EP2283170A1 - Pd- und pd-ni-elektrolytbäder - Google Patents

Pd- und pd-ni-elektrolytbäder

Info

Publication number
EP2283170A1
EP2283170A1 EP08758401A EP08758401A EP2283170A1 EP 2283170 A1 EP2283170 A1 EP 2283170A1 EP 08758401 A EP08758401 A EP 08758401A EP 08758401 A EP08758401 A EP 08758401A EP 2283170 A1 EP2283170 A1 EP 2283170A1
Authority
EP
European Patent Office
Prior art keywords
electrolyte
palladium
electrolyte according
nickel
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08758401A
Other languages
English (en)
French (fr)
Other versions
EP2283170B1 (de
Inventor
Sascha Berger
Frank Oberst
Franz Simon
Uwe Manz
Bernd Weyhmueller
Klaus Bronder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Umicore Galvanotechnik GmbH
Original Assignee
Umicore Galvanotechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Galvanotechnik GmbH filed Critical Umicore Galvanotechnik GmbH
Priority to PL08758401T priority Critical patent/PL2283170T3/pl
Publication of EP2283170A1 publication Critical patent/EP2283170A1/de
Application granted granted Critical
Publication of EP2283170B1 publication Critical patent/EP2283170B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • C25D3/52Electroplating: Baths therefor from solutions of platinum group metals characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/567Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals

Definitions

  • the present invention relates to an electrolyte for the electrodeposition of palladium or palladium alloys on metallic or conductive substrates.
  • this is a Pd electrolyte containing optionally further metals and an organic oligoamine as a complexing agent, with the alloy coatings with e.g. 80% Pd for technical and decorative applications can be deposited.
  • the invention is directed to a corresponding galvanotechnisches method using this electrolyte and special, advantageously usable for this process palladium salts.
  • the electrodeposition of palladium or palladium alloys on metallic substrates has a variety of decorative and technical applications.
  • Galvanically deposited pure palladium and palladium-nickel layers, if appropriate each with gold flash, are recognized materials, e.g. for low-current contacts or plug contacts (for example on printed circuit boards) and can be considered as a replacement for hard gold [Galvanotechnik 5 (2002), 121 Off, Simon u. Yasumura: "Galvanic Palladium Layers for Technical Applications in Electronics”].
  • palladium deposits with a very small layer thickness on so-called lead frames in semiconductor production can replace the silver used in the bond area [Galvanotechnik 6 (2002), 1473ff, Simon et al. Yasumura: "Galvanic Palladium Layers for Technical Applications in Electronics”].
  • Patent DE 4428966 (US Pat. No. 5,415,685) describes a palladium bath in which, in addition to a palladium compound (namely palladium diaminodinitrite) and various ammonium salts (sulfate, citrate and phosphate), a combination of gloss additives is also mentioned.
  • the described ammoniacal process operates in a pH range between 5 and 12.
  • the claimed brighteners are a combination of a sulfonic acid and an aromatic N-heterocycle. Specifically named are, inter alia, o-formylbenzenesulfonic acid and 1- (3-sulfopropyl) -2-vinylpyridinium betaine.
  • pyridines mentioned by name are 1- (3-sulfopropylpyridinium betaine and 1- (2-hydroxy-3-sulfopropylpyridinium betaine). The latter two substances have, according to the authors, a negative effect on the gloss of the resulting coatings.
  • a process according to US6743346 also employs ethylenediamine as a complexing agent and incorporates the palladium in the form of the solid compound of palladium sulfate and ethylenediamine.
  • the salt contains 31 to 41% palladium (mole ratios [SO 4 ]: [Pd] between 0.9 and 1.15 and [ethylene diamine]: [Pd] between 0.8 and 1.2). It is insoluble in water but dissolves in the electrolyte with excess ethylenediamine (Plating & Surface Finishing, (2007) 4, pp. 26-35, St. Burling "Precious Metal Plating and the Environment").
  • As brighteners here are the substances 3- (3-pyridyl) acrylic acid or 3- ( It is mentioned that the brighteners based on sulfonates are not able to ensure the desired gloss, especially at current densities of 15 to 150 A / dm 2 , in galvanic electrolytes.
  • Object of the present invention was in the context of the cited prior art, the indication of a further electrolyte and working with this electrolyte process, which help overcome the disadvantages mentioned.
  • the specified electrolyte composition or the corresponding method should help to produce glossy surfaces even at high current densities and fast electrolysis processes, which would be particularly advantageous from an economic and ecological point of view.
  • aqueous electrolyte for the electrodeposition of palladium or a palladium alloy on a metallic or conductive substrate, which to be deposited, complexed with organic oligoamines metal ions in the form of their salts with oxide hydroxide, hydroxide, bicarbonate and / or carbonate as Having counterions and a brightener based on an inner salt of a quaternary ammonium and a sulfonic acid group, one arrives in a surprisingly simple manner and successfully to solve the problem.
  • the electrolyte according to the invention or by using the method according to the invention it is now possible to produce the desired shiny surfaces with qualitatively excellent results both at low and at high current densities.
  • the electrolyte composition according to the invention is in no way suggested by the prior art.
  • the electrolyte according to the invention makes it possible to deposit the palladium alone or in the form of an alloy associated with other metals.
  • Other metals that can be used in the art for this purpose in question. These may be e.g. Nickel, cobalt, iron, indium, gold, silver or tin or mixtures thereof.
  • the metal ions to be deposited are selected from the group consisting of nickel, cobalt, iron and mixtures thereof.
  • the electrolyte contains these metals in the form of their soluble salts.
  • Suitable salts are preferably those selected from the group of phosphates, carbonates, bicarbonates, hydroxides, oxides, sulfates, sulfamates, alkanesulfonates, pyrophosphates, phosphonates, nitrates, carboxylic acid salts and mixtures thereof.
  • the person skilled in the art selects the concentrations of the metals to be used in the electrolyte on the basis of his general technical knowledge. It has been found that advantageous results can be obtained when palladium is used in concentrations of 1-100 g / L, preferably 2-70 g / L, and more preferably 4-50 g / L and most preferably 5-25 g / L is present based on the electrolyte.
  • the further metal ions to be deposited can be present in concentrations of ⁇ 50 g / L based on the electrolyte. Preferably, the concentration of these ions in the electrolyte ⁇ 40 g / L, more preferably ⁇ 30 g / L based on the electrolyte.
  • a uniform deposition of the metal ions under the conditions according to the invention is advantageous, inter alia, if they are complexed.
  • Suitable oligonucleotides for these complexes have proven to be organic oligoamines.
  • Advantageous is the use of polydentate, in particular ligands based on di-, tri- or tetraamines. Particularly preferred are those having 2 to 11 carbon atoms.
  • Very particular preference is given to the use of ligands selected from the group consisting of ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,2-propylenediamine, trimethylenetetramine, hexamethylenetetramine.
  • EDA ethylene diamine
  • oligoamines used in the estimation of the amount. In the estimation of the amount, he will orientate himself by the fact that a sufficient amount must be present in order to obtain as even as possible a deposition of the palladium or of the palladium alloy. On the other hand, at least economic considerations limit the use of large quantities of oligoamines.
  • An amount of 0.1-5 mol / L of oligoamines in the electrolyte is advantageous. More preferably, the concentration is in the range between 0.3-3 mol / L. Most preferably, the concentration of oligoamines at 0.5 - 2 mol / L electrolyte.
  • the pH of the electrolyte according to the invention can be adjusted according to the skilled person for the particular application in the acidic to neutral range.
  • a further preferred range is from pH 3.5 to pH 6.5, more preferably from pH 4 to pH 6, and most preferably around pH 5 to pH 5 ; 5.
  • the electrolyte according to the invention has brighteners based on an internal salt of a quaternary ammonium and an acid group.
  • a quaternary ammonium compound is preferably one in which the positively charged nitrogen atom is part of an aromatic ring system.
  • Those skilled in the art are particularly suitable as such molecular constituents, which relate to a mononuclear or polynuclear aromatic systems, such as pyridinium, pyrimidinium, pyrazinium, pyrrolinium, imidazolinium, thiazolinium, indolinium, carbazolinium or such substituted systems in consideration.
  • pyridinium- or alkyl- or alkenyl-substituted pyridinium derivatives used.
  • a brightener having as a molecular constituent a quaternary ammonium compound based on a pyridinium derivative.
  • the brightener contains an acid group, so that in the present case the brightener is an internal salt or a betaine.
  • the term "acid group” refers to a group which, under the given conditions, is present predominantly in the deprotonated form in the electrolyte.
  • the acid group may be derived from those selected from the group consisting of phosphoric acid, phosphonic acid, sulfuric acid, sulfonic acid, carboxylic acid. Particularly preferred is the sulfonic acid as part of the brightener.
  • the acid group and the quaternary ammonium moiety of the brightener may be linked by (CrCsJ-alkylene-, (d-C ⁇ J-alkenylene-, (C 6 -C 18 ) -arylene, which may optionally be substituted, being highly preferred compounds in this
  • those selected from the group consisting of 1- (3-sulfopropyl) -2-vinylpyridinium betaine), 1- (3-sulfopropylpyridinium betaine and 1- (2-hydroxy-3-sulfopropylpyridinium betaine have proven.
  • the brightener can be used in quantities which are obvious to a person skilled in the art.
  • An upper limit is the amount of brightener, in which the cost of its use is no longer justified by the effect achieved.
  • the use of the brightener is thus advantageous in amounts of from 1 to 10000 mg / L of electrolyte.
  • the brightener is used in a concentration of 5 to 5000 mg / L of electrolyte, most preferably in an amount of 10 to 1000 mg / L of electrolyte.
  • the electrolyte according to the invention may contain further constituents which have a positive influence with regard to the bath stability, the deposition behavior of the metals, the quality of the deposited material and the electrolysis conditions.
  • those skilled in the art in particular means for reducing the internal stresses of the coating, wetting agents, conductive salts, other brighteners and / or buffer substances, etc. into consideration.
  • additives for reducing the surface tension of the electrolyte wetting agents can be selected from the following groups consisting of anionic wetting agents such as sodium lauryl sulfate, dodecylbenzenesulfonate sodium salt, sodium dioctylsulfosuccinate, nonionic wetting agents such as polyethylene glycol Fatty acid esters and / or cationic wetting agents such as cetyltrimethylammonium be used.
  • anionic wetting agents such as sodium lauryl sulfate, dodecylbenzenesulfonate sodium salt, sodium dioctylsulfosuccinate
  • nonionic wetting agents such as polyethylene glycol Fatty acid esters and / or cationic wetting agents such as cetyltrimethylammonium be used.
  • Conducting salts selected from the group consisting of potassium sulfate or sodium sulfate, phosphate, nitrate, alkanesulfonate, sulfamate and mixtures thereof can advantageously be used to improve the conductivity and throwing power of the electrolyte.
  • buffer substances are those selected from the group consisting of boric acid or phosphates or a carboxylic acid and / or salts thereof, such as e.g. Acetic acid, citric acid, tartaric acid, oxalic acid, succinic acid, malic acid, lactic acid, phthalic acid.
  • brightener additives may advantageously those selected from the group consisting of N, N-diethyl-2-propyn-1-amine, 1,1-dimethyl-2-propynyl-1-amine, 2-butyne-1, 4-diol, 2-butyne-1,4-diol ethoxylate, 2-butyne-1,4-diol propoxylate, 3-hexyne-2,5-diol and sulfopropylated 2-butyne-1,4-diol or one of their salts.
  • Other base gloss agents may be allylsulfonic acid and / or vinylsulfonic acid and / or
  • Propargylsulfonklare or their alkali metal salts in amounts of 0.01 to 10 g / L electrolyte.
  • those selected from the group consisting of iminodisuccinic acid and / or sulfamic acid and / or sodium saccharinate may be advantageously used.
  • no further metal salts with inorganic anions except sulfate or nitrate, bicarbonate or carbonate ions or oxide, hydroxide or mixtures thereof are added to the electrolyte.
  • Such an approach in turn has a positive effect on the service life of the electrolyte.
  • Particularly advantageous is the embodiment in which only those deposition metal salts are used whose anions consist of bicarbonate or carbonate ions or oxide, hydroxide or mixtures thereof.
  • the present invention also provides a process for the electrodeposition of palladium or a palladium alloy on a metallic or conductive substrate, wherein an electrolyte according to the invention is used.
  • the palladium or palladium alloy may be electrodeposited on substrates well known to those skilled in the art for this purpose.
  • the metallic or electrically conductive substrates are selected from the group consisting of nickel, nickel alloys, gold, silver, copper and copper alloys, iron, iron alloys. Particularly preferred is nickel or copper or
  • the temperature in the electrolytic deposition can be chosen arbitrarily by the expert.
  • the temperature is set at which a corresponding desired deposition can take place. This is the case at temperatures from 2O 0 C to 80 0 C.
  • a temperature of 30 0 C to 70 0 C and most preferably from 40 ° C to 60 ° C is set.
  • the current density to be set can be selected by the person skilled in the art according to the underlying electrolysis arrangement during the electrolysis according to the invention.
  • the current densities are preferably between 0.1 and 150 A / dm 2 . Particularly preferred are 0.1-10.0 A / dm 2 for drum and rack applications and 5.0-100 A / dm 2 for high speed applications. Most preferably, 5.0-70 A / dm 2 is set for high-speed applications, and 0.2-5 A / dm 2 is most preferred in drum and rack applications.
  • the inventive method is advantageously carried out so that the deposition is carried out using non-soluble anodes.
  • non-soluble anodes particularly preferred is the use of insoluble anodes of platinized titanium or mixed oxide anodes. These are most preferably non-soluble anodes of platinized titanium or iridium / ruthenium / tantalum oxide coated titanium or niobium or tantalum.
  • Anodes made of graphite or of durable stainless steel are also possible.
  • the subject matter of the present invention is likewise a special palladium salt which can advantageously be used and adapted for the process according to the invention.
  • These are a palladium complex compounds consisting of a divalent palladium cation, one or more di-, tri- or tetradentate organic amine ligands and carbonate or two bicarbonate or hydroxyl anions or a mixture thereof.
  • the advantage here is the use of multidentate ligands based on di-, tri or tetraamines. Particularly preferred are those having 2 to 11 carbon atoms.
  • ligands selected from the group consisting of ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, 1,2-propylenediamine, trimethylenetetramine, hexamethylenetetramine.
  • EDA ethylene diamine
  • the reaction temperature is preferably between 20 and 95 0 C, more preferably between 40 and 90 0 C, most preferably between 60 and 80 0 C.
  • an electrolyte of the invention described herein with, for example, 20 g / l of palladium as bis (ethylenediamino) -palladium (II) hydrogen carbonate, 16 g / l of nickel as nickel (II) sulfate and 50 g / l of ethylenediamine enable the brighteners 1- (3 - Sulfopropylpyridiniumbetain or 1- (2-hydroxy-3-sulfopropylpyridiniumbetain in amounts of 50 to 500 mg / l, especially in the low current density range the
  • Ammonia and chloride are also avoided with the new palladium-nickel electrolyte based on ethylenediamine, which significantly reduces the risk potential and the unpleasant odor for humans and plant corrosion.
  • the disadvantages of the previous, ammonium and chloride-free ethylene-diamine based processes are avoided.
  • the use of carbonate or bicarbonate as counter ions to palladium and nickel allows an extension of the service life.
  • the anions used are not stable in the applied pH range between, for example, 3 and 5.5 and decompose immediately upon addition of the metal salt to carbon dioxide and hydroxide. The volatile CO 2 escapes from the electrolyte and thus does not contribute to increasing the bath density.
  • the indicated constituents of the electrolyte are dissolved in 4 L of deionized water. Subsequently, the palladium or the palladium alloy is deposited on a brass sheet under the given electrolysis conditions.
  • An electrolyte for depositing PdNi layers with 80% by weight of palladium may be e.g. have the following composition:
  • Electrolyte for high-speed deposition 20 g / l Pd as bis (ethylenediamino) palladium (II) bicarbonate
  • Substrate Copper or copper alloy, possibly undepleted
  • the resulting coatings (2 microns) are homogeneously shiny, bright, ductile, crack-free in the current density range mentioned and have a relatively constant Pd content of 80 to 83%.
  • Substrate copper or copper alloy, possibly nickel-plated anodes: Pt / Ti
  • the resulting coatings (2 microns) are homogeneously high gloss in the current density range mentioned, brilliant-bright, very ductile, crack-free and have a relatively constant Pd content of 80 to 83%.
  • Tetraamminepalladium (II) bicarbonate (product # 45082) from Alfa Aesar Ethylene diamine 99% for synthesis (e.g., Merck # 800947)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Chemically Coating (AREA)

Description

Pd- und Pd-Ni-Elektrolytbäder
Die vorliegende Erfindung bezieht sich auf einen Elektrolyten zur galvanischen Abscheidung von Palladium oder Palladium-Legierungen auf metallischen bzw. leitfähigen Substraten. Insbesondere handelt es sich hier um einen Pd-Elektrolyten enthaltend ggf. weitere Metalle und ein organisches Oligoamin als Komplexbildner, mit dem Legierungsüberzüge mit z.B. 80% Pd für technische und dekorative Anwendungen abgeschieden werden können. Gleichfalls richtet sich die Erfindung auf ein entsprechendes galvanotechnisches Verfahren unter Einsatz dieses Elektrolyten und spezielle, vorteilhaft für dieses Verfahren einsetzbare Palladiumsalze.
Die galvanotechnische Abscheidung von Palladium oder Palladium-Legierungen auf metallischen Substraten hat vielfältige dekorative und technische Anwendungsbereiche. Galvanisch abgeschiedenes Reinpalladium sowie Palladium- Nickelschichten, ggf. jeweils mit Goldflash, sind anerkannte Werkstoffe z.B. für Schwachstromkontakte oder Steckkontakte (z.B. auf Leiterplatten) und können als Ersatz für Hartgold angesehen werden [Galvanotechnik 5 (2002), 121 Off, Simon u. Yasumura: "Galvanische Palladiumschichten für technische Anwendungen in der Elektronik"]. Auch können Palladium-Abscheidungen mit sehr geringer Schichtdicke auf sogenannten Lead-Frames in der Halbleiterfertigung das im Bondbereich verwendete Silber ersetzen [Galvanotechnik 6 (2002), 1473ff, Simon u. Yasumura: "Galvanische Palladiumschichten für technische Anwendungen in der Elektronik"].
Herkömmliche Palladium-Nickel-Elektrolyte enthalten Ammoniak und Chlorid und stellen daher eine potentielle Gefährdung für die Gesundheit des Bedienpersonals dar und sind im Hinblick auf die Korrosion des Anlagenmaterials schädlich. Ammoniak neigt dazu, bei Umgebungstemperatur zu verdampfen. Viele vermarktete Elektrolyten arbeiten bei 400C bis 600C und verursachen daher starke, Emissionen die nicht nur reizend für die Atemwege sind, sondern auch für eine Abnahme des pH-Wertes durch das verdampfende Ammoniak führen. Der Elektrolyt muss daher durch ständige Ammoniakzugabe pH-konstant gehalten werden.
Bisher sind einige ammonium- und/oder chloridfreien Verfahren bekannt. Beispielsweise enthält ein Typ organische Amine, die jedoch bei den vorgegebenen alkalischen Arbeitsbedingungen (bis zu 65°C, pH 9 bis 12) sehr schnell Carbonate bilden und zu Ausfällungen führen. Des Weiteren muss die bei solchen Elektrolyten auftretende mangelnde Haftung auf vernickelten Substraten durch Vorpalladiumprozesse ausgeglichen werden, wodurch Mehrkosten erzeugt werden (Plating & Surface Finishing, (2002) 8, S. 57-58, JA Abys „Palladium Plating",).
In einem kürzlich erschienenen Artikel wird ein chloridfreier Palladium-Nickel-Elektrolyt auf Suifatbasis beschrieben (Galvanotechnik, 99 (2008) 3„ S. 552-557; Kurtz, O.; Barhtelmes, J.; Rüther, R., „Die Abscheidung von Palladium-Nickel-Legierungen aus chloridfreien Elektrolyten"). Die daraus erhaltenen Überzüge weisen zwar die gewünschten Eigenschaften auf, jedoch handelt es sich um einen ammoniakalischen, schwach alkalischen Elektrolyten, mit den bekannten Nachteilen.
Ein anderes Verfahren mit organischen Aminen ist aus der US4278514 bekannt und arbeitet bei pH-Werten von 3 bis 7. Derartige Bäder enthalten Imidverbindungen (z.B. Succinimid) als Glanzzusatz. Sie sind vorwiegend für dekorative Zwecke geeignet, da es sich um Reinpalladiumbäder handelt. Die anwendbaren Stromdichten liegen bei maximal 4 A/dm2. Die beschriebenen Bäder arbeiten zur Einstellung des pH-Wertes mit Phosphatpuffern. Der Einbau von Phosphor in die abgeschiedene Schicht kann jedoch die Qualität der Abscheidung negativ beeinträchtigen.
Im Patent DE4428966 (US5415685) wird ein Palladiumbad beschrieben in dem neben einer Palladiumverbindung (namentlich Palladiumdiaminodinitrit) und verschiedener Ammoniumsalze (Sulfat, Citrat und Phosphat) auch eine Kombination von Glanzadditiven genannt werden. Das beschriebene, ammoniakalische Verfahren arbeitet in einem pH-Bereich zwischen 5 und 12. Bei den beanspruchten Glanzmitteln handelt es sich um eine Kombination einer Sulfonsäure und eines aromatischen N- Heterozyklus. Namentlich genannt sind unter anderem o-Formylbenzolsulfonsäure und 1-(3-Sulfopropyl)-2-vinylpyridiniumbetain. Weitere namentlich genannte Pyridinderivate sind 1-(3-Sulfopropylpyridiniumbetain und 1-(2-Hydroxy-3-sulfopropylpyridiniumbetain. Die beiden zuletzt genannten Substanzen zeigen laut der Autoren einen negativen Effekt auf den Glanz der erhaltenen Überzüge.
Bereits 1986 wurde die galvanische Abscheidung von Palladium-Nickel-Überzügen aus einem Elektrolyten auf Basis von Ethylendiamin von Raub und Walz beschrieben (Metalloberfläche, 40 (1986) 5, S. 199-203, D. Walz und Ch. J. Raub, Carl Hanser
Verlag, München, „Die galvanische Palladium-Nickel-Abscheidung aus ammoniakfreien Grundelektrolyten mit Ethylendiamin als Komplexbildner"). Darin wird erklärt, dass der Komplexbildner Ethylendiamin in idealer Weise in der Lage ist, die Abscheidepotentiale der beiden Metalle soweit zusammenzurücken, dass eine Legierungsabscheidung möglich ist.
Ein Verfahren gemäß der US6743346 setzt auch Ethylendiamin als Komplexbildner ein und bringt das Palladium in Form der festen Verbindung aus Palladiumsulfat und Ethylendiamin ein. Das Salz enthält 31 bis 41 % Palladium (Molverhältnisse [SO4]:[Pd] zwischen 0,9 und 1,15 und [Ethylendiamin]:[Pd] zwischen 0,8 und 1 ,2). Es ist nicht wasserlöslich, löst sich aber im Elektrolyten mit Überschuss an Ethylendiamin (Plating & Surface Finishing, (2007) 4, S. 26-35, St. Burling „Precious Metal Plating and the Environment"). Das Salz ermöglicht es zwar, Palladium mit einer geringeren Menge an Ethylendiamin einzubringen als üblich, dennoch führt dies durch die Anreicherung von Sulfat zur Aufsalzung des Elektrolyten und somit zu einer Verkürzung der Badstandzeit. Als Glanzbildner werden hier die Substanzen 3-(3-Pyridyl)acrylsäure bzw. 3-(3-Quinolyl)acrylsäure oder deren Salze zugesetzt. Es wird erwähnt, dass die Glanzbildner auf Basis von Sulfonaten nicht in der Lage sind, insbesondere bei Stromdichten von 15 bis 150 A/dm2, in galvanischen Elektrolyten den gewünschten Glanz zu gewährleisten.
Aufgabe der vorliegenden Erfindung war vor dem Hintergrund des zitierten Standes der Technik die Angabe eines weiteren Elektrolyten und ein mit diesem Elektrolyten arbeitenden Verfahren, welche die genannten Nachteile überwinden helfen. Insbesondere sollte die angegebene Elektrolytzusammensetzung bzw. das entsprechende Verfahren helfen, auch bei hohen Stromdichten und schnell verlaufenden Elektrolyseprozessen glänzende Oberflächen zu erzeugen, was vom ökonomischen und ökologischen Standpunkt aus betrachtet besonders vorteilhaft wäre.
Diese und weitere hier nicht genannte, sich aus dem Stand der Technik jedoch in naheliegender weise ergebende Aufgaben werden durch die Anwendung eines Elektrolyten gemäß den Merkmalen des gegenständlichen Anspruchs 1 gelöst. Bevorzugte Ausgestaltungen des erfindungsgemäßen Elektrolyten sind in den von Anspruch 1 abhängigen Unteransprüchen 2 - 11 dargelegt. Anspruch 12 und die von Anspruch 12 abhängigen Unteransprüche 13 - 16 beziehen sich auf ein erfindungsgemäßes Verfahren mit seinen bevorzugten Ausgestaltungsmöglichkeiten. Anspruch 17 richtet sich auf einen erfindungsgemäß vorteilhaft einsetzbaren Bestandteil des erfindungsgemäßen Elektrolyten. Dadurch, dass man einen wässrigen Elektrolyt zur galvanischen Abscheidung von Palladium oder einer Palladium-Legierung auf einem metallischen bzw. leitfähigen Substrat einsetzt, welcher die abzuscheidenden, mit organischen Oligoaminen komplexierten Metallionen in Form ihrer Salze mit Oxidhydroxid, Hydroxid, Hydrogencarbonat und/oder Carbonat als Gegenionen und einem Glanzbildner auf Basis eines inneren Salzes aus einer quaternären Ammonium- und einer Sulfonsäuregruppe aufweist, gelangt man in überraschend einfacher Art und Weise und mit Erfolg zur Lösung der gestellten Aufgabe. Mit dem erfindungsgemäßen Elektrolyten oder durch Anwendung des erfindungsgemäßen Verfahrens ist es jetzt möglich, sowohl bei niedrigen als auch bei hohen Stromdichten die gewünschten glänzenden Oberflächen mit qualitativ hervorragendem Ergebnis erzeugen zu können. Die erfindungsgemäße Elektrolytzusammensetzung wird durch den Stand der Technik dabei in keiner Weise nahegelegt.
Der erfindungsgemäße Elektrolyt ermöglicht es, das Palladium alleine oder in Form einer Legierung mit anderen Metallen vergesellschaftet abzuscheiden. Als weitere Metalle können die dem Fachmann für diesen Zweck in Frage kommenden eingesetzt werden. Bei diesen kann es sich um z.B. Nickel, Kobalt, Eisen, Indium, Gold, Silber oder Zinn oder Gemische davon handeln. Vorzugsweise werden die abzuscheidenden Metallionen ausgewählt aus der Gruppe bestehend aus Nickel, Kobalt, Eisen und Gemische davon. Der Elektrolyt enthält diese Metalle in Form ihrer löslichen Salze. Als Salze kommen bevorzugt solche ausgewählt aus der Gruppe der Phosphate, Carbonate, Hydrogencarbonate, Hydroxide, Oxide, Sulfate, Sulfamate, Alkansulfonate, Pyrophosphate, Phosphonate, Nitrate, Carbonsäuresalze und Gemische davon in Frage.
Der Fachmann wählt die Konzentrationen der einzusetzenden Metalle im Elektrolyten anhand seines allgemeinen Fachverständnisses. Es hat sich gezeigt, dass vorteilhafte Ergebnisse erzielt werden können, wenn Palladium in Konzentrationen von 1-100 g/L, vorzugsweise 2 - 70 g/L, und äußerst bevorzugt 4 - 50 g/L und ganz besonders bevorzugt 5 - 25 g/L bezogen auf den Elektrolyten vorhanden ist. Die weiteren abzuscheidenden Metallionen können in Konzentrationen von ≤50 g/L bezogen auf den Elektrolyten vorliegen. Vorzugsweise beträgt die Konzentration dieser Ionen im Elektrolyten <40 g/L, weiter bevorzugt ≤30 g/L bezogen auf den Elektrolyten. Wie eingangs schon angedeutet erfolgt eine gleichmäßige Abscheidung der Metallionen bei den erfindungsgemäßen Bedingungen unter anderem dann vorteilhaft, wenn diese komplexiert vorliegen. Als geeignete Liganden für diese Komplexe haben sich organische Oligoamine erwiesen. Vorteilhaft ist dabei der Einsatz von mehrzähnigen, insbesondere Liganden auf Basis von Di-, Tri- oder Tetraaminen. Besonders bevorzugt sind dabei solche, die 2 bis 11 C-Atome aufweisen. Ganz besonders bevorzugt ist der Einsatz von Liganden ausgewählt aus der Gruppe bestehend aus Ethylendiamin, Trimethylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, 1 ,2-Propylendiamin, Trimethylentetramin, Hexamethylentetramin. Äußerst bevorzugt ist Ethylendiamin (EDA) in diesem Zusammenhang.
Der Fachmann ist frei in der Menge der eingesetzten Oligoamine. Er wird sich bei der Abschätzung der Menge an der Tatsache orientieren, dass eine ausreichende Menge vorhanden sein muss, um die möglichst gleichmäßige Abscheidung des Palladiums bzw. der Palladium-Legierung zu erhalten. Auf der anderen Seite begrenzen zumindest ökonomische Erwägungen den Einsatz großer Mengen an Oligoaminen. Vorteilhaft ist eine Menge von 0,1 - 5 mol/L an Oligoaminen im Elektrolyten. Weiter bevorzugt liegt die Konzentration im Bereich zwischen 0,3 - 3 mol/L. Ganz besonders bevorzugt liegt die Konzentration an Oligoaminen bei 0,5 - 2 mol/L Elektrolyt.
Auch der pH-Wert des erfindungsgemäßen Elektrolyten kann nach dem Fachmann für den jeweiligen Anwendungszweck im sauren bis neutralen Bereich eingestellt werden. Vorteilhaft erscheint eine Einstellung auf einen Bereich zwischen pH 3 und pH 7. Weiter bevorzugt ist ein Bereich von pH 3,5 bis pH 6,5, besonders bevorzugt von pH 4 bis pH 6 und ganz besonders bevorzugt um ca. pH 5 bis pH 5,5.
Der erfindungsgemäße Elektrolyt weist Glanzbildner auf Basis eines inneren Salzes aus einer quatemären Ammonium- und einer Säuregruppe auf. Als quaternäre Ammoniumverbindung kommt vorzugsweise eine solche in Frage, bei der das positiv geladene Stickstoffatom Teil eines aromatischen Ringsystems ist. Als derartige Molekülbestandteile kommen dem Fachmann besonders solche in Betracht, die ein oder mehrkernige aromatische Systeme betreffen, wie z.B. Pyridinium-, Pyrimidinium-, Pyrazinium-, Pyrrolinium-, Imidazolinium-, Thiazolinium-, Indolinium-, Carbazolinium- Derivate oder derartige substituierte Systeme in Betracht. Ganz besonders bevorzugt werden Pyridinium- bzw. Alkyl- oder Alkenyl-substituierte Pyridinium-Derivate eingesetzt. Äußerst bevorzugt ist die Auswahl eines Glanzbildners, der als Molekülbestandteil eine quaternäre Ammoniumverbindung auf Basis eines Pyridinium- Derivats aufweist.
Als weiteren Molekülbestandteil enthält der Glanzbildner eine Säuregruppe, so dass es sich vorliegend bei dem Glanzbildner um ein inneres Salz bzw. ein Betain handelt. Unter Säuregruppe wird vorliegend eine Gruppe verstanden, die unter den gegebenen Bedingungen im Elektrolyten überwiegend in deprotonierter Form vorliegt. Die Säuregruppe kann sich von solchen ausgewählt aus der Gruppe bestehend aus Phosphorsäure, Phosphonsäure, Schwefelsäure, Sulfonsäure, Carbonsäure ableiten. Besonders bevorzugt ist die Sulfonsäure als Bestandteil des Glanzbildners.
Die Säuregruppe und der quaternäre Ammoniumteil des Glanzbildners können durch (CrCsJ-Alkylen-, (d-CβJ-Alkenylen-, (C6-C18)-Arylen, welche ggf. substituiert vorliegen können, verbunden sein. Als äußerst bevorzugte Verbindungen in diesem Zusammenhang haben sich solche ausgewählt aus der Gruppe bestehend aus 1-(3- Sulfopropyl)-2-vinylpyridiniumbetain), 1-(3-Sulfopropylpyridiniumbetain und 1-(2- Hydroxy-3-sulfopropylpyridiniumbetain erwiesen.
Der Glanzbildner kann in für den Fachmann ersichtlichen Mengen im Elektrolyten eingesetzt werden. Eine obere Grenze bildet die Menge an Glanzbildner, bei der der Kostenaufwand durch dessen Einsatz nicht mehr durch den erzielten Effekt gerechtfertigt wird. Vorteilhaft ist der Einsatz des Glanzbildners damit in Mengen von 1 bis 10000 mg/L Elektrolyt. Besonders vorteilhaft wird der Glanzbildner in einer Konzentration von 5 - 5000 mg/L Elektrolyt, äußerst bevorzugt in einer Menge von 10 - 1000 mg/L Elektrolyt eingesetzt.
Der erfindungsgemäße Elektrolyt kann weitere Bestandteile enthalten, welche im Hinblick auf die Badstabilität, das Abscheidungsverhalten der Metalle, die Qualität des abgeschiedenen Materials und die Elektrolysebedingungen positiven Einfluss haben. Als solche kommen für den Fachmann insbesondere Mittel zur Verringerung der inneren Spannungen des Überzuges, Netzmittel, Leitsalze, weitere Glanzzusätze und/oder Puffersubstanzen etc. in Betracht. Als Zusätze zur Verringerung der Oberflächenspannung des Elektrolyten können Netzmittel ausgewählt aus den folgenden Gruppen bestehend aus anionischen Netzmitteln wie z.B. Natriumlaurylsulfat, Dodecylbenzolsulfonat-Natriumsalz, Natriumdioctylsulfosuccinat, nichtionischen Netzmitteln wie z.B. Polyethylenglykol- Fettsäureester und/oder kationischen Netzmittel wie z.B. Cetyltrimethylammonium- bromid eingesetzt werden.
Zur Verbesserung der Leitfähigkeit und Streufähigkeit des Elektrolyten können vorteilhaft Leitsalze ausgewählt aus der Gruppe bestehend aus Kalium- bzw. Natriumsulfat, -phosphat, -nitrat, -alkansulfonat, -sulfamat und deren Mischungen verwendet werden.
Als Puffersubstanzen können vorteilhaft solche ausgewählt aus der Gruppe bestehend aus Borsäure oder Phosphaten oder eine Carbonsäure und/oder deren Salze wie z.B. Essigsäure, Citronensäure, Weinsäure, Oxalsäure, Bernsteinsäure, Äpfelsäure, Milchsäure, Phthalsäure, verwendet werden.
Als weitere Glanzzusätze können vorteilhaft solche ausgewählt aus der Gruppe bestehend aus N,N-Diethyl-2-propin-1-amin, 1,1-Dimethyl-2-propinyl-1-amin, 2-Butin- 1 ,4-diol, 2-Butin-1 ,4-diolethoxylat, 2-Butin-1,4-diolpropoxylat, 3-Hexin-2,5-diol und sulfopropyliertes 2-Butin-1 ,4-diol oder eines ihrer Salze verwendet werden. Weitere Grundglanzbildner können Allylsulfonsäure und/oder Vinylsulfonsäure und/oder
Propargylsulfonsäure bzw. deren Alkalisalze in Mengen von 0,01 bis 10 g/L Elektrolyt sein.
Als Mittel zur Verringerung der inneren Spannung des Überzugs können vorteilhaft solche ausgewählt aus der Gruppe bestehend aus Iminodisuccinsäure und/oder Sulfaminsäure und/oder Natriumsaccharinat verwendet werden. Vorteilhaft ist jedenfalls, wenn dem Elektrolyten keine weiteren Abscheidungsmetallsalze mit anorganischen Anionen außer Sulfat- bzw. Nitrat-, Hydrogencarbonat- bzw Carbonationen oder Oxid, Hydroxid oder Gemische derselben zugesetzt werden. Dies hilft, eine übermäßige Anreicherung von verschiedenen Anionen im System zu verhindern, da die Abscheidungsmetallsalze im Laufe des Elektrolyseprozesses durch Zugabe ergänzt werden müssen. Eine solche vorgehensweise wiederum wirkt sich positiv auf die Standzeit des Elektrolyten aus. Besonders vorteilhaft ist die Ausführungsform, bei der nur solche Abscheidungsmetallsalze eingesetzt werden, deren Anionen aus Hydrogencarbonat- bzw Carbonationen oder Oxid, Hydroxid oder Gemische derselben bestehen.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur galvanischen Abscheidung von Palladium oder einer Palladium-Legierung auf einem metallischen bzw. leitfähigen Substrat, wobei man einen erfindungsgemäßen Elektrolyten verwendet. Das Palladium oder die Palladium-Legierung kann auf dem Fachmann für diesen Zweck geläufige Substrate elektrolytisch abgeschieden werden. Vorteilhafterweise sind die metallischen bzw. elektrisch leitfähigen Substrate ausgewählt aus der Gruppe bestehend aus Nickel, Nickellegierungen, Gold, Silber, Kupfer und Kupferlegierungen, Eisen, Eisenlegierungen. Besonders bevorzugt wird Nickel oder Kupfer bzw.
Kupferlegierung mit der Palladium- oder palladiumhaltigen Schicht erfindungsgemäß überzogen. Aber auch leitfähige Kunststoffe können mit diesem Verfahren erfindungsgemäß überzogen werden.
Die Temperatur bei der elektrolytischen Abscheidung kann vom Fachmann beliebig gewählt werden. Vorteilhaft wird die Temperatur eingestellt bei der eine entsprechend gewünschte Abscheidung erfolgen kann. Dies ist bei Temperaturen von 2O0C bis 800C der Fall. Bevorzugt wird eine Temperatur von 300C bis 700C und äußerst bevorzugt von 40°C bis 60°C eingestellt.
Ebenso kann die einzustellende Stromdichte während der erfindungsgemäßen Elektrolyse vom Fachmann entsprechend der zugrundeliegenden Elektrolyseanordnung gewählt werden. Die Stromdichten betragen vorzugsweise zwischen 0,1 und 150 A/dm2. Besonders bevorzugt sind 0,1-10,0 A/dm2 für Trommel- und Gestellanwendungen und 5,0 - 100 A/dm2 für Highspeedanwendungen. Äußerst bevorzugt werden für Highspeed-Anwendungen 5,0 - 70 A/dm2 eingestellt, in Trommel- und Gestellanwendungen dagegen äußerst bevorzugt 0,2 - 5 A/dm2.
Das erfindungsgemäße Verfahren wird in vorteilhafter Weise so durchgeführt, dass die Abscheidung unter Verwendung nicht löslicher Anoden erfolgt. Besonders bevorzugt ist der Einsatz von unlöslichen Anoden aus platiniertem Titan oder Mischoxidanoden. Bei diesen handelt es sich ganz besonders bevorzugt um nicht lösliche Anoden aus platiniertem Titan oder aus mit Iridium/Ruthenium/Tantalmischoxid überzogenem Titan oder Niob oder Tantal. Möglich sind auch Anoden aus Graphit oder aus beständigem Edelstahl.
Gegenstand der vorliegenden Erfindung ist ebenfalls ein spezielles, vorteilhaft für das erfindungsgemäße Verfahren einsetzbares und angepasstes Palladiumsalz. Dabei handelt es sich um eine Palladiumkomplexverbindungen bestehend aus einem zweiwertigen Palladiumkation, einem oder mehreren zwei-, drei- oder vierzähnigen organischen Aminliganden und Carbonat- oder zwei Hydrogencarbonat- oder Hydrox- idanionen oder eine Mischung davon. Vorteilhaft ist dabei der Einsatz von mehrzähnigen Liganden auf Basis von Di-, Tri oder Tetraaminen. Besonders bevorzugt sind dabei solche, die 2 bis 11 C-Atome aufweisen. Ganz besonders bevorzugt ist der Einsatz von Liganden ausgewählt aus der Gruppe bestehend aus Ethylendiamin, Trimethylendiamin, Tetramethylendiamin, Pentamethylendiamin, Hexamethylendiamin, 1 ,2-Propylendiamin, Trimethylentetramin, Hexamethylentetramin. Äußerst bevorzugt ist Ethylendiamin (EDA) in diesem Zusammenhang.
Die Herstellung der neuen Palladium-Ethylendiamin-Verbindung kann durch Umsetzung von Tetraammin-palladium(ll)hydrogencarbonat [Alfa Aesar Kat.-Nr. 45082] mit Ethylendiamin im Molverhältnis [Pd]:[Ethylendiamin] = 1 :1 ,0 bis 3,0 , vorzugsweise 1 :1 ,5 bis 2,5, besonders bevorzugt 1 :2,0 bis 2,1 gemäß folgender
Gleichung erfolgen. Die Umsetzungstemperatur liegt vorzugsweise zwischen 20 und 950C, besonders bevorzugt zwischen 40 und 900C, ganz besonders bevorzugt zwischen 60 und 800C.
[(NHa)4Pd](HCOs)2 + 2 EDA -> [(EDA)2Pd](HCO3)2 + 4 NH3
Es findet dabei ein Ligandenaustausch von Ammoniak gegen Ethylendiamin statt. Der freigesetzte Ammoniak entweicht teilweise direkt aus der Lösung bzw. wird anschließend durch Einblasung von Luft oder Inertgas wie z.B. Stickstoff ausgetrieben. Zur Beschleunigung des Vorgangs kann zusätzlich Vakuum angelegt werden. Die anderen erfindungsgemäßen Komplexe können ebenso hergestellt werden.
In einem Elektrolyt der hier beschriebenen Erfindung mit beispielsweise 20 g/l Palladium als Bis(ethylendiamino)-palladium(ll)hydrogencarbonat, 16 g/l Nickel als Nickel(ll)sulfat und 50 g/l Ethylendiamin ermöglichen die Glanzmittel 1-(3- Sulfopropylpyridiniumbetain bzw. 1-(2-Hydroxy-3-sulfopropylpyridiniumbetain in Mengen von 50 bis 500 mg/l vor allem im niederen Stromdichtebereich die
Abscheidung hochglänzender Überzüge. Außerdem wird durch den Einsatz von 1-(3- Sulfopropylpyridiniumbetain bzw. 1-(2-Hydroxy-3-sulfopropylpyridiniumbetain in höheren Konzentrationen bis zu 2 g/L Elektrolyt der anwendbare Stromdichtebereich erweitert. So ist es möglich im beschriebenen Elektrolyten für die Hochgeschwindigkeitsabscheidung Stromdichten von bis zu 100 A/dm2 anzuwenden.
Ein weiterer Hinweis für die vorteilhafte Wirkung beispielsweise des Bis(ethylendiamino)palladium(ll)hydrogencarbonat in dem beschriebenen Elektrolyten zeigt sich beim Zusatz von 1-(3-Sulfopropyl)-2-vinylpyridiniumbetain in geringsten Mengen. Bereits 10 ppm ermöglichen die Abscheidung spiegelglänzender, spannungsarmer und damit hochduktiler Überzüge - allerdings auch ohne den zusätzlichen Einsatz einer Sulfonsäure, wie dies in US5415685 beschrieben ist.
Des Weiteren ist durch den Einsatz von ca. 100 -200 ppm 1-(3-Sulfopropyl)-2- vinylpyridiniumbetain die Abscheidung von sehr dicken Palladium oder Palladiumlegierungsüberzügen möglich. Die bis zu 30 μm dicken Schichten sind hochglänzend, rissfrei und sehr duktil.
Mit dem neuen Palladium-Nickel-Elektrolyten auf Ethylendiamin-Basis werden ebenfalls Ammoniak und Chlorid vermieden, wodurch das Gefährdungspotential und die Geruchsbelästigung für den Mensch und die Anlagenkorrosion deutlich herabgesetzt werden. Die Nachteile der bisherigen, ammonium- und chloridfreien Verfahren auf Ethylendiaminbasis werden vermieden. Insbesondere ermöglicht der Einsatz von Carbonat oder Hydrogencarbonat als Gegenionen zu Palladium und Nickel eine Verlängerung der Standzeit. Die eingesetzten Anionen sind in dem angewandten pH-Bereich zwischen beispielsweise 3 und 5,5 nicht stabil und zerfallen bei Zugabe des Metallsalzes sofort zu Kohlendioxid und Hydroxid. Das leicht flüchtige CO2 entweicht aus dem Elektrolyten und trägt so nicht zur Erhöhung der Baddichte bei. Während der Elektrolyse fällt der pH-Wert im Elektrolyten leicht ab, wodurch die alkalische Wirkung des beim Zerfall der Kohlensäure entstehenden Hydroxidions kompensiert wird. Der pH-Wert während des Betriebs bleibt so in überraschender Weise durch Zugabe weiterer erfindungsgemäßer Palladiumsalze automatisch konstant. Im Gegensatz hierzu wird insbesondere im Falle des Sulfats bei der Ergänzung der Metallgehalte im laufenden Badbetrieb die Baddichte nach und nach erhöht, bis schließlich die Aufsalzung einen Maximalwert erreicht und der Elektrolyt nicht mehr stabil ist. Dies war vor dem Hintergrund des zitierten Standes der Technik nicht nahegelegt. Beispiele:
Beispielelektrolyte
In einem 5 L Becherglas werden in 4 L entionisiertem Wasser die angegebenen Bestandteile des Elektrolyten gelöst. Anschließend wird auf einem Messingblech unter den angegebenen Elektrolysebedingungen das Palladium oder die Palladiumlegierung abgeschieden.
1. Beispiel - Elektrolyt
Zusammensetzung:
Ein Elektrolyt zur Abscheidung von PdNi-Schichten mit 80 Gew.-% Palladium kann z.B. folgende Zusammensetzung haben:
Elektrolyt für die Hochgeschwindigkeitsabscheidung: 20 g/l Pd als Bis(ethylendiamino)palladium(ll)hydrogencarbonat
16 g/l Ni als Nickel(ll)sulfat
50 g/l EDA Ethylendiamin 500 mg/l 1-(3-Sulfopropyl)pyridiniumbetain
Abscheideparameter:
Temperatur: 60 0C pH-Wert: 5,0
Stromdichte: 5 bis 70 A/dm2 Abscheiderate: 26 mg/Amin
Substrat: Kupfer oder Kupferlegierung, evtl. untemickelt
Anoden: Pt/Ti
Die erhaltenen Überzüge (2 μm) sind im genannten Stromdichtebereich homogen glänzend, hell, duktil, rissfrei und weisen einen relativ konstanten Pd-Anteil von 80 bis 83 % auf.
2. Beispiel - Elektrolyt
Elektrolyt für die Gestellanwendung:
10 g/l Pd als Bis(ethylendiamino)palladium(ll)hydrogencarbonat 8 g/l Ni als Nickel(ll)sulfat
30 g/l Ethylendiamin
100 mg/l 1-(3-Sulfopropyl)-2-vinylpyridiniumbetain
Abscheideparameter: Temperatur: 60 0C pH-Wert: 5,0
Stromdichte: 0,5 bis 5 A/dm2
Abscheiderate: 26 mg/Amin
Substrat: Kupfer oder Kupferlegierung, evtl. unternickelt Anoden: Pt/Ti
Die erhaltenen Überzüge (2 μm) sind im genannten Stromdichtebereich homogen hochglänzend, brillant-hell, sehr duktil, rissfrei und weisen einen relativ konstanten Pd- Anteil von 80 bis 83 % auf.
3. Beispiel - Umsetzung Tetraamminpalladium(ll)-Hydrogencarbonat mit Ethylendiamin durch Umkomplexierung mit Ethylendiamin (EDA)
Ausstattung:
Dreihalskoben, Rührer, Heizer, Thermometer, Rückflusskühler, pH-Elektrode,
Edukte:
* 277 g Tetraamminpalladium(ll)Hydrogencarbonat TAPHC (36% Pd)
Molverhältnis Pd:EDA = 1 :2,07 Qualität der verwendeten Chemikalien:
Tetraamminpalladium-(ll)Hydrogencarbonat (Produkt-Nr. 45082) von Alfa Aesar Ethylendiamin 99% zur Synthese (z.B. Merck Nr. 800947)
Ansatz für 1 Liter Endvolumen enthaltend 100 g Pd:
1. Vorlegen von 500 ml entionisiertes Wasser.
2. Ethylendiamin in Wasser zugeben (pH 11 ,5 bis 12).
3. Tetraamminpalladium(ll)hydrogencarbonat portionsweise zugeben, Temperatur steigt auf über 500C. Es bildet sich eine goldgelbe Lösung. Nach Zugabe der vollen Menge des Palladiumsalzes liegt der pH bei ca. 10 ,5.
4. Auf 8O0C erhitzen und 1 h reagieren lassen. Beim Aufheizen schlägt die Farbe der Lösung von goldgelb nach grüngelb um. Es tritt eine leichte Trübung durch schwarze Partikel auf.
5. Die Mischung auf 5O0C abkühlen lassen.
6. Filtration über Glasfaserfilter 6: wenig schwarzer Rückstand im Filter, hellgelbe Lösung, die stark nach Ammoniak riecht.
7. Einleiten von Druckluft zur Abreicherung von Ammoniak.
8. Mit entionisiertem Wasser auf Endvolumen einstellen.

Claims

Patentansprüche:
1. Wässriger Elektrolyt zur galvanischen Abscheidung von Palladium oder einer Palladium-Legierung auf einem metallischen bzw. leitfähigen Substrat aufweisend die abzuscheidenden, mit organischen Oligoaminen komplexierten Metall-ionen in Form ihrer Salze mit Oxidhydroxid, Hydroxid, Hydrogencarbonat und/oder Carbonat als Gegenionen.
2. Elektrolyt nach Anspruch 1 , dadurch gekennzeichnet, dass dieser Konzentrationen von 1-100 g/L Palladium enthält.
3. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieser weitere abzuscheidende Metallionen ausgewählt wird aus der Gruppe bestehend aus Nickel, Kobalt, Eisen, Indium, Gold, Silber oder Zinn und Gemische davon in Form ihrer löslichen Salze enthält.
4. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass er weitere abzuscheidende Metallionen in Konzentrationen von ≤50 g/L bezogen auf den Elektrolyten enthält.
5. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das organische Oligoamin ein Di-, Tri oder Tetraminderivat mit 2 bis 11 C- Atomen ist.
6. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Menge an organischen Oligoaminen im Elektrolyten zwischen 0,1 -5 mol/L
Elektrolyt variiert.
7. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der pH-Wert des Elektrolyten zwischen 3 und 7 liegt.
8. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieser einen Glanzbildner auf Basis eines inneren Salzes aus einer quaternären Ammonium- und einer Säuregruppe aufweist.
9. Elektrolyt nach Anspruch 8, dadurch gekennzeichnet, dass als Glanzbildner eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus 1-(3-Sulfopropyl)-2-vinylpyridiniumbetain 1-(3- Sulfopropyl)pyridiniumbetain, 1-(2-Hydroxy-3-sulfopropyl)pyridiniumbetain.
10. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Glanzbildner in Mengen von 1 bis 10000 mg/L Elektrolyt vorhanden sind.
11. Elektrolyt nach einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Elektrolyten keine weiteren Abscheidungsmetallsalze mit anorganischen
Anionen außer Sulfat- bzw. Nitrat-, Hydrogencarbonat- bzw Carbonationen oder Oxid, Hydroxid oder Gemische derselben zugesetzt werden.
12. Verfahren zur galvanischen Abscheidung von Palladium oder einer Palladium- Legierung auf einem metallischen bzw. leitfähigen Substrat, dadurch gekennzeichnet, dass man einen Elektrolyten gemäß einem oder mehreren der Ansprüche 1 bis 11 verwendet.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass das metallische Substrat ausgewählt ist aus der Gruppe bestehend aus Nickel,
Nickellegierungen, Gold, Silber, Kupfer und Kupferlegierungen, Eisen, Eisenlegierungen.
14. Verfahren nach einem oder mehreren der Ansprüche 12 und/oder 13, dadurch gekennzeichnet, dass man bei einer Temperatur von 200C bis 8O0C arbeitet.
15. Verfahren nach einem oder mehreren der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass man zur Abscheidung Stromdichten zwischen 0,1 und 150 A/dm2 einstellt.
16. Verfahren nach einem oder mehreren der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass man die Abscheidung unter Verwendung nicht löslicher Anoden durchführt.
17. Palladiumkomplexverbindungen bestehend aus einem zweiwertigen Palladiumkation, einem oder mehreren zwei-, drei- oder vierzähnigen Aminliganden und einem Carbonat- oder zwei Hydrogencarbonatanionen oder eine Mischung davon.
EP08758401A 2008-05-07 2008-05-07 Pd- und pd-ni-elektrolytbäder Active EP2283170B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL08758401T PL2283170T3 (pl) 2008-05-07 2008-05-07 Kąpiele elektrolitowe PD i PD-NI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2008/003667 WO2009135505A1 (de) 2008-05-07 2008-05-07 Pd- und pd-ni-elektrolytbäder

Publications (2)

Publication Number Publication Date
EP2283170A1 true EP2283170A1 (de) 2011-02-16
EP2283170B1 EP2283170B1 (de) 2012-04-25

Family

ID=40193655

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08758401A Active EP2283170B1 (de) 2008-05-07 2008-05-07 Pd- und pd-ni-elektrolytbäder

Country Status (10)

Country Link
US (1) US8900436B2 (de)
EP (1) EP2283170B1 (de)
JP (1) JP5586587B2 (de)
KR (1) KR101502804B1 (de)
CN (1) CN102037162B (de)
AT (1) ATE555235T1 (de)
ES (1) ES2387055T3 (de)
PL (1) PL2283170T3 (de)
TW (1) TWI475134B (de)
WO (1) WO2009135505A1 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029558A1 (de) * 2009-09-17 2011-03-31 Schott Solar Ag Elektrolytzusammensetzung
RU2469697C1 (ru) * 2011-05-23 2012-12-20 Открытое акционерное общество "Научно-производственный комплекс "Суперметалл" имени Е.И. Рытвина" Способ нанесения гальванического покрытия на съемные зубные протезы
WO2014092492A1 (ko) * 2012-12-12 2014-06-19 엘에스전선 주식회사 무선전력용 안테나 및 이를 구비한 이중모드 안테나
JP6620103B2 (ja) * 2014-09-04 2019-12-11 日本高純度化学株式会社 パラジウムめっき液及びそれを用いて得られたパラジウム皮膜
JP6189878B2 (ja) * 2015-01-14 2017-08-30 松田産業株式会社 パラジウム又はパラジウム合金めっき用シアン耐性付与剤、めっき液、めっき液へのシアン耐性付与方法
AT516876B1 (de) * 2015-03-09 2016-11-15 Ing W Garhöfer Ges M B H Abscheidung von dekorativen Palladium-Eisen-Legierungsbeschichtungen auf metallischen Substanzen
US20180053714A1 (en) * 2016-08-18 2018-02-22 Rohm And Haas Electronic Materials Llc Multi-layer electrical contact element
JP6663335B2 (ja) * 2016-10-07 2020-03-11 松田産業株式会社 パラジウム−ニッケル合金皮膜及びその製造方法
KR101867733B1 (ko) * 2016-12-22 2018-06-14 주식회사 포스코 철-니켈 합금 전해액, 표면조도가 우수한 철-니켈 합금 포일 및 이의 제조방법
CN107385481A (zh) * 2017-07-26 2017-11-24 苏州鑫旷新材料科技有限公司 一种无氰电镀金液
EP3456870A1 (de) * 2017-09-13 2019-03-20 ATOTECH Deutschland GmbH Bad und verfahren zum füllen eines senkrechten verbindungszugangs für ein werkstück mit nickel oder nickellegierung
CN108864200B (zh) * 2018-08-06 2020-12-11 金川集团股份有限公司 电镀用硫酸乙二胺钯的一步制备方法
DE102018133244A1 (de) 2018-12-20 2020-06-25 Umicore Galvanotechnik Gmbh Nickel-Amin-Komplex mit reduzierter Tendenz zur Bildung schädlicher Abbauprodukte
CN110144729B (zh) * 2019-06-14 2020-07-07 中国科学院长春应用化学研究所 一种导电金包覆聚酰亚胺纤维及其制备方法
JP7282136B2 (ja) * 2021-02-12 2023-05-26 松田産業株式会社 パラジウムめっき液及びパラジウムめっき補充液

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3972787A (en) * 1974-06-14 1976-08-03 Lea-Ronal, Inc. Palladium electrolyte baths utilizing quaternized pyridine compounds as brighteners
US4328286A (en) * 1979-04-26 1982-05-04 The International Nickel Co., Inc. Electrodeposited palladium, method of preparation and electrical contact made thereby
US4401527A (en) * 1979-08-20 1983-08-30 Occidental Chemical Corporation Process for the electrodeposition of palladium
US4278514A (en) * 1980-02-12 1981-07-14 Technic, Inc. Bright palladium electrodeposition solution
WO1982002908A1 (en) * 1981-02-27 1982-09-02 Western Electric Co Palladium and palladium alloys electroplating procedure
US4686017A (en) * 1981-11-05 1987-08-11 Union Oil Co. Of California Electrolytic bath and methods of use
US4406755A (en) * 1982-03-08 1983-09-27 Technic Inc. Bright palladium electrodeposition
WO1986000652A1 (en) * 1984-07-02 1986-01-30 American Telephone & Telegraph Company Palladium electroplating process
JPS6199694A (ja) * 1984-10-19 1986-05-17 Nippon Kokan Kk <Nkk> 金属ストリツプの電気めつき方法
DD288291A7 (de) * 1988-08-24 1991-03-28 Fi F. Ne-Metalle,De Verfahren zur herstellung von palladiumtetrammindihydrogencarbonat
GB2242200B (en) * 1990-02-20 1993-11-17 Omi International Plating compositions and processes
US5178745A (en) * 1991-05-03 1993-01-12 At&T Bell Laboratories Acidic palladium strike bath
US5415685A (en) 1993-08-16 1995-05-16 Enthone-Omi Inc. Electroplating bath and process for white palladium
CN1214990A (zh) * 1997-10-22 1999-04-28 林锦暖 聚烯烃塑料一体成型的鞋中底制法
RU2161535C2 (ru) * 1998-07-15 2001-01-10 Парфенов Анатолий Николаевич Способ приготовления палладиевого катализатора
FR2807422B1 (fr) * 2000-04-06 2002-07-05 Engelhard Clal Sas Sel complexe de palladium et son utilisation pour ajuster la concentration en palladium d'un bain electrolytique destine au depot de palladium ou d'un de ses alliages
FR2807450B1 (fr) * 2000-04-06 2002-07-05 Engelhard Clal Sas Bain electrolytique destine au depot electrochimique du palladium ou de ses alliages
CN1289716C (zh) * 2001-11-30 2006-12-13 松田产业株式会社 钯电镀液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009135505A1 *

Also Published As

Publication number Publication date
EP2283170B1 (de) 2012-04-25
CN102037162B (zh) 2013-03-27
KR101502804B1 (ko) 2015-03-16
CN102037162A (zh) 2011-04-27
WO2009135505A1 (de) 2009-11-12
US8900436B2 (en) 2014-12-02
JP5586587B2 (ja) 2014-09-10
US20110168566A1 (en) 2011-07-14
JP2011520036A (ja) 2011-07-14
PL2283170T3 (pl) 2012-09-28
ATE555235T1 (de) 2012-05-15
ES2387055T3 (es) 2012-09-12
KR20110003519A (ko) 2011-01-12
TWI475134B (zh) 2015-03-01
TW201006967A (en) 2010-02-16

Similar Documents

Publication Publication Date Title
EP2283170B1 (de) Pd- und pd-ni-elektrolytbäder
EP2116634B1 (de) Modifizierter Kupfer-Zinn-Elektrolyt und Verfahren zur Abscheidung von Bronzeschichten
EP2032742A2 (de) Wässriges alkalisches, cyanidfreies bad zur galvanischen abscheidung von zinklegierungsüberzügen
EP0862665A1 (de) Verfahren zur elektrolytischen abscheidung von metallschichten
AT514818B1 (de) Abscheidung von Cu, Sn, Zn-Beschichtungen auf metallischen Substraten
DE102008050135A1 (de) Verfahren zur Abscheidung von Platin-Rhodiumschichten mit verbesserter Helligkeit
EP2649223A2 (de) Elektrolyt für die galvanische abscheidung von gold-legierungen und verfahren zu dessen herstellung
EP2130948A1 (de) Pyrophosphathaltiges Bad zur cyanidfreien Abscheidung von Kupfer-Zinn-Legierungen
DE60102364T2 (de) Elektrolytische lösung zur elektrochemischen abscheidung von palladium oder dessen legierungen
DE3012999C2 (de) Bad und Verfahren zur galvanischen Abscheidung von hochglänzenden und duktiler Goldlegierungsüberzügen
DE60111727T2 (de) Komplexes palladiumsalz und seine verwendung zur anpassung der palladiumkonzentration in elektrolytischen bädern bestimmt für die abscheidung von palladium oder einer seiner legierungen
AT516876B1 (de) Abscheidung von dekorativen Palladium-Eisen-Legierungsbeschichtungen auf metallischen Substanzen
DE2114119A1 (de) Verfahren zur elektrolytischen Abscheidung von Ruthenium und Elektrolysebad zur Durchfuehrung dieses Verfahrens
WO2000079031A1 (de) Saures bad zur galvanischen abscheidung von glänzenden gold- und goldlegierungsschichten und glanzzusatz hierfür
DE3147823A1 (de) &#34;bad zur galvanischen abscheidung von palladium oder palladiumlegierungen und ein verfahren zur abscheidung von palladium oder palladiumlegierungen mit diesem bad&#34;
WO2015000010A1 (de) Elektrolytbad sowie objekte bzw. artikel, die mithilfe des bades beschichtet werden
DE102018133244A1 (de) Nickel-Amin-Komplex mit reduzierter Tendenz zur Bildung schädlicher Abbauprodukte
EP0619386B1 (de) Elektrolytische Abscheidung von Palladium oder Palladiumlegierungen
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
WO2015039647A1 (de) Galvanisches bad
EP4146848B1 (de) Silberelektrolyt zur abscheidung von silberdispersionsschichten
DE102012004348A1 (de) Zusatz zur Verbesserung der Schichtdickenverteilung in galvanischen Trommelelektrolyten
DE4040526C2 (de) Bad zur galvanischen Abscheidung von Goldlegierungen
EP4314396A1 (de) Platinelektrolyt
DE2419814C3 (de) Sulfithaltiges galvanisches Bad für die Abscheidung von Palladium und Palladium-Legierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BRONDER, KLAUS

Inventor name: WEYHMUELLER, BERND

Inventor name: MANZ, UWE

Inventor name: SIMON, FRANZ

Inventor name: OBERST, FRANK

Inventor name: BERGER, SASCHA

17Q First examination report despatched

Effective date: 20110706

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 555235

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007064

Country of ref document: DE

Effective date: 20120621

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2387055

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120912

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120425

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120825

BERE Be: lapsed

Owner name: UMICORE GALVANOTECHNIK G.M.B.H.

Effective date: 20120531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 12659

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130128

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007064

Country of ref document: DE

Effective date: 20130128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20130501

Year of fee payment: 6

Ref country code: SK

Payment date: 20130416

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130423

Year of fee payment: 6

Ref country code: FI

Payment date: 20130513

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 12659

Country of ref document: SK

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140507

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230602

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230601

Year of fee payment: 16

Ref country code: DE

Payment date: 20230314

Year of fee payment: 16

Ref country code: CZ

Payment date: 20230419

Year of fee payment: 16

Ref country code: CH

Payment date: 20230602

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230425

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240312

Year of fee payment: 17

Ref country code: NL

Payment date: 20240315

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240312

Year of fee payment: 17

Ref country code: FR

Payment date: 20240308

Year of fee payment: 17