP2297538A2 (fr) 2011-03-23
EP2297538B1 true EP2297538B1 (fr) 2020-09-23

Family

ID=39596016

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09746088.5A Active EP2297538B1 (fr) 2008-05-16 2009-04-30 Systèmes de stockage d'énergie

Country Status (9)

Country Link
US (2) US11199366B2 (fr)
EP (1) EP2297538B1 (fr)
JP (1) JP5898493B2 (fr)
KR (5) KR20170136011A (fr)
CN (1) CN102077050B (fr)
DK (1) DK2297538T3 (fr)
ES (1) ES2835700T3 (fr)
GB (2) GB0808930D0 (fr)
WO (1) WO2009138771A2 (fr)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11644010B1 (en) 2006-06-10 2023-05-09 Star Sailor Energy, Inc. Energy storage system
US8648481B2 (en) * 2006-06-10 2014-02-11 Star Sailor Energy, Inc. Wind generator with energy enhancer element for providing energy at no wind and low wind conditions
US9873305B2 (en) * 2008-02-22 2018-01-23 Dow Global Technologies Inc. Heater module including thermal energy storage material
SE535370C2 (sv) 2009-08-03 2012-07-10 Skanska Sverige Ab Anordning och metod för lagring av termisk energi
EP2475886A2 (fr) * 2009-09-10 2012-07-18 Arlon J. Hunt Système de stockage thermique à métal liquide
CN102667349A (zh) * 2009-10-23 2012-09-12 谢恩·韦斯特 热调节系统
WO2011146093A2 (fr) 2009-12-15 2011-11-24 William Marsh Rice University Production d'électricité
US9863662B2 (en) 2010-12-15 2018-01-09 William Marsh Rice University Generating a heated fluid using an electromagnetic radiation-absorbing complex
US9032731B2 (en) * 2010-12-15 2015-05-19 William Marsh Rice University Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex
US9222665B2 (en) 2010-12-15 2015-12-29 William Marsh Rice University Waste remediation
WO2012097861A1 (fr) * 2011-01-17 2012-07-26 Klausdieter Ziegler Accumulateur de chaleur latente
CN102607307B (zh) * 2011-01-19 2014-05-07 北京兆阳光热技术有限公司 一种储热装置
JP6202783B2 (ja) * 2011-03-30 2017-09-27 学校法人東京理科大学 蓄熱装置を備えるシステム及びその用途
GB2490125B (en) * 2011-04-18 2013-03-13 Caplin Solar Systems Ltd Heating and cooling systems
WO2012167100A1 (fr) * 2011-06-01 2012-12-06 Enerfuel, Inc. Système de gestion d'énergie intégré comprenant une pile à combustible couplée à un système de réfrigération
NO332707B1 (no) * 2011-06-09 2012-12-17 Nest As Termisk energilager og -anlegg, fremgangsmate og bruk derav
US9115937B2 (en) * 2011-12-15 2015-08-25 Virgil Dewitt Perryman Thermal energy storage and delivery system
DE102011121779A1 (de) * 2011-12-21 2013-06-27 Robert Bosch Gmbh Solarkollektor für eine Solarthermieanlage und Verfahren zur Begrenzung einer Stagnationstemperatur eines Sollarkollektors
CN103946661A (zh) * 2012-01-27 2014-07-23 古河电气工业株式会社 热传递装置
WO2013116220A1 (fr) * 2012-01-30 2013-08-08 Perryman Virgil Dewitt Jr Système de stockage et de distribution d'énergie thermique
GB2510547B (en) * 2012-03-01 2016-04-27 Waste Heat Recovery Ltd Heat recovery
US9945615B2 (en) * 2012-03-06 2018-04-17 Mestek Machinery, Inc. Evaporative cooling system and device
CN102810228A (zh) * 2012-07-28 2012-12-05 安徽振兴光伏新能源有限公司 太阳能便民自动投币式冷藏售货机
CN104755872A (zh) * 2012-09-10 2015-07-01 圣戈本陶瓷及塑料股份有限公司 用于热能存储的结构化介质和方法
DE202012103716U1 (de) * 2012-09-27 2013-01-04 Viessmann Kältetechnik AG Thermischer Speicher für begehbare Kühlräume
DE202012103718U1 (de) * 2012-09-27 2013-01-03 Viessmann Kältetechnik AG Einrichtung zur Bestimmung des Ladezustands eines segmentierten thermischen Speichers
US9557120B2 (en) * 2012-10-10 2017-01-31 Promethean Power Systems, Inc. Thermal energy battery with enhanced heat exchange capability and modularity
SE536722C2 (sv) 2012-11-01 2014-06-17 Skanska Sverige Ab Energilager
SE537267C2 (sv) * 2012-11-01 2015-03-17 Skanska Sverige Ab Förfarande för drift av en anordning för lagring av termiskenergi
SE536723C2 (sv) 2012-11-01 2014-06-24 Skanska Sverige Ab Termiskt energilager innefattande ett expansionsutrymme
US9957099B2 (en) * 2012-12-04 2018-05-01 Nanopore, Inc. Insulated container system for maintaining a controlled payload temperature
JP6188570B2 (ja) * 2013-01-09 2017-08-30 大阪瓦斯株式会社 熱供給システム
JP6127339B2 (ja) * 2013-01-23 2017-05-17 パナソニックIpマネジメント株式会社 蓄熱制御システム、およびこれに用いる蓄熱体
KR101381370B1 (ko) * 2013-02-18 2014-04-04 김병균 금속 열 저장장치
EP2775245B1 (fr) * 2013-03-07 2016-05-25 David Vendeirinho Dispositif de stockage d'énergie thermique
FR3015644B1 (fr) * 2013-12-20 2017-03-24 David Vendeirinho Dispositif de chauffage reversible solair hybride a double stockages calorifiques
WO2014160929A1 (fr) * 2013-03-29 2014-10-02 SunEdison Energy India Private Limited Procédés et systèmes pour régulation de température de dispositifs et traitement d'énergie thermique obtenue par ceux-ci
WO2014192019A2 (fr) * 2013-05-07 2014-12-04 Vasantkumar Thakkar Dhaval Appareil de stockage portatif d'énergie thermique
WO2014199394A2 (fr) * 2013-05-07 2014-12-18 Vasantkumar Thakkar Dhaval Dispositif d'ultilisation d'énergie thermique
GB201309757D0 (en) 2013-05-31 2013-07-17 Sunamp Ltd Heat battery assemblies and monitoring system therefor
GB201309871D0 (en) 2013-06-03 2013-07-17 Sunamp Ltd Improved phase change materials
GB201310821D0 (en) * 2013-06-18 2013-07-31 Sunamp Ltd Energy storage system
CN103344146B (zh) * 2013-07-22 2017-06-16 大连国翔科技技术发展有限公司 低温阶梯相变蓄热蓄冷装置
US9702632B2 (en) * 2013-11-14 2017-07-11 Martin Hess Apparatus and method for the analysis of gases, in particular for the analysis of natural gas extracted as shale gas
FR3026163A1 (fr) * 2014-09-18 2016-03-25 Mof Applic Services Utilisations de materiau metallo-organique (mof) dans un systeme de refroidissement/chauffage par adsorption
JP2017537253A (ja) 2014-10-21 2017-12-14 ブライト エナジー ストレージ テクノロジーズ,エルエルピーBright Energy Storage Technologies,LLP 温度勾配制御技術を含むコンクリートおよび管の高温熱交換およびエネルギー貯蔵(txes)
NO340371B1 (no) 2014-12-19 2017-04-10 Energynest As Høytemperatur termisk energilager, fremgangsmåte for bygging og fremgangsmåte for drift av dette lageret
NO339952B1 (no) * 2014-12-19 2017-02-20 Energynest As Termisk energilager og varmeveklser
TN2016000008A1 (en) * 2015-02-04 2017-07-05 General Electric Technology Gmbh Electrical energy storage and discharge system
EP3061635B1 (fr) * 2015-02-27 2017-08-16 MAHLE International GmbH Système de chauffage, ventilation et climatisation pour extension de plage de conduite d'un véhicule électrique
CN105737447A (zh) * 2015-06-19 2016-07-06 熵零股份有限公司 一种供冷方法
FR3040207B1 (fr) * 2015-08-20 2020-10-30 Hutchinson Bloc modulaire et unite de stockage d'une energie thermique
CN108139133A (zh) * 2015-09-09 2018-06-08 净能(纳伊姆能源科技有限责任公司) 用于利用热能储存来冷却空间的系统及方法
US10634398B2 (en) 2015-12-18 2020-04-28 Carrier Corporation Heating, ventilation, air conditioning and refrigeration system
CN105864869A (zh) * 2016-03-17 2016-08-17 盐城工学院 一种含有相变墙的采暖系统
CN107300258B (zh) * 2016-04-14 2023-11-03 丁玉峰 一种基于梯级储热用热的低谷电和弃风电利用装置
AT518416B1 (de) * 2016-06-21 2017-10-15 Mekal Krzysztof Wärmespeicher und Wärmeträgernetz
US20180017337A1 (en) * 2016-07-15 2018-01-18 Neothermal Energy Storage Inc. Thermal energy storage apparatus
KR102485321B1 (ko) * 2016-10-26 2023-01-06 현대자동차주식회사 연료전지 차량용 열 관리 시스템 및 그 제어 방법
CN106524809A (zh) * 2016-12-01 2017-03-22 西安交通大学 一种基于可逆化学反应的梯级储能与释能系统及方法
IT201600127185A1 (it) * 2016-12-15 2018-06-15 Rtp S R L S Sistema di accumulo termico e climatizzazione di un ambiente
US10415474B2 (en) * 2017-01-31 2019-09-17 General Electric Company Method and system for phase change material component cooling
WO2018147994A1 (fr) * 2017-02-07 2018-08-16 Battelle Energy Alliance, Llc Systèmes de stockage d'énergie dotés de réservoirs de stockage thermique
US10377407B2 (en) * 2017-02-08 2019-08-13 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling systems for vehicle interior surfaces
EP3585640B1 (fr) * 2017-02-24 2024-05-15 ALSTOM Holdings Système électrique
FR3063340B1 (fr) * 2017-02-28 2021-05-28 Hutchinson Dispositif thermique a evacuation de securite
CN110494711A (zh) * 2017-03-23 2019-11-22 1414度有限公司 能量储存和回收系统
GB201708724D0 (en) * 2017-06-01 2017-07-19 Sunamp Ltd Active crystallisation control in phase-change material thermal storage systems
US20190137191A1 (en) * 2017-11-06 2019-05-09 Johnathan Lawrence Thermal Capacitor
CN107883593A (zh) * 2017-11-09 2018-04-06 内蒙古润泰新能源科技有限公司 蓄能池及蓄能系统
NO344182B1 (en) * 2017-12-05 2019-09-30 Energynest As Modular thermal energy storage system, improved method of operation of such systems and use of the thermal energy storage system
EP3732420B1 (fr) * 2017-12-29 2023-06-07 Vito NV Échangeur de chaleur intégré de stockage
GB201808478D0 (en) 2018-05-23 2018-07-11 Univ Edinburgh Ultra-high temperature thermal energy storage system
US11435146B2 (en) 2019-03-07 2022-09-06 Neothermal Energy Storage Inc. Thermal energy storage apparatus
CN110749004B (zh) * 2019-09-19 2021-07-20 湖南工程学院 土壤与相变材料耦合蓄能的新风多级处理系统及运行方法
WO2022115721A2 (fr) 2020-11-30 2022-06-02 Rondo Energy, Inc. Système et applications de stockage d'énergie
US11913362B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Thermal energy storage system coupled with steam cracking system
US11913361B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Energy storage system and alumina calcination applications
CN115900130B (zh) * 2022-10-18 2023-12-01 浙江卡罗莱纳纺织有限公司 一种实现纱线智能分类的祛湿防霉存取柜
CN117291403B (zh) * 2023-11-24 2024-02-23 深圳海辰储能科技有限公司 供热方法、供热管理器、供热系统及相关设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT382636B (de) * 1981-01-14 1987-03-25 Mea Maschinen Und Energieanlag Verfahren und vorrichtung zum langzeitigen speichern von waerme mittels kristallisationsw|rmespeichern

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623549A (en) 1970-08-14 1971-11-30 Smitherm Industries Heat exchange methods and apparatus
DE2054057C2 (de) * 1970-11-03 1985-08-22 Gerhard Dipl.-Ing. 7500 Karlsruhe Eckerle Speicherbaustein zur Temperierung und Temperaturregelung von Räumen
GB1396292A (en) 1971-02-10 1975-06-04 Randell J E Heat storage units
GB1434049A (en) 1972-08-05 1976-04-28 Terracom Ets Storage heater
CH617767A5 (en) * 1975-04-28 1980-06-13 Ciba Geigy Ag Heat accumulator and use thereof
DE2524393A1 (de) * 1975-06-02 1976-12-16 John Edward Randell Waermespeichervorrichtung
US4182409A (en) * 1975-09-22 1980-01-08 Robinson Glen P Jr Heat transfer system
US4199021A (en) 1976-11-24 1980-04-22 Johnson Controls, Inc. Thermal energy storage apparatus
JPS5610697A (en) * 1979-07-07 1981-02-03 Agency Of Ind Science & Technol Composite heat accumulator
US4402188A (en) * 1979-07-11 1983-09-06 Skala Stephen F Nested thermal reservoirs with heat pumping therebetween
US4250866A (en) 1979-09-10 1981-02-17 Research Institute For Advanced Technology Thermal energy storage to increase furnace efficiency
JPS61265492A (ja) * 1985-05-20 1986-11-25 Chubu Electric Power Co Inc 冷却用潜熱蓄熱装置
US4750543A (en) * 1985-07-15 1988-06-14 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Pumped two-phase heat transfer loop
JPS6277547A (ja) * 1985-09-30 1987-04-09 Kubota Ltd 太陽熱温水器
US4637219A (en) 1986-04-23 1987-01-20 Enron Corp. Peak shaving system for air conditioning
JPS63116073A (ja) 1986-10-31 1988-05-20 株式会社東芝 蓄熱式ヒ−トポンプ
JPS63201494A (ja) * 1987-02-18 1988-08-19 Hitachi Ltd 蓄熱熱交換器
US4893476A (en) 1988-08-12 1990-01-16 Phenix Heat Pump Systems, Inc. Three function heat pump system with one way receiver
CN2177217Y (zh) * 1991-12-25 1994-09-14 北京市西城区新开通用试验厂 利用自然能量的吸冷储能装置
US5497629A (en) 1993-03-23 1996-03-12 Store Heat And Produce Energy, Inc. Heating and cooling systems incorporating thermal storage
US5355688A (en) 1993-03-23 1994-10-18 Shape, Inc. Heat pump and air conditioning system incorporating thermal storage
KR0146330B1 (ko) * 1993-06-07 1998-08-17 김광호 축열.축냉시스템의 복수 축열조
GB2280746B (en) 1993-08-06 1998-01-28 Creda Ltd Electric storage heaters
WO1995016175A1 (fr) 1993-12-10 1995-06-15 Store Heat And Produce Energy, Inc. Appareil de stockage thermique
JPH08192619A (ja) * 1995-01-19 1996-07-30 Nippondenso Co Ltd 蓄冷熱空調装置
US5770903A (en) 1995-06-20 1998-06-23 Sundstrand Corporation Reflux-cooled electro-mechanical device
US5755104A (en) 1995-12-28 1998-05-26 Store Heat And Produce Energy, Inc. Heating and cooling systems incorporating thermal storage, and defrost cycles for same
BR9809649A (pt) * 1997-05-21 2000-07-11 Schuemann Sasol Gmbh & Co Kg Corpo de calor latente
DE19753601A1 (de) 1997-12-03 1999-06-10 Behr Gmbh & Co Kältespeicher, insbesondere für ein Kraftfahrzeug
US5953207A (en) * 1998-06-03 1999-09-14 Lucent Technologies, Inc. Thermally conductive enclosure for a battery
DE29914113U1 (de) * 1998-08-05 1999-10-14 Rapido Waermetechnik Gmbh Schichtenspeicher
EP0995963A1 (fr) 1998-10-23 2000-04-26 Hubert De Vries Echangeur de chaleur à plaques
US6105810A (en) 1998-11-06 2000-08-22 Dart Industries Inc. Cookware lid and handle assemblies
JP2000241091A (ja) * 1999-02-23 2000-09-08 Agency Of Ind Science & Technol 蓄熱装置
US6668567B2 (en) 1999-09-17 2003-12-30 Robert Levenduski Thermal storage apparatus and method for air conditioning system
DE20022367U1 (de) * 2000-02-10 2001-12-06 Prasser Haustechnik Gmbh Wärmespeicher, Latentwärmespeicher
AU2001233471A1 (en) * 2000-02-17 2001-08-27 Alois Schwarz Arrangement for storing heat energy or cold energy
US6757591B2 (en) 2000-08-11 2004-06-29 Robert A. Kramer Energy management system and methods for the optimization of distributed generation
NL1018449C2 (nl) 2001-07-03 2003-01-08 Hei Tech Bv Warmte-uitwisseling in boilers door middel van warmtepijpen.
JP2003106681A (ja) * 2001-09-27 2003-04-09 Daiwa House Ind Co Ltd 蓄熱手段を備えた太陽熱利用システム
JP3891486B2 (ja) * 2002-10-02 2007-03-14 株式会社大気社 潜熱蓄熱式冷熱源設備、及び、潜熱蓄熱式温熱源設備
DE10248064B4 (de) 2002-10-11 2007-11-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Solar-Receivervorrichtung zur solarthermischen Erhitzung eines Wärmeaufnahmemediums
US7134483B2 (en) 2003-09-26 2006-11-14 Flair Corporation Refrigeration-type dryer apparatus and method
CN2684062Y (zh) * 2003-10-01 2005-03-09 江西集佳科技有限公司 组合式机电一体化蓄能中央空调机组
US8171984B2 (en) * 2006-02-01 2012-05-08 Sgl Carbon Ag Latent heat storage devices
DE102006028017A1 (de) 2006-02-10 2007-08-16 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere mit Kältespeicher
US20080039979A1 (en) 2006-08-10 2008-02-14 V2 Green Inc. Smart Islanding and Power Backup in a Power Aggregation System for Distributed Electric Resources
JP4324187B2 (ja) 2006-10-25 2009-09-02 トヨタ自動車株式会社 蓄熱装置
US20080115911A1 (en) * 2006-11-22 2008-05-22 Tyco Electronics Corporation Heat dissipation system for solarlok photovoltaic interconnection system
US8855829B2 (en) 2007-01-03 2014-10-07 Gridpoint, Inc. Method for controlling energy resources
GB0802445D0 (en) 2008-02-11 2008-03-19 Penfold William L Low energy cooling device
ITPD20080073A1 (it) 2008-03-04 2009-09-05 Systema S P A Macchina ad assorbimento
FR2930020B1 (fr) 2008-04-10 2014-09-19 Valeo Systemes Thermiques Echangeur interne comportant un moyen de stockage thermique et boucle incorporant un tel echangeur.
AT508992B1 (de) 2009-11-11 2011-08-15 Ziegler Klausdieter Latentwärmespeicher

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT382636B (de) * 1981-01-14 1987-03-25 Mea Maschinen Und Energieanlag Verfahren und vorrichtung zum langzeitigen speichern von waerme mittels kristallisationsw|rmespeichern

Also Published As

Publication number Publication date
KR20170136011A (ko) 2017-12-08
KR20200023545A (ko) 2020-03-04
CN102077050B (zh) 2015-03-11
ES2835700T3 (es) 2021-06-23
US20210207895A1 (en) 2021-07-08
EP2297538A2 (fr) 2011-03-23
US20110226440A1 (en) 2011-09-22
KR20190014132A (ko) 2019-02-11
KR102258754B1 (ko) 2021-05-31
US11199366B2 (en) 2021-12-14
KR101760791B1 (ko) 2017-07-24
KR20110046392A (ko) 2011-05-04
GB2459955A (en) 2009-11-18
GB0808930D0 (en) 2008-06-25
JP2011521192A (ja) 2011-07-21
KR20160129104A (ko) 2016-11-08
DK2297538T3 (da) 2020-12-14
WO2009138771A3 (fr) 2010-01-21
GB2459955B (en) 2013-05-01
GB0907438D0 (en) 2009-06-10
CN102077050A (zh) 2011-05-25
JP5898493B2 (ja) 2016-04-06
WO2009138771A2 (fr) 2009-11-19

Similar Documents

Publication Publication Date Title
US20210207895A1 (en) Energy Storage Systems
US20220390186A1 (en) Energy Storage Systems
Sarbu et al. Solar heating and cooling systems
Du et al. A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges
Li et al. Thermal energy storage system integration forms for a sustainable future
Helm et al. Solar heating and cooling system with absorption chiller and low temperature latent heat storage: Energetic performance and operational experience
CA2890133C (fr) Procede d'exploitation d'un agencement destine au stockage d'energie thermique
WO2013072363A1 (fr) Dispositif de conversion d'énergie
Titlov et al. Development of cooling systems on the basis of absorption water-ammonia refrigerating machines of low refrigeration capacity
Montagnino Renewable-energy-based Air Conditioning Systems
Mousa Design of Solar
Ratnanandan et al. A system modeling approach for active solar heating and cooling system with phase change material (PCM) for small buildings
Iqbal Thermodynamic Analysis of Integrated Renewable Energy Systems for Sustainable Building Operation
Tyagi et al. Economical and thermal optimization of possible options to control visible plume from wet cooling towers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101116

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141204

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUNAMP LIMITED

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FIELD, JOHN

Inventor name: BISSELL, ANDREW

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SUNAMP LIMITED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009062801

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1316819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201207

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201224

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201223

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1316819

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2835700

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009062801

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

26N No opposition filed

Effective date: 20210624

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20210916 AND 20210922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090430

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230404

Year of fee payment: 15

Ref country code: IE

Payment date: 20230410

Year of fee payment: 15

Ref country code: FR

Payment date: 20230403

Year of fee payment: 15

Ref country code: ES

Payment date: 20230511

Year of fee payment: 15

Ref country code: DK

Payment date: 20230406

Year of fee payment: 15

Ref country code: DE

Payment date: 20230426

Year of fee payment: 15

Ref country code: CH

Payment date: 20230509

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230511

Year of fee payment: 15

Ref country code: FI

Payment date: 20230406

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230404

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240226

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240409

Year of fee payment: 16