EP2284973B1 - Capteur de flux de retour pour de modules solaire branché en parallèle - Google Patents

Capteur de flux de retour pour de modules solaire branché en parallèle Download PDF

Info

Publication number
EP2284973B1
EP2284973B1 EP20090167379 EP09167379A EP2284973B1 EP 2284973 B1 EP2284973 B1 EP 2284973B1 EP 20090167379 EP20090167379 EP 20090167379 EP 09167379 A EP09167379 A EP 09167379A EP 2284973 B1 EP2284973 B1 EP 2284973B1
Authority
EP
European Patent Office
Prior art keywords
strings
bus lines
controller
photovoltaic system
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20090167379
Other languages
German (de)
English (en)
Other versions
EP2284973A1 (fr
Inventor
Gerd Hackenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMA Solar Technology AG
Original Assignee
SMA Solar Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES09167379T priority Critical patent/ES2384426T3/es
Application filed by SMA Solar Technology AG filed Critical SMA Solar Technology AG
Priority to EP20090167379 priority patent/EP2284973B1/fr
Priority to AT09167379T priority patent/ATE555531T1/de
Priority to CA 2770056 priority patent/CA2770056A1/fr
Priority to JP2012523282A priority patent/JP5590475B2/ja
Priority to PCT/EP2010/060761 priority patent/WO2011015476A2/fr
Priority to CN201080034781.6A priority patent/CN102484368B/zh
Publication of EP2284973A1 publication Critical patent/EP2284973A1/fr
Priority to US13/366,522 priority patent/US8749934B2/en
Application granted granted Critical
Publication of EP2284973B1 publication Critical patent/EP2284973B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a device for feeding electrical energy from a plurality of strings, which have in each case a plurality of photovoltaic modules connected in series, into a power network having the features, the preamble of the independent patent claim 1 and to a photovoltaic system with such a device.
  • the device provides the units that are needed in addition to the strings and their wiring for feeding electrical energy from the strings into a power grid. Such devices are often supplied by other specialist companies than the strings and their wiring for a photovoltaic system.
  • string is based on the fact that usually several photovoltaic modules are connected in series in order to increase the output voltage of a photovoltaic generator compared to the elementary voltage of a photovoltaic module.
  • string is actually used primarily for a pure series connection of photovoltaic modules.
  • a string can also have a parallel connection of photovoltaic modules, even if diss is not preferred in the context of the present invention.
  • a plurality of strings of photovoltaic modules are connected in parallel to achieve the desired electrical power at a limited voltage.
  • the individual strings must be protected against the occurrence of reverse currents, ie. H. of currents having a reverse flow direction compared to the currents generated by the photovoltaic modules of the respective string during normal operation.
  • a return current can only occur if the open terminal voltage or no-load voltage of the parallel-connected strings is different. Normally, this will be the same for long, d. H. from a same number of solar modules constructed strings that represent the rule, avoided. Even with shading of the solar modules of a single string occurs no significant reverse current through this string, since the shading has no significant effect on the terminal voltage.
  • the occurrence of backflow rather sets the presence of an error, eg. B. ahead due to the short circuit of one or more solar modules of a string through which the open terminal voltage of the string drops well below the open terminal voltage of the strings connected in parallel. Because of the internal diode structure of the solar modules, a return current can then flow through the faulty string, which, depending on the current intensity, leads to severe heating up to the destruction of the solar modules of this string.
  • the short circuit of a photovoltaic module can be caused by short circuit of one or more cells in the photovoltaic module or by a double ground fault of a photovoltaic module or its wiring. Even if these mistakes are very unlikely, d. H.
  • the Sunny String Monitor product has one current sensor per string. This current sensor detects the size of the current generated by the respective string. For failure monitoring of the strings connected in parallel, the currents flowing in operation of all strings are evaluated collectively, ie the relative sizes of the currents flowing from the individual strings.
  • the Sunny String Monitor product is designed to be used with an inverter to feed electrical energy from the strings into an AC grid, where a controller drives an inverter bridge so that the system voltage applied between bus lines to which the strings are connected in parallel in terms of maximum electrical power of the strings.
  • This procedure is known as MPP (Maximum Power Point) tracking, wherein the maximum electrical power of the strings is usually set in a range of fundamentally possible system voltages, the so-called MPP window.
  • WO 2007/048421 A2 From the WO 2007/048421 A2 are a photovoltaic system with the features of the preamble of independent claim 1 and a device usable for its construction with the features of the preamble of independent claim 2 known.
  • a mechanical switch is additionally provided in a connecting line of each individual string, which is opened to separate the respective string in the event of a backflow from the bus lines.
  • a semiconductor switch is provided between the bus lines to temporarily short them during opening and also when closing the switch.
  • the invention has for its object to provide a device having the features of the preamble of independent claim 1 and a photovoltaic system with such a device, which are able to control the risks associated with the occurrence of backflows through individual strings with minimal equipment expense ,
  • the object of the invention is achieved by a device for feeding electrical energy from a plurality of strings into a power network having the features of independent patent claim 1 and by a photovoltaic system having such a device and the features of patent claim 2.
  • a device for feeding electrical energy from a plurality of strings into a power network having the features of independent patent claim 1 and by a photovoltaic system having such a device and the features of patent claim 2.
  • Preferred embodiments of the new device and the new photovoltaic system are defined in the dependent claims.
  • a current sensor is provided for each string, which detects at least whether a return current flows to the current, and reports the return current to the controller.
  • the return current is meant a significant current which has a reverse flow direction compared to the currents generated by the photovoltaic modules of the respective string during proper operation and is based on an error in the respective string.
  • the controller reduces the system voltage present between the bus lines to stop the return current.
  • the voltage applied between the bus lines is the voltage that causes the return current. If it is reduced, a voltage can be reached or even undershot, which even the defective string still has as terminal voltage or at least can lock.
  • the flow of the return current is prevented, without the need for a fuse or any other switching element for the string concerned must be present.
  • the other strings continue to supply electrical energy that is fed into the grid from the converter as long as the reduced voltage between the bus lines for an electrical energy feed in the power grid is still sufficient.
  • the controller needs to lower the system voltage applied between the bus lines only slightly below the current MPP in order to stop the return current, the losses of electrical energy which are no longer fed into the power grid are essentially limited to the contribution of the faulty strings, which could not be fed even with an alternative to the present invention switching off the string by switching elements. There is also a small loss due to the mismatch of the optimal system voltage (leaving the MPP).
  • the controller needs to further reduce the inter-bus system voltage below the MPP within the current MPP window because otherwise the reverse current can not be stopped, the electrical power fed into the grid will potentially be significantly lower than that of the still-functioning strings feedable maximum power.
  • the associated power losses are in many cases but only small. In particular, you fall in view of the rarity of the occurrence of reverse currents in practice and the low cost to realize the new photovoltaic system or the new device not significant, because this can be dispensed with any fuse or each switching element for the individual strings and because a current sensor unlike a fuse, any other switching element and a reverse current blocking diode is not associated with significant ongoing power losses.
  • the controller can short-circuit the system voltage present between the bus lines. This can be done in the case of a conventional inverter with a clocked switch having inverter bridge as a converter for feeding into an AC network so that the inverter is first separated by opening contactors, which serve to connect the photovoltaic system to the AC mains from the AC mains and a buffer capacity is discharged at the input of the inverter by shorting a discharge resistor and then that the bus lines are connected directly by closing the switch of the inverter bridge.
  • the current sensors are provided in a plurality of terminal units to be arranged in a decentralized manner, with which a plurality of strings in the field are connected in parallel to a pair of connection lines before these connection lines form a transformer Central unit are performed, are provided at the terminals for the decentralized connection units to the bus lines.
  • the current sensors used in accordance with the invention may be of very simple construction if they are only intended to signal the occurrence of a return current exceeding a predetermined limit.
  • the signal of the return current sensor in the minimal case includes only the presence of the return current, and the control of the converter does not even have to recognize in which string the return current occurs, although this additional information is helpful in eliminating the causative error.
  • Such a current sensor which only needs to detect the presence of a return current above a certain limit, can be realized very easily, for example by a contact which is closed as a result of a magnetic field caused by the return current.
  • the reverse current sensor used according to the invention has the advantage that it does not cause any power loss during normal operation of the strings, which reduces the efficiency of the photovoltaic system. This differs significantly from fuses or diodes for the individual strings.
  • the current sensors may additionally measure the magnitude of the currents flowing from the strings in the forward direction and transmit them to a monitoring device for the strings. This can correspond to the known string failure monitoring.
  • the current sensors of existing string failure monitoring which measure the currents flowing from the strings in magnitude and direction, and transmit these values to the controller of the converter, can be used to implement the photovoltaic system according to the invention or device used. It may then be sufficient to modify the control of the converter by applying a modified control software according to the invention.
  • connection units of the new photovoltaic system and the new device can therefore be formed in addition to the current sensors essentially by busbars, which can also take on constructive functions of the connection units.
  • Fig. 1 outlines a photovoltaic system 1 for feeding electrical energy into a power grid 2, which is here an AC network 3.
  • the electrical energy is generated by a plurality of photovoltaic modules 4, which are each connected to strings 5 in series.
  • the strings 5 are connected in groups in parallel with the aid of decentralized connection units 6 before they are connected in parallel to one another in a central unit 7 to bus lines 8 and 9.
  • a current sensor 10 is provided for each string 5 in the terminal units 6, which at least reports to a controller 11 in the central unit 7, whether a return current through the respective string 5 occurs, ie a current in the opposite direction to the direction in which a usually Power generated by the photovoltaic modules 4 flows.
  • a transmitter 22 is provided here in each connection unit 6, which communicates wirelessly with the controller 11.
  • the transmitter 22 can not only send a signal when a reverse current occurs, but also tell which string 5 is affected by this. In addition, it can report the currents flowing from all strings 5, so that string failure monitoring is possible by monitoring the collective of these currents. An occurring significant, that is, a threshold exceeding return current is an indication of a defect of the associated string 5. It not only means a power loss, because this return current generated by the other strings is not fed into the power grid 2. But above all it represents a danger potential, in particular for the affected string 5.
  • the controller 11 in the central unit 7 intervenes in the operation of a converter 12 with which the electrical energy is fed from the strings 5 into the power grid.
  • the converter 12 is indicated here as a three-phase inverter 13, which is connected via contactors 14 to the power grid 2.
  • connection lines 15 are connected by the connection units 6 to the bus lines 8 and 9, through which the photovoltaically generated current flows to the inverter 13 via an all-pole switching circuit breaker 16.
  • the reported return currents modify the operation of the controller 11, which is designed without the occurrence of the reverse current, the input voltage present between the bus lines 8 and 9 of the converter 12 so that a maximum electric power is generated by the solar modules 4.
  • the controller 11 reduces the voltage present between the bus lines 8 and 9 system voltage, which also rests on the individual strings 5. The reduction proceeds until the voltage applied across the string affected by the return current is no longer sufficient to cause the return current. This may mean in individual cases that the voltage between the bus lines 8 and 9 is reduced to zero. As long as this is not the case or as long as the system voltage present between the bus lines 8 and 9 is still sufficient for the converter 12 to be able to feed electrical energy into the power network 2, electrical energy is still fed into the power network 2 from the non-faulty strings.
  • Fig. 2 outlines a structure of the inverter 13 and the contactor 14 at its output.
  • the inverter 13 has an inverter bridge 17 with 6 switches 18, which are controlled by the controller 11 Fig. 1 be clocked to normally feed a three-phase alternating current in the enclosed power grid.
  • a buffer capacity 19 between the bus lines 8 and 9 is provided at the input of the inverter 13.
  • the inverter 13 may have intermediate circuits not shown here.
  • the controller 11 depends on Fig. 1 the photovoltaic system by opening the contactors 14 from the mains.
  • the buffer capacity 19 is discharged by closing a switch 20 via a discharge resistor 21. Subsequently, all switches 18 are closed to short the bus lines 8 and 9.
  • the existing in an inverter 13 switches 18 are readily suitable for such a short circuit, as they anyway for the open circuit voltage to the bus line 8 and 9 connected strings and the maximum flowing currents must be designed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Control Of Voltage And Current In General (AREA)

Claims (15)

  1. Dispositif pour l'amenée d'énergie électrique d'une pluralité de chaînes (5), qui comportent chacune plusieurs modules photovoltaïques (4) montés en série, à un réseau électrique (2), comportant des barres de distribution (8, 9), avec des raccords pour chaque chaîne pour raccorder les chaînes (5) aux barres de distribution (8, 9) parallèlement les unes aux autres, comportant un capteur de courant (10) pour chaque chaîne (5) qui détecte au moins si un flux de retour atteint la chaîne (5) et comportant un convertisseur (12) qui comprend une commande (11) et qui amène l'énergie électrique dans le réseau électrique (2) à partir des barres de distribution (8, 9), la tension système pouvant être réglée au moyen de la commande (11) du convertisseur (12), tension qui chute entre les barres de distribution (8, 9), caractérisé en ce que chaque capteur de courant (10) informe la commande (11) du convertisseur (12) du fait qu'il y ait ou pas un flux de retour qui atteigne la chaîne (5) raccordée et en ce que la commande (11) du convertisseur (12) réduit la tension système existant entre les barres de distribution (8, 9) pour stopper le flux de retour, les autres chaînes (5) continuant à fournir de l'énergie électrique après la réduction de la tension entre les barres de distribution (8, 9), énergie électrique qui est amenée dans le réseau électrique (2) par le convertisseur (12) tant que la tension système entre les barres de distribution (8, 9) est suffisante pour l'amenée d'énergie électrique dans le réseau électrique (2).
  2. Installation photovoltaïque (1) comportant un dispositif selon la revendication 1 et une pluralité de chaînes (5) qui comportent chacune plusieurs modules photovoltaïques uniquement montés en série et qui sont raccordées, parallèlement les unes aux autres, aux raccords du dispositif.
  3. Dispositif selon la revendication 1 ou installation photovoltaïque (1) selon la revendication 2, caractérisé(e) en ce que la commande (11) réduit la tension système existant entre les barres de distribution (8, 9) à l'intérieur d'une fenêtre MPP actuelle.
  4. Dispositif ou installation photovoltaïque (1) selon la revendication 3, caractérisé(e) en ce que la commande (11) réduit à zéro la tension système existant entre les barres de distribution (8, 9) dans la mesure où le flux de retour ne peut pas être stoppé d'une autre manière.
  5. Dispositif ou installation photovoltaïque (1) selon la revendication 4, caractérisé(e) en ce que la commande (11) court-circuite la tension système existant entre les barres de distribution (8, 9) dans la mesure où le flux de retour ne peut pas être stoppé d'une autre manière.
  6. Dispositif ou installation photovoltaïque (1) selon la revendication 5, caractérisé(e) en ce que la commande (11) coupe le convertisseur (12) du réseau électrique (2), décharge une capacité tampon (19) à l'entrée du convertisseur (12) et court-circuite la tension système existant entre les barres de distribution (8, 9) par le biais des commutateurs (18) d'un pont d'onduleur (17) du convertisseur (12).
  7. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce qu'on a prévu les capteurs de courant (10) dans plusieurs unités de raccordement (6) à agencer de manière décentralisée.
  8. Dispositif ou installation photovoltaïque (1) selon la revendication 7, caractérisé(e) en ce qu'on a prévu, sur une unité centrale (7) comportant le convertisseur (12), des raccords pour les conduites de raccordement (15), des unités de raccordement (8) à agencer de manière décentralisée aux barres de distribution (8, 9).
  9. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce que les capteurs de courant (10) donnent des informations à la commande (11) concernant le flux de retour par le biais des conduites de communication ou sans fil.
  10. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce que les capteurs de courant (10) signalent le flux de retour lorsqu'il dépasse une valeur limite prédéfinie.
  11. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce que les capteurs de courant (10) mesurent la grandeur des courants partant des chaînes (5) et la transmettent au dispositif de surveillance.
  12. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce que les capteurs de courant (10) mesurent les courants partant des chaînes (5) en fonction de leur valeur et de leur sens.
  13. Dispositif ou installation photovoltaïque (1) selon au moins l'une quelconque des revendications précédentes, caractérisé(e) en ce qu'on a prévu aucune diode pour les différentes chaînes (5).
  14. Dispositif ou installation photovoltaïque (1) selon la revendication 13, caractérisé(e) en ce qu'on a prévu aucun fusible de surintensité pour les différentes chaînes (5).
  15. Utilisation d'un dispositif selon au moins l'une quelconque des revendications précédentes 1 et 3 à 14 pour l'amenée d'énergie électrique d'une multitude de chaînes (5) à un réseau électrique (2), chaînes comportant chacune plusieurs modules photovoltaïques (4) montés en série.
EP20090167379 2009-08-06 2009-08-06 Capteur de flux de retour pour de modules solaire branché en parallèle Not-in-force EP2284973B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20090167379 EP2284973B1 (fr) 2009-08-06 2009-08-06 Capteur de flux de retour pour de modules solaire branché en parallèle
AT09167379T ATE555531T1 (de) 2009-08-06 2009-08-06 Rückstromsensor für parallel geschaltete solarmodule
ES09167379T ES2384426T3 (es) 2009-08-06 2009-08-06 Sensor de corriente de retorno para módulos solares conectados en paralelo
JP2012523282A JP5590475B2 (ja) 2009-08-06 2010-07-26 逆電流センサ
CA 2770056 CA2770056A1 (fr) 2009-08-06 2010-07-26 Capteur de courant de retour
PCT/EP2010/060761 WO2011015476A2 (fr) 2009-08-06 2010-07-26 Capteur de courant de retour
CN201080034781.6A CN102484368B (zh) 2009-08-06 2010-07-26 反向电流传感器
US13/366,522 US8749934B2 (en) 2009-08-06 2012-02-06 Reverse current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20090167379 EP2284973B1 (fr) 2009-08-06 2009-08-06 Capteur de flux de retour pour de modules solaire branché en parallèle

Publications (2)

Publication Number Publication Date
EP2284973A1 EP2284973A1 (fr) 2011-02-16
EP2284973B1 true EP2284973B1 (fr) 2012-04-25

Family

ID=41625978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20090167379 Not-in-force EP2284973B1 (fr) 2009-08-06 2009-08-06 Capteur de flux de retour pour de modules solaire branché en parallèle

Country Status (8)

Country Link
US (1) US8749934B2 (fr)
EP (1) EP2284973B1 (fr)
JP (1) JP5590475B2 (fr)
CN (1) CN102484368B (fr)
AT (1) ATE555531T1 (fr)
CA (1) CA2770056A1 (fr)
ES (1) ES2384426T3 (fr)
WO (1) WO2011015476A2 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2384426T3 (es) * 2009-08-06 2012-07-04 Sma Solar Technology Ag Sensor de corriente de retorno para módulos solares conectados en paralelo
EP2296244B1 (fr) * 2009-08-06 2015-02-18 SMA Solar Technology AG Procédé et dispositif destinés à la connexion d'au moins une chaîne d'installation photovoltaïque et d'un onduleur
EP2626712B1 (fr) * 2010-10-07 2021-03-24 Toshiba Mitsubishi-Electric Industrial Systems Corporation Appareil de détection de défauts
ITVI20110117A1 (it) * 2011-05-04 2012-11-05 Itaco S R L Impianto fotovoltaico
DE102012010083B4 (de) * 2011-05-23 2023-04-27 Microsemi Corp. Photovoltaische Sicherheitsabschaltungsvorrichtung
JP2012253848A (ja) * 2011-05-31 2012-12-20 Toshiba Corp 太陽光発電システム
US9184594B2 (en) * 2011-06-03 2015-11-10 Schneider Electric Solar Inverters Usa, Inc. Photovoltaic voltage regulation
DE202011050696U1 (de) 2011-07-12 2012-10-22 Sma Solar Technology Ag Sicherungsvorrichtung für photovoltaische (PV-)Generatoren
DE102012101340B4 (de) 2012-02-20 2015-11-19 Sma Solar Technology Ag Schutz von Photovoltaikmodulen eines Photovoltaikgenerators vor Überspannungen gegenüber Erde
JP5717915B2 (ja) * 2012-02-24 2015-05-13 三菱電機株式会社 電力用スイッチング回路
DE102012112184A1 (de) 2012-12-12 2014-06-12 Sma Solar Technology Ag Verfahren und Vorrichtung zum Schutz mehrerer Strings eines Photovoltaikgenerators vor Rückströmen
US9105765B2 (en) * 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system
EP2775531A1 (fr) * 2013-03-07 2014-09-10 ABB Oy Procédé et dispositif pour faire fonctionner un système photovoltaïque et système photovoltaïque
US9148086B2 (en) * 2013-10-22 2015-09-29 Advanced Energy Industries, Inc. Photovoltaic DC sub-array control system and method
US10097108B2 (en) 2014-12-16 2018-10-09 Abb Schweiz Ag Energy panel arrangement power dissipation
CN105827179B (zh) * 2015-01-04 2018-09-07 华为技术有限公司 一种光伏系统
WO2016123305A1 (fr) 2015-01-28 2016-08-04 Abb Technology Ag Arrêt d'un agencement de panneaux d'énergie
WO2016134356A1 (fr) * 2015-02-22 2016-08-25 Abb Technology Ag Détection de polarité inverse dans une suite de cellules photovoltaïques
US9812269B1 (en) * 2015-03-10 2017-11-07 Synapse Wireless, Inc. Arc fault detection in solar panel systems
DE102015225856A1 (de) 2015-12-18 2017-06-22 Audi Ag Ladevorrichtung und Ladeverfahren für eine Hochvoltbatterie eines Kraftfahrzeugs
JP6790071B2 (ja) * 2016-03-25 2020-11-25 シャープ株式会社 発電システム、パワーコンディショナ、電力制御装置、電力制御方法及び電力制御プログラム
WO2019205289A1 (fr) * 2018-04-28 2019-10-31 北京汉能光伏投资有限公司 Boîte de jonction de composant solaire, système solaire et procédé de commande de composant solaire
CN112332669B (zh) 2020-11-11 2022-05-24 阳光电源股份有限公司 一种mlpe光伏系统及其光伏组串控制方法
US20230286667A1 (en) * 2022-03-08 2023-09-14 Lockheed Martin Corporation External power safety alert for a vehicle
US11799420B1 (en) * 2022-05-12 2023-10-24 Maxar Space Llc Solar array reverse current protection
CN115021324B (zh) * 2022-08-09 2022-11-15 阳光电源股份有限公司 一种汇流设备、光伏系统及故障检测方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182279A (ja) * 1995-10-26 1997-07-11 Nitto Kogyo Kk 太陽光発電システムにおける短絡検出装置
JPH11330521A (ja) * 1998-03-13 1999-11-30 Canon Inc 太陽電池モジュ―ル、太陽電池アレイ、太陽光発電装置、太陽電池モジュ―ルの故障特定方法
US6593520B2 (en) * 2000-02-29 2003-07-15 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
US6653549B2 (en) * 2000-07-10 2003-11-25 Canon Kabushiki Kaisha Photovoltaic power generation systems and methods of controlling photovoltaic power generation systems
JP2003158282A (ja) * 2001-08-30 2003-05-30 Canon Inc 太陽光発電システム
JP3825020B2 (ja) 2002-08-01 2006-09-20 株式会社アイ・ヒッツ研究所 分散給電システム
DE10247776A1 (de) * 2002-09-30 2004-04-15 Siemens Ag Verfahren und Vorrichtung zur Diagnose von Photovoltaikgeneratoren
DE50305821D1 (de) 2002-09-30 2007-01-11 Siemens Ag Verfahren und Vorrichtung zur Diagnose von Photovoltaikgenatoren
JP2004254386A (ja) * 2003-02-18 2004-09-09 Kyocera Corp 直流電源装置
CN1902808B (zh) * 2004-01-09 2011-10-05 皇家飞利浦电子股份有限公司 分散型发电系统及其操作方法
JP2006101581A (ja) * 2004-09-28 2006-04-13 Matsushita Electric Ind Co Ltd 系統連系インバータ
US8204709B2 (en) * 2005-01-18 2012-06-19 Solar Sentry Corporation System and method for monitoring photovoltaic power generation systems
DE102005017835B3 (de) * 2005-04-18 2006-11-23 Beck Energy Gmbh Photovoltaikgenerator mit Thermoschalterelement
EP2369709B1 (fr) * 2005-10-24 2016-05-04 Robert Bosch GmbH Interrupteur à fusibles avec gestion de contrôle pour cellules solaires
US20070107767A1 (en) * 2005-11-16 2007-05-17 Arizona Public Service Company DC power-generation system and integral control apparatus therefor
EP1986306B1 (fr) * 2006-01-27 2014-05-14 Sharp Kabushiki Kaisha Systeme d'alimentation
US20080111517A1 (en) * 2006-11-15 2008-05-15 Pfeifer John E Charge Controller for DC-DC Power Conversion
US7772716B2 (en) * 2007-03-27 2010-08-10 Newdoll Enterprises Llc Distributed maximum power point tracking system, structure and process
PL2212983T3 (pl) * 2007-10-15 2021-10-25 Ampt, Llc Układy do wysoko wydajnej energii słonecznej
US7919953B2 (en) * 2007-10-23 2011-04-05 Ampt, Llc Solar power capacitor alternative switch circuitry system for enhanced capacitor life
DE102007050554B4 (de) * 2007-10-23 2011-07-14 Adensis GmbH, 01129 Photovoltaikanlage
US8018748B2 (en) * 2007-11-14 2011-09-13 General Electric Company Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
WO2009073867A1 (fr) * 2007-12-05 2009-06-11 Solaredge, Ltd. Onduleurs connectés en parallèle
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
ES2345750R (es) * 2008-05-12 2010-10-13 Ingeteam Energy, S.A. Circuito electrico de proteccion de sistemas fotovoltaicos.
US20110210611A1 (en) * 2008-10-10 2011-09-01 Ampt, Llc Novel Solar Power Circuits
DE102009032288A1 (de) * 2009-07-09 2011-01-13 Kostal Industrie Elektrik Gmbh Photovoltaikanlage
ES2384426T3 (es) * 2009-08-06 2012-07-04 Sma Solar Technology Ag Sensor de corriente de retorno para módulos solares conectados en paralelo
US7989983B2 (en) * 2009-11-24 2011-08-02 American Superconductor Corporation Power conversion systems
US20110139213A1 (en) * 2009-12-11 2011-06-16 Du Pont Apollo Limited Photovoltaic system and boost converter thereof
US8218274B2 (en) * 2009-12-15 2012-07-10 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
DE102010009120B4 (de) * 2010-02-24 2011-09-01 Adensis Gmbh Photovoltaikgenerator
US20120056638A1 (en) * 2010-03-10 2012-03-08 Alion, Inc. Systems and methods for monitoring and diagnostics of photovoltaic solar modules in photovoltaic systems
US8837097B2 (en) * 2010-06-07 2014-09-16 Eaton Corporation Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US8659858B2 (en) * 2010-08-24 2014-02-25 Sanyo Electric Co., Ltd. Ground-fault detecting device, current collecting box using the ground-fault detecting device, and photovoltaic power generating device using the current collecting box
US8461716B2 (en) * 2010-08-24 2013-06-11 Sanyo Electric Co., Ltd. Photovoltaic power generating device, and controlling method
US8508896B2 (en) * 2010-11-09 2013-08-13 Eaton Corporation DC feeder protection system
US9246330B2 (en) * 2011-05-06 2016-01-26 First Solar, Inc. Photovoltaic device
US20130015875A1 (en) * 2011-07-13 2013-01-17 United Solar Ovonic Llc Failure detection system for photovoltaic array

Also Published As

Publication number Publication date
EP2284973A1 (fr) 2011-02-16
CN102484368B (zh) 2015-07-22
CA2770056A1 (fr) 2011-02-10
ATE555531T1 (de) 2012-05-15
WO2011015476A2 (fr) 2011-02-10
JP5590475B2 (ja) 2014-09-17
CN102484368A (zh) 2012-05-30
ES2384426T3 (es) 2012-07-04
US8749934B2 (en) 2014-06-10
JP2013501495A (ja) 2013-01-10
WO2011015476A3 (fr) 2012-02-02
US20120139347A1 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
EP2284973B1 (fr) Capteur de flux de retour pour de modules solaire branché en parallèle
EP2296244B1 (fr) Procédé et dispositif destinés à la connexion d'au moins une chaîne d'installation photovoltaïque et d'un onduleur
EP2920858B1 (fr) Procédé et dispositif pour protéger plusieurs branches d'un générateur photovoltaïque des courants de retour
EP3583695B1 (fr) Procédé de commande d'un commutateur à courant continu, commutateur à courant continu et système de tension continue
EP2256823B1 (fr) Panneau solaire et utilisation du panneau solaire
DE102013110240B4 (de) Schaltungsanordnung für einen Photovoltaikwechselrichter zur Ausschaltentlastung mit Kurzschlussschaltern und Verwendungen der Schaltungsanordnung
EP2193584B1 (fr) Dispositif de limitation des courts-circuits dans une installation basse tension
DE102012101340B4 (de) Schutz von Photovoltaikmodulen eines Photovoltaikgenerators vor Überspannungen gegenüber Erde
DE102012109012B4 (de) Schaltungsanordnung für ein Solarkraftwerk mit einer Gleichspannungsquelle für eine Offsetspannung
EP2282388A1 (fr) Dispositif d'alimentation en énergie électrique d'une multitude de chaînes de modules photovoltaïques dans un réseau électrique
EP3213407B1 (fr) Boîtier multiplexeur comprenant un disjoncteur motorisé de courant de surcharge
DE102013103753A1 (de) Photovolatische energieerzeugungsanlage und verfahren zum betreiben einer pv-anlage
DE102008008505A1 (de) PV-Teilgenerator-Anschlusskasten für eine PV-Anlage sowie PV-Anlage mit einer Vielzahl derartiger PV-Teilgenerator-Anschlusskästen
WO2010020411A1 (fr) Dispositif de limitation des courants de fuite dans une installation à courant alternatif et basse tension
EP3565074A1 (fr) Circuit de couplage à fonction de commutation permettant de coupler un appareil de surveillance d'isolation à un système d'alimentation électrique non mis à la masse
EP3516701A1 (fr) Module solaire, installation photovoltaïque et procédé de limitation de tension
DE102013111869A1 (de) Photovoltaikanlage und Vorrichtung zum Betreiben einer Photovoltaikanlage
EP2511956A2 (fr) Protection contre les surtensions à trois commutateurs pour une installation photovoltaïque
EP2456034B1 (fr) Installation photovoltaïque et module photovoltaïque
EP2904677B1 (fr) Circuiterie comprenant un onduleur
DE102015115284B3 (de) Schutzvorrichtung für eine elektrische Energieversorgungseinrichtung und elektrische Energieversorgungseinrichtung mit einer derartigen Schutzvorrichtung
DE102012106505A1 (de) Freischalteinrichtung für einen eine Gleichspannung erzeugenden Photovoltaik-Strang
EP2580854B1 (fr) Convertisseur doté d'un dispositif de surveillance de commutateur
WO2014154233A1 (fr) Boîte de jonction pour le raccordement électrique d'une pluralité de générateurs photovoltaïques et installation de production d'énergie photovoltaïque
DE102010004395A1 (de) Schaltungsanordnung zum Schutz von Photovoltaikmodulen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 555531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003339

Country of ref document: DE

Effective date: 20120614

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2384426

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120704

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120425

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120827

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

BERE Be: lapsed

Owner name: SMA SOLAR TECHNOLOGY A.G.

Effective date: 20120831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

26N No opposition filed

Effective date: 20130128

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003339

Country of ref document: DE

Effective date: 20130128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120806

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090806

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 555531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140806

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210831

Year of fee payment: 13

Ref country code: FR

Payment date: 20210823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210917

Year of fee payment: 13

Ref country code: DE

Payment date: 20210819

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003339

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220806

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220807