EP2277180B1 - Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen - Google Patents

Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen Download PDF

Info

Publication number
EP2277180B1
EP2277180B1 EP09738093.5A EP09738093A EP2277180B1 EP 2277180 B1 EP2277180 B1 EP 2277180B1 EP 09738093 A EP09738093 A EP 09738093A EP 2277180 B1 EP2277180 B1 EP 2277180B1
Authority
EP
European Patent Office
Prior art keywords
stage
metal
range
solid
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09738093.5A
Other languages
English (en)
French (fr)
Other versions
EP2277180A1 (de
Inventor
Ekkehard BRÜCK
Thanh Trung Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technology Foundation - STW
Universiteit Van Amsterdam
Original Assignee
Technology Foundation - STW
Universiteit Van Amsterdam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technology Foundation - STW, Universiteit Van Amsterdam filed Critical Technology Foundation - STW
Priority to EP09738093.5A priority Critical patent/EP2277180B1/de
Publication of EP2277180A1 publication Critical patent/EP2277180A1/de
Application granted granted Critical
Publication of EP2277180B1 publication Critical patent/EP2277180B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • B22F3/1028Controlled cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/047Making non-ferrous alloys by powder metallurgy comprising intermetallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2200/00Crystalline structure
    • C22C2200/04Nanocrystalline
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the invention relates to processes for the production of metal-based materials for magnetic cooling or heat pumps, such materials and their use.
  • the materials produced according to the invention are used in magnetic cooling, in heat pumps or air conditioning systems.
  • the magnetic cooling techniques are based on the magnetocaloric effect (MCE) and can be an alternative to the known steam-cycle cooling methods.
  • MCE magnetocaloric effect
  • the alignment of randomly oriented magnetic moments with an external magnetic field results in heating of the material. This heat can be dissipated from the MCE material into the ambient atmosphere by heat transfer.
  • the magnetic field is then turned off or removed, the magnetic moments revert to a random arrangement, causing the material to cool to below ambient temperature.
  • This effect can be used for cooling purposes, see also Nature, Vol. 415, 10 January 2002, pages 150 to 152 .
  • a heat transfer medium such as water is used for heat removal from the magnetocaloric material.
  • the preparation of conventional materials is carried out by solid phase reaction of the starting materials or starting alloys for the material in a ball mill, subsequent compression, sintering and annealing under an inert gas atmosphere and subsequent slow cooling to room temperature.
  • Such a method is for example in J. Appl. Phys. 99, 2006, 08Q107 described.
  • the output elements are first induction-melted in an argon gas atmosphere and then sprayed in a molten state via a nozzle onto a rotating copper roll. This is followed by sintering at 1000 ° C and slow cooling to room temperature.
  • US 2006/0076084 relates to an alloy containing rare earth elements.
  • the alloy can be used for magnetic cooling applications.
  • the preparation is carried out according to Example 1 by melt spinning a lanthanum-containing alloy, after which the melt-spun product is sintered for three hours at 1100 ° C. Subsequently, a pulverization is carried out.
  • A. Yan et al., Journal of Applied Physics, Vol. 99, pp. 08 K903-1 to 08908-4 refers to the magnetic entropy change in melt-spun MnFePGe. Melt spinning achieves large magnetocaloric effects, which are attributed to a more homogeneous element distribution due to the very high cooling rate. The spun tapes are tempered for one hour at 1000 ° C and then slowly cooled in the oven.
  • the materials obtained by the known method often show a large thermal hysteresis.
  • thermal hysteresis For example, in Fe 2 P-type compounds substituted with germanium or silicon, large values for thermal hysteresis are observed in a wide range of 10 K or more. Thus, these materials are less suitable for magnetocaloric cooling.
  • the object of the present invention is to provide a method for producing metal-based materials for magnetic cooling, which leads to a reduction of the thermal hysteresis. At the same time, preferably a large magnetocaloric effect (MCE) should be achieved.
  • MCE magnetocaloric effect
  • the thermal hysteresis can be significantly reduced if the metal-based materials are not slowly cooled to ambient temperature after sintering and / or annealing, but are quenched at a high cooling rate. Especially preferred are cooling rates of 300 to 1000 K / s.
  • the quenching can be achieved by any suitable cooling method, for example by quenching the solid with water or aqueous liquids, such as cooled water or ice / water mixtures.
  • the solids can be dropped, for example, in iced water. It is also possible to quench the solids with undercooled gases such as liquid nitrogen. Other quenching methods are known to those skilled in the art.
  • the advantage here is a controlled and rapid cooling.
  • the reduced hysteresis can be attributed to smaller grain sizes for the quenched (quenched) compositions.
  • the rest of the preparation of the metal-based materials is less critical, as long as the quenching of the sintered and / or tempered solid takes place in the last step with the cooling rate according to the invention.
  • the method can be applied to the production of any suitable metal-based materials for magnetic cooling.
  • Typical materials for the magnetic cooling are multimetal materials which often contain at least three metallic elements and optionally also non-metallic elements.
  • the term "metal-based materials" indicates that the majority of these materials are composed of metals or metallic elements.
  • the proportion of the total material is at least 50 wt .-%, preferably at least 75 wt .-%, in particular at least 80 wt .-%. Suitable metal-based materials are explained in more detail below.
  • step (a) of the process according to the invention the reaction of the elements and / or alloys contained in the later metal-based material takes place in a stoichiometry corresponding to the metal-based material in the solid or liquid phase.
  • the reaction in step a) is carried out by co-heating the elements and / or alloys in a closed container or in an extruder, or by solid-phase reaction in a ball mill.
  • a solid phase reaction is carried out, which takes place in particular in a ball mill.
  • powders of the individual elements or powders of alloys of two or more of the individual elements which are present in the later metal-based material are typically mixed in powder form in suitable proportions by weight. If necessary, additional grinding of the mixture can be carried out to obtain a microcrystalline powder mixture.
  • This powder mixture is preferably heated in a ball mill, which leads to a further reduction as well as good mixing and to a solid phase reaction in the powder mixture.
  • the individual elements are mixed in the selected stoichiometry as a powder and then melted.
  • the common heating in a closed container allows the fixation of volatile elements and the control of the stoichiometry. Especially with the use of phosphorus, this would easily evaporate in an open system.
  • the reaction is followed by sintering and / or tempering of the solid, wherein one or more intermediate steps may be provided.
  • the solid obtained in step a) can be pressed before it is sintered and / or tempered.
  • the pressing is known per se and can be carried out with or without pressing aids. In this case, any suitable shape can be used for pressing. By pressing, it is already possible to produce shaped bodies in the desired three-dimensional structure.
  • the pressing may be followed by sintering and / or tempering step c) followed by quenching step d).
  • melt spinning processes are known per se and, for example, in Rare Metals, Vol. 25, October 2006, pages 544 to 549 as well as in WO 2004/068512 described.
  • the composition obtained in step a) is melted and sprayed onto a rotating cold metal roller.
  • This spraying can be achieved by means of positive pressure in front of the spray nozzle or negative pressure behind the spray nozzle.
  • a rotating copper drum or roller is used which, if desired, may be cooled.
  • the copper drum preferably rotates at a surface speed of 10 to 40 m / s, in particular 20 to 30 m / s.
  • the liquid composition is cooled at a rate of preferably 10 2 to 10 7 K / s, more preferably at a rate of at least 10 4 K / s, in particular at a rate of 0.5 to 2 x 10 6 K / s.
  • the melt spinning can be carried out as well as the reaction in step a) under reduced pressure or under an inert gas atmosphere.
  • the Meltspinning a high processing speed is achieved because the subsequent sintering and annealing can be shortened. Especially on an industrial scale so the production of metal-based materials is much more economical. Spray drying also leads to a high processing speed. Particularly preferably, the melt spinning (Melt spinning) is performed.
  • a spray cooling may be carried out, in which a melt of the composition from step a) is sprayed into a spray tower.
  • the spray tower can be additionally cooled, for example.
  • cooling rates in the range of 10 3 to 10 5 K / s, in particular about 10 4 K / s are often achieved.
  • the sintering and / or tempering of the solid takes place in stage c) preferably first at a temperature in the range from 800 to 1400 ° C. for sintering and subsequently at a temperature in the range from 500 to 750 ° C. for tempering.
  • a temperature in the range from 800 to 1400 ° C. for sintering preferably first at a temperature in the range from 800 to 1400 ° C. for sintering and subsequently at a temperature in the range from 500 to 750 ° C. for tempering.
  • sintering may then take place at a temperature in the range of 500 to 800 ° C.
  • shaped bodies / solids sintering is particularly preferably carried out at a temperature in the range from 1000 to 1300 ° C., in particular from 1100 to 1300 ° C.
  • the tempering can then take place at 600 to 700 ° C, for example.
  • the sintering is preferably carried out for a period of 1 to 50 hours, more preferably 2 to 20 hours, especially 5 to 15 hours.
  • the annealing is preferably carried out for a time in the range of 10 to 100 hours, particularly preferably 10 to 60 hours, in particular 30 to 50 hours. Depending on the material, the exact time periods can be adapted to the practical requirements.
  • sintering can often be dispensed with, and tempering can be greatly shortened, for example, for periods of 5 minutes to 5 hours, preferably 10 minutes to 1 hour. Compared to the usual values of 10 hours for sintering and 50 hours for annealing, this results in an extreme time advantage.
  • the sintering / tempering causes the grain boundaries to melt, so that the material continues to densify.
  • stage c By melting and rapid cooling in stage b), the time duration for stage c) can thus be considerably reduced. This also allows for continuous production of the metal-based materials.
  • the method of the invention can be used for any suitable metal-based materials.
  • particularly suitable materials are, for example, in WO 2004/068512 .
  • Rare Metals Vol. 25, 2006, pp. 544-549 .
  • C, D and E are preferably identical or different and selected from at least one of P, Ge, Si, Sn and Ga.
  • the metal-based material of the general formula (I) is preferably selected from at least quaternary compounds which in addition to Mn, Fe, P and optionally Sb also Ge or Si or As or Ge and Si or Ge and As or Si and As or Ge, Si and As included.
  • At least 90% by weight, more preferably at least 95% by weight, of component A are Mn. At least 90% by weight, more preferably at least 95% by weight, of B Fe are preferred. Preferably, at least 90 wt .-%, more preferably at least 95 wt .-% of C P. Preferred are at least 90 wt .-%, more preferably at least 95 wt .-% of D Ge. At least 90% by weight, more preferably at least 95% by weight, of E Si are preferred.
  • the material has the general formula MnFe (P w Ge x Si z ).
  • x is a number in the range of 0.3 to 0.7, w is less than or equal to 1-x and z corresponds to 1-x-w.
  • the material preferably has the crystalline hexagonal Fe 2 P structure.
  • suitable structures are MnFeP 0.45 to 0.7 , Ge 0.55 to 0.30 and MnFeP 0.5 to 0.70 , (Si / Ge) 0.5 to 0.30 .
  • Mn 1 + x Fe 1 -x P 1 -y Ge y where x is in the range of -0.3 to 0.5, y is in the range of 0.1 to 0.6.
  • compounds of the formula Mn 1 + x Fe 1 -x P 1-y Ge yz Si z are suitable with x number in the range of 0.3 to 0.5, y in the range of 0.1 to 0.66, z smaller or equal to y and less than 0.6.
  • La and Fe based compounds of the general formulas (II) and / or (III) and / or (IV) are La (Fe 0.90 Si 0.10 ) 13 , La (Fe 0.89 Si 0.11 ) 13 , La (Fe 0.880 Si 0.120 ) 13 , La (Fe 0.877 Si 0.123 ) 13 , L a F e 11.8 Si 1.2 , La (Fe 0.88 Si 0.12 ) 13 H 0.5 , La (Fe 0.88 Si 0.12 ) 13 H 1.0 , LaFe 11.7 Si 1.3 H 1.1 , LaFe 11.57 Si 1.43 H 1.3 , La (Fe 0.88 Si 0 , 12 ) H 1.5 , LaFe 11.2 Co 0.7 Si 1.1 , LaFe 11.5 Al 1.5 C 0.1 , LaFe 11.5 Al 1.5 C 0.2 , LaFe 11, 5 Al 1.5 C 0.4 , LaFe 11.5 Al 1.5 Co 0.5 , La (Fe 0.94 Co 0.06 ) 11.83 Al
  • Suitable manganese-containing compounds are MnFeGe, MnFe 0.9 Co 0.1 Ge, MnFe 0.8 Co 0.2 Ge, MnFe 0.7 Co 0.3 Ge, MnFe 0.6 Co 0.4 Ge, MnFe 0, 5 Co 0.5 Ge, MnFe 0.4 Co 0.6 Ge, MnFe 0.3 Co 0.7 Ge, MnFe 0.2 Co 0.8 Ge, MnFe 0.15 Co 0.85 Ge, MnFe 0, 1 Co 0.9 Ge, MnCoGe, Mn 5 Ge 2.5 Si 0.5 , Mn 5 Ge 2 Si, Mn 5 Ge 1.5 Si 1.5 , Mn 5 GeSi 2 , Mn 5 Ge 3 , Mn 5 Ge 2.9 Sb 0.1 , Mn 5 Ge 2.5 Si 0.5 , Mn 5 Ge 2 Si, Mn 5 Ge 1.5 Si 1.5 , Mn 5 GeSi 2 , Mn 5 Ge 3 , Mn 5 Ge 2.9 Sb 0.1 , Mn 5 Ge 2.5 Si 0.5 , Mn 5 Ge
  • the disclosure also relates to a metal-based magnetic cooling material obtainable by a method as defined above, as defined above by the composition, except for As-containing materials, having an average crystallite size in the range of 10 to 400 nm, more preferably 20 to 200 nm, in particular 30 to 80 nm.
  • the average crystallite size can be determined by X-ray diffraction. If the crystallite size becomes too small, the maximum magnetocaloric effect is reduced. if the crystallite size is too large, however, the hysteresis of the system increases.
  • the metal-based materials are preferably used in the magnetic cooling as described above.
  • a corresponding refrigerator has in addition to a magnet, preferably permanent magnets, metal-based materials, as described above.
  • the cooling of computer chips and solar power generators is also considered. Further applications are heat pumps and air conditioning systems.
  • the metal-based materials produced by the process according to the invention may have any solid form. They may be present, for example, in the form of flakes, ribbons, wires, powders, as well as in the form of shaped bodies. Shaped bodies such as monoliths or honeycomb bodies can be produced, for example, by a hot extrusion process. For example, cell densities of 400 to 1600 CPI or more may be present. Also obtainable by rolling thin sheets are inventively preferred.
  • Advantageous are non-porous molded body made of molded thin material, eg. As tubes, plates, nets, grids or rods. Shaping by metal injection molding (MIM) is possible according to the invention.
  • MIM metal injection molding
  • Evacuated quartz ampoules containing pressed samples of MnFePGe were kept at 1100 ° C for 10 hours to sinter the powder. This sintering was followed by annealing at 650 ° C for 60 hours to homogenize. However, instead of slowly cooling to room temperature in the oven, the samples were immediately quenched in water at room temperature. Quenching in water caused a degree of oxidation on the sample surfaces. The outer oxidized shell was removed by dilute acid etching. The XRD patterns show that all samples crystallize in a Fe 2 P-type structure.
  • the thermal hysteresis was determined in a magnetic field of 0.5 Tesla.
  • the Curie temperature can be adjusted by varying the Mn / Fe ratio and Ge concentration, as well as the thermal hysteresis value.
  • the change in magnetic entropy calculated from the DC magnetization using the Maxwell relationship for a maximum field change of 0 to 2 Tesla for the first three samples is 14 J / kgK, 20 J / kgK and 12.7 J / kgK, respectively.
  • the MnFePGe compounds show relatively high MCE values in the low field.
  • the thermal hysteresis of these materials is very small.
  • the polycrystalline MnFeP (Ge, Sb) alloys were first prepared in a high energy ball mill and by solid phase reaction techniques as described in U.S. Pat WO 2004/068512 and J. Appl. Phys. 99.08 Q107 (2006 ) are described. The pieces of material were then placed in a quartz tube with a nozzle. The chamber was evacuated to a vacuum of 10 -2 mbar and then filled with argon gas of high purity. The samples were melted by high frequency and sprayed through the nozzle due to a pressure difference to a chamber with a rotating copper drum. The surface speed of the copper wheel could be adjusted and cooling rates of about 10 5 K / s were achieved. Subsequently, the spun ribbons were annealed at 900 ° C for one hour.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

  • Die Erfindung betrifft Verfahren zur Herstellung von metallbasierten Materialien für die magnetische Kühlung oder Wärmepumpen, derartige Materialien und deren Verwendung. Die erfindungsgemäß hergestellten Materialien werden in der magnetischen Kühlung, in Wärmepumpen oder Klimaanlagen eingesetzt.
  • Derartige Materialien sind prinzipiell bekannt und beispielsweise in WO 2004/068512 beschrieben. Die magnetischen Kühlungstechniken basieren auf dem magnetokalorischen Effekt (MCE) und können eine Alternative zu den bekannten Dampf-Kreislauf-Kühlverfahren darstellen. In einem Material, das einen magnetokalorischen Effekt zeigt, führt die Ausrichtung von zufällig orientierten magnetischen Momenten durch ein externes Magnetfeld zu einem Erwärmen des Materials. Diese Wärme kann vom MCE-Material in die Umgebungsatmosphäre durch einen Wärmetransfer abgeführt werden. Wenn das Magnetfeld daraufhin abgestellt wird oder entfernt wird, gehen die magnetischen Momente wieder in eine Zufallsanordnung über, was zu einem Abkühlen des Materials unter Umgebungstemperatur führt. Dieser Effekt kann zu Kühlzwecken ausgenutzt werden, siehe auch Nature, Vol. 415, 10. Januar 2002, Seiten 150 bis 152. Typischerweise wird ein Wärmetransfermedium wie Wasser zur Wärmeabfuhr aus dem magnetokalorischen Material eingesetzt.
  • Die Herstellung üblicher Materialien erfolgt durch Festphasenumsetzung der Ausgangselemente oder Ausgangslegierungen für das Material in einer Kugelmühle, nachfolgendes Verpressen, Sintern und Tempern unter Inertgasatmosphäre und nachfolgendes langsames Abkühlen auf Raumtemperatur. Ein derartiges Verfahren ist beispielsweise in J. Appl. Phys. 99, 2006, 08Q107 beschrieben.
  • Auch eine Verarbeitung über das Schmelzspinnen ist möglich. Hierdurch ist eine homogenere Elementverteilung möglich, die zu einem verbesserten magnetokalorischen Effekt führt, vergleiche Rare Metals, Vol. 25, Oktober 2006, Seiten 544 bis 549. In dem dort beschriebenen Verfahren werden zunächst die Ausgangselemente in einer Argongas-atmosphäre induktionsgeschmolzen und sodann in geschmolzenem Zustand über eine Düse auf eine sich drehende Kupferwalze gesprüht. Es folgt ein Sintern bei 1000°C und ein langsames Abkühlen auf Raumtemperatur.
  • D. T. Cam Thanh, Journal of Applied Physics, Bd. 103, Seiten 07 B318-1 bis 07 B318-3 offenbart ein Herstellungsverfahren für MnFeP1-xSix-Verbindungen, wobei zunächst eine Festphasenumsetzung durch hohen Energieeintrag in einer Kugelmühle erfolgt mit nachfolgendem Verpressen und Sintern der Formkörper. Sodann kann entweder langsam abgekühlt werden oder ausgehend von unterschiedlichen Temperaturen gequencht werden.
  • Diese Temperaturen und das Quenchen sind jedoch nicht näher erläutert.
  • US 2006/0076084 betrifft eine Legierung, die Seltenerdelemente enthält. Die Legierung kann für magnetische Kühianwendungen eingesetzt werden. Die Herstellung erfolgt gemäß Beispiel 1 durch Schmelzspinnen einer lanthanhaltigen Legierung, worauf das schmelzgesponnene Produkt für drei Stunden bei 1100°C gesintert wird. Anschließend wird eine Pulverisierung durchgeführt.
  • A. Yan et al., Journal of Applied Physics, Bd. 99, Seiten 08 K903-1 bis 08 908-4 betrifft die magnetische Entropieänderung in schmelzgesponnenem MnFePGe. Durch das Schmelzspinnen werden große magnetokalorische Effekte erzielt, die auf eine homogenere Elementverteilung aufgrund der sehr hohen Abkühlrate zurückgeführt werden. Die gesponnenen Bänder werden für eine Stunde bei 1000°C getempert und danach langsam im Ofen abgekühlt.
  • Die nach dem bekannten Verfahren erhaltenen Materialien zeigen häufig eine große thermische Hysterese. Beispielsweise werden in Verbindungen des Fe2P-Typs, die mit Germanium oder Silicium substituiert sind, große Werte für die thermische Hysterese in einem großen Bereich von 10 K oder mehr beobachtet. Damit sind diese Materialien weniger geeignet zur magnetokalorischen Kühlung.
  • Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von metallbasierten Materialien für die magnetische Kühlung, das zu einer Verminderung der thermischen Hysterese führt. Gleichzeitig soll vorzugsweise ein großer magnetokalorischer Effekt (MCE) erreicht werden.
  • Die Aufgabe wird erfindungsgemäß gelöst, gemäß Anspruch 1, durch ein Verfahren zur Herstellung von metallbasierten Materialien für die magnetische Kühlung oder Wärmepumpen, umfassend die folgenden Schritte
    1. a) Umsetzung von chemischen Elementen und/oder Legierungen in einer Stöchiometrie, die dem metallbasierten Material entspricht, in der Fest- und/oder Flüssigphase,
    2. b) gegebenenfalls Überführen des Umsetzungsproduktes aus Stufe a) in einen Festkörper,
    3. c) Sintern und/oder Tempern des Festkörpers aus Stufe a) oder b),
    4. d) Abschrecken des gesinterten und/oder getemperten Festkörpers aus Stufe c) mit einer Abkühlgeschwindigkeit von 200 bis 1300 K/s.
  • Es wurde erfindungsgemäß gefunden, dass die thermische Hysterese signifikant vermindert werden kann, wenn die metallbasierten Materialien nach dem Sintern und/oder Tempern nicht langsam auf Umgebungstemperatur abgekühlt werden, sondern mit einer hohen Abkühlgeschwindigkeit abgeschreckt werden. Speziell bevorzugt sind Abkühlgeschwindigkeiten von 300 bis 1000 K/s.
  • Das Abschrecken kann dabei durch beliebige geeignete Kühlverfahren erreicht werden, beispielsweise durch Abschrecken des Festkörpers mit Wasser oder wasserhaltigen Flüssigkeiten, beispielsweise gekühltem Wasser oder Eis/Wasser-Mischungen. Die Festkörper können beispielsweise in eisgekühltes Wasser fallengelassen werden. Es ist ferner möglich, die Festkörper mit untergekühlten Gasen wie flüssigem Stickstoff abzuschrecken. Weitere Verfahren zum Abschrecken sind dem Fachmann bekannt. Vorteilhaft ist dabei ein kontrolliertes und schnelles Abkühlen.
  • Ohne an eine Theorie gebunden zu sein, kann die verminderte Hysterese auf kleinere Korngrößen für die abgeschreckten (gequenchten) Zusammensetzungen zurückgeführt werden.
  • In den bisher bekannten Verfahren wurde jeweils nach dem Sintern und Tempern langsam abgekühlt, was zur Ausbildung größerer Korngrößen und damit zur Verstärkung der thermischen Hysterese führt.
  • Die übrige Herstellung der metallbasierten Materialien ist weniger kritisch, solange im letzten Schritt das Abschrecken des gesinterten und/oder getemperten Festkörpers mit der erfindungsgemäßen Abkühlgeschwindigkeit erfolgt. Das Verfahren kann dabei auf die Herstellung beliebiger geeigneter metallbasierter Materialien für die magnetische Kühlung angewendet werden. Typische Materialien für die magnetische Kühlung sind Multimetallmassen, die oft mindestens drei metallische Elemente und zusätzlich gegebenenfalls nicht metallische Elemente enthalten. Der Ausdruck "metallbasierte Materialien" gibt an, dass der überwiegende Anteil dieser Materialien aus Metallen bzw. metallischen Elementen aufgebaut ist. Typischerweise beträgt der Anteil am gesamten Material mindestens 50 Gew.-%, bevorzugt mindestens 75 Gew.-%, insbesondere mindestens 80 Gew.-%. Geeignete metallbasierte Materialien sind nachfolgend näher erläutert.
  • In Schritt (a) des erfindungsgemäßen Verfahrens erfolgt die Umsetzung der Elemente und/oder Legierungen, die im späteren metallbasierten Material enthalten sind, in einer Stöchiometrie, die dem metallbasierten Material entspricht, in der Fest- oder Flüssigphase.
  • Vorzugsweise wird die Umsetzung in Stufe a) durch gemeinsames Erhitzen der Elemente und/oder Legierungen in einem geschlossenen Behältnis oder in einem Extruder, oder durch Festphasenumsetzung in einer Kugelmühle erfolgen. Besonders bevorzugt wird eine Festphasenumsetzung durchgeführt, die insbesondere in einer Kugelmühle erfolgt. Eine derartige Umsetzung ist prinzipiell bekannt, vergleiche die einleitend aufgeführten Schriften. Dabei werden typischerweise Pulver der einzelnen Elemente oder Pulver von Legierungen aus zwei oder mehr der einzelnen Elemente, die im späteren metallbasierten Material vorliegen, in geeigneten Gewichtsanteilen pulverförmig vermischt. Falls notwendig, kann zusätzlich ein Mahlen des Gemisches erfolgen, um ein mikrokristallines Pulvergemisch zu erhalten. Dieses Pulvergemisch wird vorzugsweise in einer Kugelmühle aufgeheizt, was zu einer weiteren Verkleinerung wie auch guten Durchmischung und zu einer Festphasenreaktion im Pulvergemisch führt. Alternativ werden die einzelnen Elemente in der gewählten Stöchiometrie als Pulver vermischt und anschließend aufgeschmolzen.
  • Das gemeinsame Erhitzen in einem geschlossenen Behälter erlaubt die Fixierung flüchtiger Elemente und die Kontrolle der Stöchiometrie. Gerade bei Mitverwendung von Phosphor würde dieser in einem offenen System leicht verdampfen.
  • An die Umsetzung schließt sich ein Sintern und/oder Tempern des Festkörpers an, wobei ein oder mehrere Zwischenschritte vorgesehen sein können. Beispielsweise kann der in Stufe a) erhaltene Feststoff verpresst werden, bevor er gesintert und/oder getempert wird. Hierdurch wird die Dichte des Materials erhöht, so dass bei der späteren Anwendung eine hohe Dichte des magnetokalorischen Materials vorliegt. Dies ist insbesondere deshalb vorteilhaft, da das Volumen, in dem das magnetische Feld herrscht, vermindert werden kann, was mit erheblichen Kosteneinsparungen verbunden sein kann. Das Verpressen ist an sich bekannt und kann mit oder ohne Presshilfsmittel durchgeführt werden. Dabei kann jede beliebige geeignete Form zum Pressen verwendet werden. Durch das Verpressen ist es bereits möglich, Formkörper in der gewünschten dreidimensionalen Struktur zu erzeugen. An das Verpressen kann sich das Sintern und/oder Tempern der Stufe c) gefolgt vom Abschrecken der Stufe d) anschließen.
  • Alternativ ist es möglich, den aus der Kugelmühle erhaltenen Feststoff einem Schmelzspinnverfahren zuzuführen. Schmelzspinnverfahren sind an sich bekannt und beispielsweise in Rare Metals, Vol. 25, Oktober 2006, Seiten 544 bis 549 wie auch in WO 2004/068512 beschrieben.
  • Dabei wird die in Stufe a) erhaltene Zusammensetzung geschmolzen und auf eine sich drehende kalte Metallwalze gesprüht. Dieses Sprühen kann mittels Überdruck vor der Sprühdüse oder Unterdruck hinter der Sprühdüse erreicht werden. Typischerweise wird eine sich drehende Kupfertrommel oder -walze verwendet, die zudem gegebenenfalls gekühlt werden kann. Die Kupfertrommel dreht sich bevorzugt mit einer Oberflächengeschwindigkeit von 10 bis 40 m/s, insbesondere 20 bis 30 m/s. Auf der Kupfertrommel wird die flüssige Zusammensetzung mit einer Geschwindigkeit von vorzugsweise 102 bis 107 K/s abgekühlt, besonders bevorzugt mit einer Geschwindigkeit von mindestens 104 K/s, insbesondere mit einer Geschwindigkeit von 0,5 bis 2 x 106 K/s.
  • Das Schmelzspinnen kann wie auch die Umsetzung in Stufe a) unter vermindertem Druck oder unter Inertgasatmosphäre durchgeführt werden.
  • Durch das Meltspinning wird eine hohe Verarbeitungsgeschwindigkeit erreicht, da das nachfolgende Sintern und Tempern verkürzt werden kann. Gerade im technischen Maßstab wird so die Herstellung der metallbasierten Materialien wesentlich wirtschaftlicher. Auch die Sprühtrocknung führt zu einer hohen Verarbeitungsgeschwindigkeit. Besonders bevorzugt wird das Schmelzespinnen (Melt spinning) durchgeführt.
  • Alternativ kann in Stufe b) ein Sprühkühlen durchgeführt werden, bei dem eine Schmelze der Zusammensetzung aus Stufe a) in einen Sprühturm gesprüht wird. Der Sprühturm kann dabei beispielsweise zusätzlich gekühlt werden. In Sprühtürmen werden häufig Abkühlgeschwindigkeiten im Bereich von 103 bis 105 K/s, insbesondere etwa 104 K/s erreicht.
  • Das Sintern und/oder Tempern des Festkörpers erfolgt in Stufe c) vorzugsweise zunächst bei einer Temperatur im Bereich von 800 bis 1400 °C zum Sintern und nachfolgend bei einer Temperatur im Bereich von 500 bis 750 °C zum Tempern. Diese Werte gelten insbesondere für Formkörper, während für Pulver niedrigere Sinter- und Tempertemperaturen angewendet werden können. Beispielsweise kann dann das Sintern bei einer Temperatur im Bereich von 500 bis 800 °C erfolgen. Für Formkörper/Festkörper erfolgt das Sintern besonders bevorzugt bei einer Temperatur im Bereich von 1000 bis 1300 °C, insbesondere von 1100 bis 1300 °C. Das Tempern kann dann beispielsweise bei 600 bis 700 °C erfolgen.
  • Das Sintern wird vorzugsweise für einen Zeitraum von 1 bis 50 Stunden, besonders bevorzugt 2 bis 20 Stunden, insbesondere 5 bis 15 Stunden durchgeführt. Das Tempern wird vorzugsweise für eine Zeit im Bereich von 10 bis 100 Stunden, besonders bevorzugt 10 bis 60 Stunden, insbesondere 30 bis 50 Stunden durchgeführt. Die exakten Zeiträume können dabei je nach Material den praktischen Anforderungen angepasst werden.
  • Bei Einsatz des Schmelzspinnverfahrens kann auf ein Sintern häufig verzichtet werden, und das Tempern kann stark verkürzt werden, beispielsweise auf Zeiträume von 5 Minuten bis 5 Stunden, bevorzugt 10 Minuten bis 1 Stunde. Im Vergleich zu den sonst üblichen Werten von 10 Stunden für das Sintern und 50 Stunden für das Tempern resultiert ein extremer Zeitvorteil.
  • Durch das Sintern/Tempern kommt es zu einem Anschmelzen der Korngrenzen, so dass sich das Material weiter verdichtet.
  • Durch das Schmelzen und schnelle Abkühlen in Stufe b) kann damit die Zeitdauer für Stufe c) erheblich vermindert werden. Dies ermöglicht auch eine kontinuierliche Herstellung der metallbasierten Materialien.
  • Erfindungsgemäß besonders bevorzugt ist die Verfahrenssequenz
    1. a) Festphasenumsetzung von chemischen Elementen und/oder Legierungen in einer Stöchiometrie, die dem metallbasierten Material entspricht, in einer Kugelmühle,
    2. b) Schmelzspinnen des in Stufe a) erhaltenen Materials,
    3. c) Tempern des Festkörpers aus Stufe b) für einen Zeitraum von 10 Sekunden oder 1 Minute bis 5 Stunden, bevorzugt 30 Minuten bis 2 Stunden bei einer Temperatur im Bereich von 430 bis 1200, bevorzugt 800 bis 1000 °C
    4. d) Abschrecken des getemperten Festkörpers aus Stufe c) mit einer Abkühlgeschwindigkeit von 200 bis 1300 K/s.
  • Das erfindungsgemäße Verfahren kann für beliebige geeignete metallbasierte Materialien verwendet werden.
  • Besonders bevorzugt ist das metallbasierte Material ausgewählt aus
    1. (1) Verbindungen der allgemeinen Formel (I)

              (AyB1-y)2+δCwDxEz     (I)

      mit der Bedeutung
      A
      Mn oder Co,
      B
      Fe, Cr oder Ni,
      C, D, E
      mindestens zwei von C, D, E sind voneinander verschieden, haben eine nicht-verschwindende Konzentration und sind ausgewählt aus P, B, Se, Ge, Ga, Si, Sn, N, As und Sb, wobei mindestens eines von C, D und E Ge oder Si ist,
      δ
      Zahl im Bereich von - 0,1 bis 0,1
      w, x, y, z
      Zahlen im Bereich von 0 bis 1, wobei w + x + z = 1 ist;
    2. (2) auf La und Fe basierenden Verbindungen der allgemeinen Formeln (II) und/oder (III) und/oder (IV)

              La(FexAl1-x)13Hy oder La(FexSi1-x)13Hy     (II)

      mit
      x
      Zahl von 0,7 bis 0,95
      y
      Zahl von 0 bis 3, vorzugsweise 0 bis 2;


              La(FexAlyCoz)13 oder La(FexSiyCoz)13     (III)

      mit
      x
      Zahl von 0,7 bis 0,95
      y
      Zahl von 0,05 bis 1 - x
      z
      Zahl von 0,005 bis 0,5;


              LaMnxFe2-xGe     (IV)

      mit
      x
      Zahl von 1,7 bis 1,95 und
    3. (3) Heusler-Legierungen des Typs MnTP mit T Übergangsmetall und P einem p-dotierenden Metall mit einem electron count pro Atom e/a im Bereich von 7 bis 8,5.
  • Erfindungsgemäß besonders geeignete Materialien sind beispielsweise in WO 2004/068512 , Rare Metals, Vol. 25, 2006, Seiten 544 bis 549, J. Appl. Phys. 99,08Q107 (2006), Nature, Vol. 415, 10. Januar 2002, Seiten 150 bis 152 und Physica B 327 (2003), Seiten 431 bis 437 beschrieben.
  • In den vorstehend genannten Verbindungen der allgemeinen Formel (I) sind bevorzugt C, D und E identisch oder unterschiedlich und ausgewählt aus mindestens einem von P, Ge, Si, Sn und Ga.
  • Das metallbasierte Material der allgemeinen Formel (I) ist vorzugsweise ausgewählt aus mindestens quarternären Verbindungen, die neben Mn, Fe, P und gegebenenfalls Sb zudem Ge oder Si oder As oder Ge und Si oder Ge und As oder Si und As oder Ge, Si und As enthalten.
  • Bevorzugt sind mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% der Komponente A Mn. Bevorzugt sind mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% von B Fe. Bevorzugt sind mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% von C P. Bevorzugt sind mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% von D Ge. Bevorzugt sind mindestens 90 Gew.-%, besonders bevorzugt mindestens 95 Gew.-% von E Si.
  • Vorzugsweise hat das Material die allgemeine Formel MnFe(PwGexSiz).
  • Bevorzugt ist x eine Zahl im Bereich von 0,3 bis 0,7, w ist kleiner oder gleich 1-x und z entspricht 1-x-w.
  • Das Material hat vorzugsweise die kristalline hexagonale Fe2P-Struktur. Beispiele geeigneter Strukturen sind MnFeP0,45 bis 0,7, Ge0,55 bis 0,30 und MnFeP0,5 bis 0,70, (Si/Ge)0,5 bis 0,30.
  • Geeignete Verbindungen sind ferner Mn1+xFe1-xP1-yGey mit x im Bereich von -0,3 bis 0,5, y im Bereich von 0,1 bis 0,6. Ebenfalls geeignet sind Verbindungen der allgemeinen Formel Mn1+xFe1-xP1-yGey-zSbz mit x im Bereich von -0,3 bis 0,5, y im Bereich von 0,1 bis 0,6 und z kleiner als y und kleiner als 0,2. Ferner sind Verbindungen der Formel Mn1+xFe1-xP1-yGey-zSiz geeignet mit x Zahl im Bereich von 0,3 bis 0,5, y im Bereich von 0,1 bis 0,66, z kleiner oder gleich y und kleiner als 0,6.
  • Bevorzugte auf La und Fe basierende Verbindungen der allgemeinen Formeln (II) und/oder (III) und/oder (IV) sind La(Fe0,90Si0,10)13, La(Fe0,89Si0,11)13, La(Fe0,880Si0,120)13, La(Fe0,877Si0,123)13, L a F e11,8Si1,2, La(Fe0,88Si0,12)13H0,5, La(Fe0,88Si0,12)13H1,0, LaFe11,7Si1,3H1,1, LaFe11,57Si1,43H1,3, La(Fe0,88Si0,12)H1,5, LaFe11,2Co0,7Si1,1, LaFe11,5Al1,5C0,1, LaFe11,5Al1,5C0,2, LaFe11,5Al1,5C0,4, LaFe11,5Al1,5Co0,5, La(Fe0,94Co0,06)11,83Al1,17, La(Fe0,92Co0,08)11,83Al1,17.
  • Geeignete Mangan enthaltende Verbindungen sind MnFeGe, MnFe0,9Co0,1Ge, MnFe0,8Co0,2Ge, MnFe0,7Co0,3Ge, MnFe0,6Co0,4Ge, MnFe0,5Co0,5Ge, MnFe0,4Co0,6Ge, MnFe0,3Co0,7Ge, MnFe0,2Co0,8Ge, MnFe0,15Co0,85Ge, MnFe0,1Co0,9Ge, MnCoGe, Mn5Ge2,5Si0,5, Mn5Ge2Si, Mn5Ge1,5Si1,5, Mn5GeSi2, Mn5Ge3, Mn5Ge2,9Sb0,1, Mn5Ge2,5Si0,5, Mn5Ge2Si, Mn5Ge1,5Si1,5, Mn5GeSi2, Mn5Ge3, Mn5Ge2,9Sb0,1, Mn5Ge2,8Sb0,2, Mn5Ge2,7Sb0,3, LaMn1,9Fe0,1Ge, LaMn1,85Fe0,15Ge, LaMn1,8Fe0,2Ge, (Fe0,9Mn0,1)3C, (Fe0,8Mn0,2)C, (Fe0,7Mn0,3)3C, Mn3GaC, MnAs, (Mn, Fe)As, Mn1+δAs0,8Sb0,2, MnAs0,75Sb0,25, Mn1,1As0,75Sb0,25, Mn1,5As0,75Sb0,25.
  • Erfindungsgemäß geeignete Heusler-Legierungen sind beispielsweise Fe2MnSi0,5Ge0,5, Ni52,9Mn22,4Ga24,7, Ni50,9Mn24,7Ga24,4, Ni55,2Mn18,6Ga26,2, Ni51,6Mn24,7Ga23,8, Ni52,7Mn23,9Ga23,4, CoMnSb, CoNb0,2Mn0,8Sb, CoNb0,4Mn0,6SB, CoNb0,6Mn0,4Sb, Ni50Mn35Sn15, Ni50Mn37Sn13, MnFeP0,45As0,55, MnFeP0,47AS0,53, Mn1,1Fe0,9P0,47As0,53, MnFeP0,89-χSiχGe0,11, χ = 0,22, χ = 0,26, χ = 0,30, χ = 0,33.
  • Die Offenbarung betrifft auch ein metallbasiertes Material für die magnetische Kühlung, das erhältlich ist nach einem wie vorstehend beschriebenen Verfahren, wie es vorstehend anhand der Zusammensetzung definiert ist, ausgenommen As enthaltende Materialien, mit einer durchschnittlichen Kristallitgröße im Bereich von 10 bis 400 nm, besonders bevorzugt 20 bis 200 nm, insbesondere 30 bis 80 nm. Die durchschnittliche Kristallitgröße kann dabei durch Röntgendiffraktion ermittelt werden. Wird die Kristallitgröße zu klein, so vermindert sich der maximale magnetokalorische Effekt. ist die Kristallitgröße hingegen zu groß, steigt die Hysterese des Systems an.
  • Die metallbasierten Materialien werden bevorzugt in der magnetischen Kühlung eingesetzt, wie sie vorstehend beschrieben wurde. Ein entsprechender Kühlschrank weist dabei neben einem Magneten, vorzugsweise Permanentmagneten, metallbasierte Materialien auf, wie sie vorstehend beschrieben sind. Auch die Kühlung von Computerchips und solaren Stromerzeugern kommt in Betracht. Weitere Anwendungsgebiete sind Wärmepumpen und Klimaanlagen.
  • Die nach dem erfindungsgemäßen Verfahren hergestellten metallbasierten Materialien können jede beliebige Festkörperform aufweisen. Sie können beispielsweise in Form von Flocken, Bändern, Drähten, Puder, Pulver wie auch in Form von Formkörpern vorliegen. Formkörper wie Monolithen oder Wabenkörper können beispielsweise durch ein Heißextrusionsverfahren hergestellt werden. Es können beispielsweise Zelldichten von 400 bis 1600 CPI oder mehr vorliegen. Auch durch Walzverfahren erhältliche dünne Bleche sind erfindungsgemäß bevorzugt. Vorteilhaft sind nicht-poröse Formkörper aus geformtem dünnem Material, z. B. Röhren, Platten, Netze, Gitter oder Stäbe. Auch eine Formgebung durch Metallspritzgussverfahren (MIM) ist erfindungsgemäß möglich.
  • Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
  • Beispiele Beispiel 1
  • Evakuierte Quarzampullen, die gepresste Proben von MnFePGe enthielten, wurden für 10 Stunden bei 1100 °C gehalten, um das Pulver zu sintern. Auf dieses Sintern folgte ein Tempern bei 650 °C für 60 Stunden, um eine Homogenisierung herbeizuführen. Anstelle eines langsamen Abkühlens im Ofen auf Raumtemperatur wurden die Proben jedoch sofort in Wasser bei Raumtemperatur gequencht. Das Quenchen in Wasser verursachte einen gewissen Grad von Oxidation an den Probenoberflächen. Die äußere oxidierte Schale wurde durch Ätzen mit verdünnter Säure entfernt. Die XRD-Muster zeigen, dass alle Proben in einer Struktur des Fe2P-Typs kristallisieren.
  • Folgende Zusammensetzungen wurden dabei erhalten:
    • Mn1,1Fe0,9P0,81Ge0,19; Mn1.1Fe0.9P0.78Ge0.22, Mn1,1Fe0,9P0,75Ge0,25 und Mn1,2Fe0,8P0,81Ge0,19. Die beobachteten Werte für die thermische Hysterese sind für diese Proben in der angegebenen Reihenfolge 7 K, 5 K, 2 K und 3 K. Gegenüber einer langsam abgekühlten Probe war die eine thermische Hysterese von mehr als 10 K aufweist, konnte die thermische Hysterese stark vermindert werden.
  • Die thermische Hysterese wurde dabei in einem Magnetfeld von 0,5 Tesla bestimmt.
  • Die Curie-Temperatur kann durch Variation des Mn/Fe-Verhältnisses und der Ge-Konzentration eingestellt werden, ebenso der Wert für die thermische Hysterese.
  • Die Änderung der magnetischen Entropie, berechnet aus der Gleichstrommagnetisierung unter Verwendung der Maxwell-Beziehung beträgt für eine maximale Feldänderung von 0 bis 2 Tesla für die ersten drei Proben 14 J/kgK, 20 J/kgK bzw. 12,7 J/kgK.
  • Die Curie-Temperatur und die thermische Hysterese nehmen mit zunehmendem Mn/Fe-Verhältnis ab. Im Ergebnis zeigen die MnFePGe-Verbindungen relativ große MCE-Werte in niedrigem Feld. Die thermische Hysterese dieser Materialien ist sehr klein.
  • Beispiel 2 Schmelzspinnen von MnFeP(GeSb)
  • Die polykristallinen MnFeP(Ge,Sb)-Legierungen wurden zunächst in einer Kugelmühle mit hohem Energie-Eintrag und durch Festphasenreaktionsverfahren hergestellt, wie sie in WO 2004/068512 und J. Appl. Phys. 99,08 Q107 (2006) beschrieben sind. Die Materialstücke wurden sodann in ein Quarzrohr mit einer Düse gegeben. Die Kammer wurde auf ein Vakuum von 10-2 mbar evakuiert und anschließend mit Argongas hoher Reinheit gefüllt. Die Proben wurden durch Hochfrequenz geschmolzen und durch die Düse versprüht aufgrund einer Druckdifferenz zu einer Kammer mit einer rotierenden Kupfertrommel. Die Oberflächengeschwindigkeit des Kupferrades konnte eingestellt werden, und Abkühlgeschwindigkeiten von etwa 105 K/s wurden erreicht. Anschließend wurden die gesponnenen Bänder bei 900 °C für eine Stunde getempert.
  • Aus der Röntgendiffraktometrie geht hervor, dass alle Proben im hexagonalen Fe2P-Strukturmuster kristallisieren. Im Unterschied zu nicht nach dem Schmelzspinnverfahren hergestellten Proben, wurde keine kleinere Verunreinigungsphase von MnO beobachtet.
  • Die erhaltenen Werte für die Curie-Temperatur, die Hysterese und die Entropie wurden für unterschiedliche Umfangsgeschwindigkeiten beim Schmelzspinnen bestimmt. Die Ergebnisse sind in den nachstehenden Tabellen 1 und 2 aufgeführt. Jeweils wurden geringe Hysterese-Temperaturen bestimmt. Tabelle 1:
    Bänder V (m/s) Tc (K) ΔThys (K) -ΔS(J/kgK)
    Mn1,2Fe0,8P0,73Ge0,25Sb0,02 30 269 4 12,1
    Mn1,2Fe0,8P0,70Ge0,20Sb0,10 30 304 4,5 19,0
    45 314 3 11,0
    MnFeP0,70Ge0,20Sb0,10 20 306 8 17,2
    30 340 3 9,5
    MnFeP0,75Ge0,25 20 316 9 13,5
    40 302 8 -
    Mn1,1Fe0,9P0,78Ge0,22 20 302 5 -
    40 299 7 -
    Mn1,1Fe0,9P0,75Ge0,25 30 283 9 11,2
    Mn1,2Fe0,8P0,75Ge0,25 30 240 8 14,2
    Mn1,1Fe0,9P0,73Ge0,27 30 262 5 10,1
    Bulk Tc (K) ΔThys (K) -ΔS(J/kgK)
    MnFeP0,75Ge0,25 327 3 11,0
    Mn1,1Fe0,9P0,81Ge0,19 260 7 14,0
    Mn1,1Fe0,9P0,78Ge0,22 296 5 20,0
    Mn1,1Fe0,9P0,75Ge0,25 330 2 13,0
    Mn1,2Fe0,8P0,81Ge0,19 220 3 7,7
    Mn1,2Fe0,8P0,75Ge0,25 305 3 -
    Mn1,2Fe0,8P0,73Ge0,27 313 5 -
    Mn1,3Fe0,7P0,78Ge0,22 203 3 5,1
    Mn1,3Fe0,7P0,75Ge0,25 264 1 -
    Tabelle 2
    Bulk Tc (K) ΔThys (K) -ΔS(J/kgK)
    MnFeP0,75Ge0,25 327 3 11,0
    Mn1,16Fe0,84P0,75Ge0,25 330 5 22,5
    Mn1,18Fe0,82P0,75Ge0,25 310 3 16,1
    Mn1,20Fe0,80P0,75Ge0,25 302 1 12,0
    Mn1,22Fe0,78P0,75Ge0,25 276 4 11,7
    Mn1,26Fe0,74P0,75Ge0,25 270 1 8,5
    Mn1,1Fe0,9P0,81Ge0,19 260 6 13,8
    Mn1,1Fe0,9P0,78Ge0,22 296 4 20,0
    Mn1,1Fe0,9P0,77Ge0,23 312 2 14,6
    Mn1,1Fe0,9P0,75Ge0,25 329 2 13,0
    Bänder
    Mn1,20Fe0,80P0,75Ge0,25 288 1 20,3
    Mn1,22Fe0,78P0,75Ge0,25 274 2 15,3
    Mn1,24Fe0,76P0,75Ge0,25 254 2 16,4
    Mn1,26Fe0,74P0,75Ge0,25 250 4 14,4
    Mn1,30Fe0,70P0,75Ge0,25 230 0 9,8

Claims (7)

  1. Verfahren zur Herstellung von metallbasierten Materialien für die magnetische Kühlung oder Wärmepumpen, umfassend die folgenden Schritte
    a) Umsetzung von chemischen Elementen und/oder Legierungen in einer Stöchiometrie, die dem metallbasierten Material entspricht, in der Fest- und/oder Flüssigphase,
    b) gegebenenfalls Überführen des Umsetzungsproduktes aus Stufe a) in einen Festkörper,
    c) Sintern und/oder Tempern des Festkörpers aus Stufe a) oder b),
    d) Abschrecken des gesinterten und/oder getemperten Festkörpers aus Stufe c) mit einer Abkühlgeschwindigkeit im Bereich von 200 bis 1300 K/s.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Umsetzung in Stufe a) durch gemeinsames Erhitzen der Elemente und/oder Legierungen in einem geschlossenen Behältnis oder in einem Extruder, oder durch Festphasenumsetzung in einer Kugelmühle erfolgt.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Überführen in einen Festkörper in Stufe b) durch Schmelzspinnen oder Sprühkühlen erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Stufe c) zunächst bei einer Temperatur im Bereich von 800 bis 1400 °C gesintert und nachfolgend bei einer Temperatur im Bereich von 500 bis 750 °C getempert wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das metallbasierte Material ausgewählt ist aus
    (1) Verbindungen der allgemeinen Formel (I)

            (AyB1-y)2+δCwDxEz     (I)

    mit der Bedeutung
    A Mn oder Co,
    B Fe, Cr oder Ni,
    C, D, E mindestens zwei von C, D, E sind voneinander verschieden, haben eine nicht-verschwindende Konzentration und sind ausgewählt aus P, B, Se, Ge, Ga, Si, Sn, N, As und Sb, wobei mindestens eines von C, D und E Ge oder Si ist,
    δ Zahl im Bereich von - 0,1 bis 0,1
    w, x, y, z Zahlen im Bereich von 0 bis 1, wobei w + x + z = 1 ist;
    (2) auf La und Fe basierenden Verbindungen der allgemeinen Formeln (II) und/oder (III) und/oder (IV)

            La(FexSi1-x)13Hy     (II)

    mit
    x Zahl von 0,7 bis 0,95
    y Zahl von 0 bis 3;


            La(FexAlyCoz)13 oder La(FexSiyCoz)13     (III)

    mit
    x Zahl von 0,7 bis 0,95
    y Zahl von 0,05 bis 1 - x
    z Zahl von 0,005 bis 0,5;


            LaMnxFe2-xGe     (IV)

    mit
    x Zahl von 1,7 bis 1,95 und
    (3) Heusler-Legierungen des Typs MnTP mit T Übergangsmetall und P einem p-dotierenden Metall mit einem electron count pro Atom e/a im Bereich von 7 bis 8,5.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das metallbasierte Material ausgewählt ist aus mindestens quarternären Verbindungen der allgemeinen Formel (I), die neben Mn, Fe, P und gegebenenfalls Sb zusätzlich Ge oder Si oder As oder Ge und As oder Si und As, oder Ge, Si und As enthalten.
  7. Verfahren nach Anspruch 1 mit der Verfahrenssequenz
    a) Festphasenumsetzung von chemischen Elementen und/oder Legierungen in einer Stöchiometrie, die dem metallbasierten Material entspricht, in einer Kugelmühle,
    b) Schmelzspinnen des in Stufe a) erhaltenen Materials,
    c) Tempern des Festkörpers aus Stufe b) für einen Zeitraum von 10 Sekunden bis 5 Stunden, bei einer Temperatur im Bereich von 430 bis 1200°C,
    d) Abschrecken des getemperten Festkörpers aus Stufe c) mit einer Abkühlgeschwindigkeit von 200 bis 1300 K/s.
EP09738093.5A 2008-04-28 2009-04-27 Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen Active EP2277180B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09738093.5A EP2277180B1 (de) 2008-04-28 2009-04-27 Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08155259 2008-04-28
EP09738093.5A EP2277180B1 (de) 2008-04-28 2009-04-27 Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen
PCT/EP2009/055024 WO2009133049A1 (de) 2008-04-28 2009-04-27 Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen

Publications (2)

Publication Number Publication Date
EP2277180A1 EP2277180A1 (de) 2011-01-26
EP2277180B1 true EP2277180B1 (de) 2017-08-09

Family

ID=40785565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09738093.5A Active EP2277180B1 (de) 2008-04-28 2009-04-27 Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen

Country Status (11)

Country Link
US (1) US20110061775A1 (de)
EP (1) EP2277180B1 (de)
JP (1) JP5855457B2 (de)
KR (1) KR101553091B1 (de)
CN (1) CN102017025B (de)
AU (2) AU2009242216C1 (de)
BR (1) BRPI0911771A2 (de)
CA (1) CA2721621A1 (de)
NZ (1) NZ588756A (de)
TW (1) TWI459409B (de)
WO (1) WO2009133049A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110041513A1 (en) * 2009-08-18 2011-02-24 Technology Foundation Stw Polycrystalline magnetocaloric materials
TW201145319A (en) * 2010-01-11 2011-12-16 Basf Se Magnetocaloric materials
AU2011225713A1 (en) 2010-03-11 2012-08-23 Basf Se Magnetocaloric materials
TWI398609B (zh) * 2010-04-08 2013-06-11 Univ Nat Taipei Technology 室溫下迴轉式磁製冷機裝置
CN101906563B (zh) * 2010-08-31 2013-04-10 沈阳理工大学 一种具有高效室温磁制冷性能的MnAsP化合物的制备方法
DE102010063061B3 (de) * 2010-12-14 2012-06-14 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Verwendung eines seltenerdmetallfreien Stoffes als magnetokalorisch aktives Material
KR20130112600A (ko) 2012-04-04 2013-10-14 삼성전자주식회사 붕소-도핑된 전이금속 프닉타이드계 자기열효과물질 제조방법
JP6009994B2 (ja) * 2012-06-12 2016-10-19 国立大学法人九州大学 磁気冷凍材料
FR2994252B1 (fr) * 2012-08-01 2014-08-08 Cooltech Applications Piece monobloc comprenant un materiau magnetocalorique ne comprenant pas un alliage comprenant du fer et du silicium et un lanthanide, et generateur thermique comprenant ladite piece
US20140157793A1 (en) * 2012-12-07 2014-06-12 General Electric Company Novel magnetic refrigerant materials
DE102013201845B4 (de) * 2013-02-05 2021-09-02 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Seltenerdmetallfreie permanentmagnetische materialien
JP6465884B2 (ja) * 2013-08-09 2019-02-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Bを含む磁気熱量材料
EP3031058B1 (de) * 2013-08-09 2017-09-20 Basf Se Magnetokalorische materialien enthaltend b
US9887027B2 (en) 2013-09-27 2018-02-06 Basf Se Corrosion inhibitors for Fe2P structure magnetocaloric materials in water
WO2016104739A1 (ja) * 2014-12-26 2016-06-30 大電株式会社 磁気冷凍用材料の製造方法
US20180114659A1 (en) 2015-03-30 2018-04-26 Basf Se Mechanical heat switch and method
WO2018083819A1 (ja) 2016-11-02 2018-05-11 日本碍子株式会社 磁性材料の製造方法
CN108085547B (zh) * 2017-12-15 2019-12-13 东北大学 具有反常矫顽力温度系数和磁制冷能力的磁性材料及其制备方法
EP3915944A1 (de) * 2020-05-28 2021-12-01 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Adiabatisches kühlmittel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPH06102549B2 (ja) * 1988-08-12 1994-12-14 東京大学長 Ca−Sr−Bi−Cu−O系酸化物超伝導性光伝導物質及びその製造法
CN1140646C (zh) * 2000-05-15 2004-03-03 中国科学院物理研究所 一种具有大磁熵变的稀土-铁基化合物
JP4352023B2 (ja) * 2001-03-27 2009-10-28 株式会社東芝 磁性材料
CN1705761B (zh) * 2002-10-25 2010-05-12 昭和电工株式会社 包含稀土元素的合金,其生产方法,磁致伸缩器件,以及磁性冷冻剂材料
ATE361535T1 (de) * 2003-01-29 2007-05-15 Stichting Tech Wetenschapp Magnetisches material mit kühlfähigkeit, verfahren zu seiner herstellung und verwendung eines solchen materials
JP3967728B2 (ja) * 2003-03-28 2007-08-29 株式会社東芝 複合磁性材料及びその製造方法
JP2005086904A (ja) * 2003-09-08 2005-03-31 Canon Inc 磁性体を用いた熱機関
JP4240380B2 (ja) * 2003-10-14 2009-03-18 日立金属株式会社 磁性材料の製造方法
JP5157076B2 (ja) * 2005-04-01 2013-03-06 日立金属株式会社 磁性合金の焼結体の製造方法
JP2007291437A (ja) * 2006-04-24 2007-11-08 Hitachi Metals Ltd 磁気冷凍作業ベッド用の焼結体およびその製造方法
KR101555399B1 (ko) * 2008-04-28 2015-09-23 바스프 에스이 열자기 발전기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CA2721621A1 (en) 2009-11-05
WO2009133049A1 (de) 2009-11-05
NZ588756A (en) 2012-05-25
AU2014203376A1 (en) 2014-07-10
TW201009855A (en) 2010-03-01
JP2011523676A (ja) 2011-08-18
CN102017025A (zh) 2011-04-13
CN102017025B (zh) 2014-06-25
TWI459409B (zh) 2014-11-01
AU2009242216A1 (en) 2009-11-05
EP2277180A1 (de) 2011-01-26
AU2009242216C1 (en) 2014-09-04
AU2009242216B2 (en) 2014-03-20
US20110061775A1 (en) 2011-03-17
KR20110036700A (ko) 2011-04-08
BRPI0911771A2 (pt) 2015-10-06
JP5855457B2 (ja) 2016-02-09
KR101553091B1 (ko) 2015-09-14

Similar Documents

Publication Publication Date Title
EP2277180B1 (de) Verfahren zur herstellung von metallbasierten materialien für die magnetische kühlung oder wärmepumpen
EP2272111B1 (de) Thermomagnetischer generator
EP2465118B1 (de) Wärmetauscherbetten aus thermomagnetischem material
EP2274750B1 (de) Offenzelliger, poröser formkörper für wärmetauscher
EP2417610B1 (de) Wärmeträgermedium für magnetokalorische materialien
EP2467858B1 (de) Polykristalline magnetokalorische materialien
DE102006057750B4 (de) Thermoelektrisches Material und thermoelektrische Umwandlungsvorrichtung unter Verwendung desselben
DE112006001628B4 (de) Ferromagnetische Formgedächtnislegierung und deren Anwendung
DE10134056B4 (de) Verfahren zur Herstellung von nanokristallinen Magnetkernen sowie Vorrichtung zur Durchführung des Verfahrens
DE102013103896B4 (de) Verfahren zum Herstellen eines thermoelektrischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE10338467A1 (de) Magnetisches Legierungsmaterial und Verfahren zur Herstellung des magnetischen Legierungsverfahrens
WO2011009904A1 (de) Verwendung diamagnetischer materialien zur bündelung magnetischer feldlinien
DE102014114830A1 (de) Verfahren zum Herstellen eines thermoelektischen Gegenstands für eine thermoelektrische Umwandlungsvorrichtung
DE69017556T2 (de) Thermoelektrisches Fe-Silizid-Konversionsmaterial vom P-Typ.
DE102018117553B4 (de) Legierung, gesinterter Gegenstand, thermoelektrisches Modul und Verfahren zum Herstellen eines gesinterten Gegenstands
DE4126893A1 (de) Magnetmaterial auf basis von sm-fe-n und verfahren zu dessen herstellung
DE4017776C2 (de) Thermoelektrisches Energiewandlermaterial aus n-leitendem Fe-Silicid
DE102012220306A1 (de) Werkstoff mit einer Halb-Heusler-Legierung und Verfahren zum Herstellen eines solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160617

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160928

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20170222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014246

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014246

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180426

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180629

Year of fee payment: 10

Ref country code: GB

Payment date: 20180427

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 25629

Country of ref document: SK

Effective date: 20180427

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 917643

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180427

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009014246

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190427

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809