EP2271423A2 - Materiaux carbones issus de latex - Google Patents

Materiaux carbones issus de latex

Info

Publication number
EP2271423A2
EP2271423A2 EP09731201A EP09731201A EP2271423A2 EP 2271423 A2 EP2271423 A2 EP 2271423A2 EP 09731201 A EP09731201 A EP 09731201A EP 09731201 A EP09731201 A EP 09731201A EP 2271423 A2 EP2271423 A2 EP 2271423A2
Authority
EP
European Patent Office
Prior art keywords
latex
mass
carbon
gel
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09731201A
Other languages
German (de)
English (en)
Inventor
Philippe Sonntag
David Ayme-Perrot
Jean-Michel Simon
Serge Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson SA
Original Assignee
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson SA filed Critical Hutchinson SA
Publication of EP2271423A2 publication Critical patent/EP2271423A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • C08J2309/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2313/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/16Addition or condensation polymers of aldehydes or ketones according to C08L59/00 - C08L61/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon

Definitions

  • the subject of the invention is new organic gels of the resorcinol-formaldehyde type (RP gels) as well as carbonaceous materials of adjusted porosity deriving by pyrolysis. Such materials can be used in particular for the production of electrodes.
  • RP gels resorcinol-formaldehyde type
  • WO 2007/024241 discloses a method of manufacturing a porous carbonaceous material. According to this process, a mixture of a carbon precursor such as a resorcinol for example and a block polymer is formed to form a structured material. The carbon precursor is then crosslinked with formaldehyde and then the whole is pyrolyzed. A carbonaceous material having an organized nanostructure whose pores have a uniform size which can vary from 4 to 100 nm is obtained.
  • a carbon precursor such as a resorcinol for example
  • a block polymer is formed to form a structured material.
  • formaldehyde formaldehyde
  • the document Chem. Mater. 2002, 14, 1665-1670 describes the production of mesoporous carbon materials.
  • the process uses polystyrene microspheres in admixture with an aqueous suspension of resorcinol / formaldehyde resin.
  • the polystyrene latex induces the formation of pores of sizes ranging from 50 to 100 nm, resulting in a low full capacity.
  • Document FR-I 097 512 describes a process for the manufacture of sponges based on latex and resorcinol / formaldehyde resin.
  • the latex and the resin are mixed with various additives and then the mixture is gelled and vulcanized.
  • FR-0 961 294 relates to a process for reinforcing latex mixtures.
  • the latex is mixed with a resin and then gelled and dried.
  • xerogels are intended for use as phonic and / or thermal insulators, in applications in high energy physics, catalysis or to produce ion exchange resins.
  • These materials are prepared by a process comprising mixing the reactants and polymerizing them using a basic catalyst in an aqueous medium, solvent exchange with an organic solvent and drying in a supercritical CO 2 medium.
  • a process comprising mixing the reactants and polymerizing them using a basic catalyst in an aqueous medium, solvent exchange with an organic solvent and drying in a supercritical CO 2 medium.
  • WO 01/19904 describes a mesoporous carbon material prepared by polymerization of a resorcinol / formaldehyde system in the presence of a surfactant and treatment of the gel obtained by pyrolysis.
  • the applications concerned are the production of supercapacitive electrodes and chromatography resins.
  • the specific capacity of the materials described in the prior art can be further improved.
  • a better match between the quantitative numerical evaluation and the reality of the performances can be obtained by the evaluation of the solid mass capacity of the material, which takes into account the pore volume of this material.
  • One of the objectives that is achieved by the invention is to obtain materials derived from an RF type gel after a pyrolysis step, these materials having a solid capacity greater than that of the materials of the prior art. And it has also sought to obtain carbonaceous materials with a graphitic structure.
  • Amorphous carbon has a low conductivity.
  • the amorphous carbon usually has to be mixed with graphitic carbon or metal particles to increase its conductivity.
  • the advantage of having a partially graphitized structure is therefore to reduce the resistivity of the monolithic carbon obtained by a simple process that does not require mixing.
  • This objective has been achieved in particular by controlling the porosity to obtain carbonaceous materials whose porosity is different from that of the materials of the prior art.
  • Porous materials are characterized by the pore size they comprise.
  • microporous Materials whose pore diameters are less than 2 nm are called microporous. Those with pore diameters between 2 and 50 nm are called mesoporous. Finally, materials whose pores have a diameter greater than 50 nm are called macroporous.
  • the method described in WO 01/19904 leads to essentially mesoporous carbon materials, the choice of this type of pores supposedly making it possible to optimize the mass capacity of the material.
  • the present invention is based on the observation that a carbonaceous material having a controlled porosity comprising a network of pores, a part of which is mesoporous and whose overall pore volume is reduced, makes it possible to improve the performance of these materials with respect to the prior art when they are used in particular as electrodes.
  • a large part of the carbonaceous materials of the prior art has a limited mechanical strength that does not allow their machining.
  • To produce electrodes from such materials it is first necessary to reduce them to a powder which is then compressed in admixture with a binder, most often a fluorinated polymer. Since the binder is a non-conductive material, the mass capacity of such electrodes is limited and less than that of the carbonaceous material itself if it were in the form of a monolith.
  • the invention particularly relates to a machinable monolithic carbon material.
  • the subject of the invention is polymer gels of controlled porosity, their method of preparation, their use for producing monolithic carbonaceous materials having a high mechanical strength, a high solid mass capacity and therefore a high conductivity. It relates to the electrodes obtained from these carbonaceous materials.
  • the invention firstly relates to a gel of at least one hydrophilic polymer and at least one latex, the polymer and the latex being co-crosslinked.
  • Gel means the mixture of a colloidal material and a liquid, which is formed spontaneously or under the action of a catalyst by flocculation and coagulation of a colloidal solution.
  • the subject of the invention is also a xerogel of at least one hydrophilic polymer and at least one latex, the polymer and the latex being co-crosslinked.
  • xerogel a gel whose volatile solvent is gone to give a harder structure and reduced volume.
  • hydrophilic polymer is meant either a water-soluble polymer or a water-dispersible polymer.
  • water-soluble polymer is meant a polymer which can be solubilized in water without addition of additives (surfactants in particular).
  • a water-dispersible polymer is a polymer capable of forming a dispersion when it is mixed with water.
  • the water-soluble or water-dispersible nature of a polymer may vary depending on various parameters such as the temperature and the pH of the water.
  • the polymers used in the invention are polymers of the polyhydroxybenzene / formaldehyde type, that is to say polymers resulting from the polycondensation of at least one monomer of the polyhydroxybenzene type and at least one monomer formaldehyde. of.
  • This polymerization reaction may involve more than two distinct monomers, the additional monomers being of the polyhydroxybenzene type or not.
  • polyhydroxybenzenes that can be used for carrying out the invention are preferably di- or tri-hydroxybenzenes, and advantageously resorcinol (1,3-dihydroxybenzene) or the mixture of resorcinol with another compound chosen from catechol and hydroquinone. , phloroglucinol.
  • the polymer system preferably a resorcinol / formaldehyde system, is mixed with a latex.
  • latex an aqueous dispersion of an elastomer.
  • a latex with a pH of between 3 and 7.5, advantageously between 5.5 and 7.5, is used.
  • the latex is a nitrogenous latex, that is to say a latex carrying nitrogen functions such as nitrile, azo, amine or amide functional groups.
  • the nitrogenous latex is characterized by a quantity of nitrogenous monomers which represents between 2 and 90 mol% relative to all the monomers of the latex. These quantities are evaluated on the active ingredient, excluding the water in which the latex is dispersed.
  • the latex may be a mixture of at least two latexes, a nitrogen latex and a non-nitrogen latex.
  • the nitrogen latex represents from 5 to 100% by weight of the mass of latex.
  • latices that can be used in the invention, mention may be made of: nitrile rubbers, copolymers of acrylonitrile and butadiene (NBR), copolymers of hydrogenated acrylonitrile and butadiene (HNBR), copolymers of styrene and acrylonitrile (SAN), terpolymers of acrylonitrile, butadiene and styrene (ABS), terpolymers of styrene, acrylonitrile and styrene (SAS), polyurethane elastomers.
  • NBR acrylonitrile and butadiene
  • HNBR hydrogenated acrylonitrile and butadiene
  • SAN copolymers of styrene and acrylonitrile
  • ABS terpolymers of acrylonitrile, butadiene and styrene
  • SAS terpolymers of styrene, acrylonitrile and s
  • HNBR Hydrogenated NBR
  • XNBR Carbox NBR
  • HXNBR Hydrogenated NBR
  • SAN Styrene acrylonitrile
  • carbohydrate-based polymers cellulose, hemicellulose, rayon, polysaccharides
  • the molar ratio of polyhydroxybenzene, designated R, and which is preferably resorcinol, and formaldehyde, designated F, is 0.4 ⁇ R / F ⁇ 0.6, preferably 0.45 ⁇ R / F ⁇ 0.55.
  • M L mass of polyhydroxybenzene (preferably resorcinol)
  • Mp mass of formaldehyde
  • the invention further relates to a method for producing a xerogel of at least one hydrophilic polymer and at least one co-crosslinked latex as described above, this method comprising the steps of:
  • step (v) drying The mixture of the monomers in step (i) is made in the proportions indicated above.
  • the total amount of water (including the water of the latex and optional additives) is chosen to have a mass ratio M R / M W ⁇ 1.4 with M R the weight of the polyhydroxybenzene monomers (preferably resorcinol) and Mw the body of water.
  • a water-miscible solvent such as: methanol, ethanol, isopropanol, acetone, acetonitrile, dimethylformamide, dimethylsulfoxide, dioxane, tetrahydrofuran, hexamethylphosphotriamide.
  • the amount of organic solvent is advantageously less than 20% by weight relative to the total mass of solvent.
  • one or more additives which may be chosen from: metal particles, surfactants, mineral or organic fillers, aerogels, viscosifying agents.
  • lithium salts and boron salts.
  • a cationic, nonionic or anionic surfactant such as, for example, a quaternary ammonium, an alkyl sulphate or an alkyl sulphonate, or a poly (ethylene oxide).
  • inorganic or organic fillers mention may be made of: carbon black, carbon nanotubes, particles of aluminum, nickel, palladium, platinum, hollow glass beads, silica particles coated with metal.
  • viscosifiers mention may be made of polyethylene glycols.
  • the basic aqueous solution is advantageously a solution of a mineral base, such as a carbonate.
  • a mineral base such as a carbonate.
  • an IM solution of Na 2 CO 3 can be used .
  • the passage of the pH to a value between 5.5 and 7.5, accompanied or followed by heating, causes the formation of a gel.
  • the heating is preferably at constant volume, preferably under pressure, for example by passing in an oven in a closed container. On an industrial scale, heating can be done under controlled pressure.
  • the duration of the heating is advantageously 24 to 72 hours and the temperature is between 70 and 90 ° C.
  • the gel thus obtained is then dried.
  • Different drying modes can be envisaged: either by heating under a gas flow so as to promote evaporation (convective drying), or by lyophilization or drying in a supercritical CO 2 medium.
  • a xerogel of hydrophilic polymer and latex preferably a resorcinol-formaldehyde xerogel (RF) / latex, is then obtained.
  • RF resorcinol-formaldehyde xerogel
  • the process of the invention unlike the methods of the prior art, makes it possible to obtain xerogels of high density, especially with a density greater than or equal to 1.5.
  • a xerogel of the invention is distinguished from xerogels of the prior art by the presence of nitrogen functions when the latex is itself carrying nitrogen functions.
  • Such a material has the appearance of a gel, it is used as an acoustic or thermal insulating material.
  • Another subject of the invention is a carbon material that can be obtained by pyrolysis of the xerogel of the invention.
  • the carbonaceous material of the invention is a carbon monolith comprising graphite.
  • Graphite is an allotropic form of carbon characterized by layers of atoms in a hexagonal arrangement.
  • the carbonaceous material of the invention comprises 0.1 to 20%, preferably 0.5 to 10% by weight of graphite relative to the total mass of the material.
  • the carbon spectra obtained have peaks offset from pure graphite.
  • the spectra may also have peaks at 61 °, 75 °, 79 ° and 81.5 ° and these are + - 1 ° values.
  • the amplitude of the peaks varies in proportion to the amount of graphite present and it is sufficient that the three peaks corresponding to angles less than 60 ° are present to characterize the presence of graphite.
  • the material of the invention is further characterized by a density of between 0.5 and 1.5, preferably between 0.7 and 1.2.
  • the carbonaceous material of the invention is distinguished from the carbonaceous materials of the prior art by the presence of a network of pores of which at least 10% is mesoporous, preferably more than 20%, and a total pore volume: 0.4 -1 cm 3 / g, preferably
  • carbon monolith a material of a single block consisting essentially of carbon atoms.
  • the material of the invention is characterized by a solid mass capacity greater than or equal to 75 F / g, measured in a molar aqueous solution of H 2 SO 4 .
  • the solid mass capacity is the mass capacity of the material measured on the electrolyte filled material. It is measured after immersion of the material in an electrolyte solution. It varies according to the electrolyte used, and in particular it is a function of the density of the electrolyte.
  • the subject of the invention is also a process for producing a carbonaceous material of the invention, this process comprising a step of heating a xerogel as described above at a temperature of between 700 and 1050 ° C. for duration between 5 and 8 hours.
  • this heating is operated under a nitrogen atmosphere.
  • This results in a carbonization of all the components of the xerogel.
  • the material undergoes a volume reduction and is in the form of a monolith of high mechanical strength, which allows its machining, in particular to produce electrodes.
  • Such electrodes which do not comprise binder material are, for an equal volume, of capacity greater than that of the electrodes obtained from a powder.
  • this carbonaceous material can, if desired, be reduced to powder and used in all usual applications of electroconductive carbons, and especially as a filler in plastics for the production of electroconductive parts. Examples include automobile body parts which must be painted by electrostatic painting.
  • Another object of the invention is the use of a carbon material as described above to produce electrodes.
  • the organic gels result from the polycondensation of resorcinol with formaldehyde in the presence of latex particles.
  • the resorcinol / formaldehyde (R / F) mole ratio and the resorcinol / water (R / W) mass ratio were set at 0.5 and 0.4, respectively.
  • the formaldehyde used is in the form of an aqueous solution (stabilized in the presence of 10 to 15% of methanol), the quantity of water it contains is taken into account in the total volume of water present in the formulation, therefore in the ratio R / W.
  • Resorcinol (10,204 g, supplied by the company Acros, quality 98%) is first dissolved in distilled water.
  • the aqueous formaldehyde solution (Riedel de Ha ⁇ n, in 36.5% solution) is then added: 14.944 g.
  • the content of latex particles added (Latex Perbunan® RN-2890) to the system is defined by the ratio:
  • This calculated mass represents the mass of latex particles, and not the overall mass of latex solution.
  • the following three latex contents were tested: 5, 10 and 25%.
  • the pH is then adjusted to pH 5.5 or 6.5 by adding a few drops of a solution of sodium carbonate (5M and / or IM).
  • the final mixture is placed in test tubes, which are then sealed and placed in an oven at 90 ° C for 1 day.
  • the gels obtained are washed by immersing them in distilled water for 2 hours, so as to remove the traces of reagents still present. They are then placed in a tubular oven for 6 hours at 85 ° C., and under nitrogen
  • the dried gels (xerogels of RF + latex) are subjected to pyrolysis at 800 ° C. under a nitrogen flow of 10 L / min. Each product is characterized by its latex content and its gelation pH.
  • the capacities of the carbonaceous materials of the invention have been characterized within an electrochemical device with three electrodes, in particular by chronopotentiometry (1 A / g in an aqueous medium and 0.5 A / g in an organic medium). Their capacity was measured and produced a charge-discharge curve for each of these materials in an aqueous electrolyte and in a non-aqueous electrolyte.
  • the charge and discharge curves were obtained by applying a constant current pulse and following the voltage response over time, using a VersaStat (EG & G) potentiometer with a computer interface (IBM).
  • the EG & G Model 270 software was used for wave function application and data acquisition.
  • the aqueous electrolyte is a solution of 1M H 2 SO 4
  • the organic electrolyte is a solution of sodium perchlorate in acetonitrile: NaClO 4 2M + ACN.
  • the working electrode consists of a platinum grid in which is placed the monolithic carbon to be analyzed (mass and surface known).
  • the counter electrode used is platinum
  • the reference electrode is a saturated calomel electrode in an aqueous medium
  • an electrode with potential limits in an organic medium The energy densities were measured according to the protocol described in JR Miller and AF Burke "Electric vehicle capacitor test procedure manual" 1994 DOE / ID 1049, p.21-25.
  • the two carbons have an identical R / W ratio, but their capacitive properties are different, the latex plays on the textural properties that govern the capacitive behavior.
  • Table 1 Actual and specific capacities with respect to the porous volume of dry carbon. Measured by immersion of the carbon electrode in H 2 SO 4 IM. There is an increase in the density and volume capacity of the carbon xerogel initially containing latex.
  • the RF + Latex system (5%) is more interesting because of its smaller pore volume which reduces the amount of useful electrolyte.
  • Table 2 Actual and specific capacities with respect to the porous volume of dry carbon. Measured by immersion of the carbon electrode in ACN + 2M NaClO 4 .
  • the capacity of the carbon derived from the RF + Latex system with respect to the pore volume is improved compared with that of its counterpart without latex.
  • the carbon from the RF + Latex system is therefore much more efficient.
  • Table 3 Evolution of capacities according to the initial latex content at pH 6.5. b- Materials made at pH 5.5
  • Table 4 Evolution of the volume capacities (calculated with respect to the mass of dry carbon) as a function of the initial latex content at pH 5.5.
  • V- RX diffractograms of the different xerogels of carbons A RX PW 1830 Panalytical apparatus is used
  • An additional carbonaceous material is prepared from a high nitrile content latex with 5% Synthomer 6617 latex (40% ACN) prepared at pH 6.5.
  • FIG. 2D X-ray diffractogram of the carbon derived from the Latex RF system (5%) prepared at pH 6.5 with a latex with a high nitrile group content (40% ACN Synthomer 6617)
  • a xerogel and a carbon material are prepared according to the same protocol as above, replacing the latex with a styrenic latex.
  • the gel is derived from the polycondensation of resorcinol with formaldehyde in the presence of latex particles.
  • the resorcinol / formaldehyde molar ratio (RJF) and the resorcinol / water mass ratio (R / W) were set at 0.5 and 0.4, respectively.
  • the formaldehyde used is in the form of an aqueous solution (stabilized in the presence of 10 to 15% of methanol), the quantity of water it contains is taken into account in the total volume of water present in the formulation, therefore in the ratio R / W.
  • Resorcinol (30.62 g, supplied by the SAFC company, 98% grade) is first dissolved in distilled water.
  • the aqueous solution of formaldehyde (Merck, in 37% solution) is then added: 50.05 g
  • the content of added latex particles (Latex Synthomer® 9076 styrenic latex) to the system is defined by the ratio:
  • This calculated mass represents the mass of latex particles, and not the overall mass of latex solution.
  • the test is carried out with a latex content of 5%.
  • the pH is then adjusted to pH 6.5 by adding a few drops of a solution of sodium carbonate (1M).
  • the final mixture is placed in test tubes, which are then sealed and placed in an oven at 90 ° C for one day.
  • the gels obtained are washed by immersing them in distilled water for 2 hours, so as to remove traces of reagents still present.
  • the dried gels (RF Xerogels + styrenic latex) are subjected to pyrolysis at 800 ° C. under a flow of nitrogen 1L / min.
  • C - Results In the table below, the properties of the product obtained according to the process of the invention are compared with 0.05% of nitrogen latex and at pH 6.5 (RF-L0.05) and the product obtained from the latex. styrenic (0.05%) at pH 6.5 (RF-LStyr 0.05).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

Gels organiques du type résorcinol-formaldéhyde, matériaux carbonés de porosité ajustée en dérivant par pyrolyse. De tels matériaux peuvent être utilisés notamment pour la production d'électrodes.

Description

MATERIAUX CARBONÉS ISSUS DE LATEX
L'invention a pour objet de nouveaux gels organiques du type résorcinol- formaldéhyde (dits gels RP) ainsi que les matériaux carbonés de porosité ajustée en dérivant par pyrolyse. De tels matériaux peuvent être utilisés notamment pour la production d'électrodes.
Le document WO 2007/024241 décrit un procédé de fabrication d'un matériau carboné poreux. Selon ce procédé on forme un mélange d'un précurseur carboné tel qu'un résorcinol par exemple, et un polymère bloc pour former un matériau structuré. Le précurseur carboné est alors réticulé par du formaldéhyde puis l'ensemble est pyrolyse. On obtient un matériau carboné doté d'une nanostructure organisée dont les pores sont de taille uniforme qui peut varier de 4 à 100 nm.
Toutefois ce procédé est mis en œuvre en milieu organique, ce qui pose des problèmes de pollution, cette synthèse est compliquée en raison de problèmes de miscibilité entre les composants, elle est coûteuse et de faible rendement. Enfin, les produits obtenus ne sont pas entièrement satisfaisants.
Le document Chem. Mater. 2002, 14, 1665-1670 décrit la production de matériaux carbonés mésoporeux. Le procédé utilise des microsphères de polystyrène en mélange avec une suspension aqueuse d'une résine résorcinol/formaldéhyde. Le latex de polystyrène induit la formation de pores de tailles allant de 50 à lOOnm, ce qui entraîne une faible capacité pleine.
Le document FR-I 097 512 décrit un procédé de fabrication d'épongés à base de latex et de résine résorcinol/formaldéhyde. Le latex et la résine sont mélangés avec différents additifs puis le mélange est gélifié et vulcanisé.
Le document FR-O 961 294 concerne un procédé de renforcement de mélanges de latex. Le latex est mélangé à une résine puis gélifié et séché.
Le document J. Adhésion, 1984, vol. 16, p. 179-216 concerne des compositions d'adhésif à base de latex et de mélange résorcinol/formaldéhyde. Il s'agit d'une étude sur la structure de ces matériaux et sur leurs propriétés fondamentales.
Le document Journal of non crystalline Solids, 353 (2007), 2893-2899 décrit un matériau carboné préparé à partir d'une résine résorcinol/formaldéhyde et d'un latex de PMMA. Dans un premier temps est formé un gel, qui est séché puis pyrolyse. Le latex permet d'induire une structure mésoporeuse dans le matériau carboné. Il est mentionné la présence d'une structure graphitique, mais le spectre aux rayons X ne permet pas de détecter une telle structure. Le document US-4,873,218 décrit des xérogels de type RF de faible densité et leur pyrolyse conduisant à des mousses de carbone également de faible densité.
Ces xérogels sont destinés à une utilisation comme isolant phonique et/ou thermique, dans des applications en physique de haute énergie, en catalyse ou pour produire des résines échangeuses d'ions.
Ces matériaux sont préparés par un procédé comprenant le mélange des réactifs et leur polymérisation à l'aide d'un catalyseur basique en milieu aqueux, un échange de solvant par un solvant organique et un séchage en milieu CO2 supercritique. Un tel procédé présente un coût très élevé et est peu adaptable à l'échelle industrielle notamment parce qu'il suppose l'utilisation de très grandes quantités de solvants organiques.
En outre, les matériaux obtenus après pyrolyse ont une porosité très élevée (et donc une faible densité) ce qui se traduit par des propriétés conductrices peu satisfaisantes. Diverses améliorations de ce procédé et de ces matériaux ont été proposées :
• Le séchage convectif, qui génère des xérogels de RF (C. Lin et A. Ritter, Carbon 35 (1997) 1271), suivi d'une pyrolyse conduit à des xérogels de carbone qui sont particulièrement intéressants car, d'une part, le séchage convectif présente l'avantage d'être simple et peu coûteux, et d'autre part, les matériaux conservent de très bonnes caractéristiques structurales et texturales qui leur permettent d'être utilisés sous forme de poudre (C. Lin et al, J. Electrochem. Soc. 146 (1999) 3639) ou en tant que monolithes (N. Job et al, Carbon 43 (2005) 2481).
• La variation de certains paramètres de synthèse (pH, teneur en réactif...) ou post-synthèse (activations physiques ou chimiques) permet d'ajuster et de contrôler les propriétés structurales, texturales et mécaniques finales (surface spécifique, volume poreux, densité,...) des xérogels de carbone (E. J. Zanto et al, Ind. Eng. Chem. Res. 41 (2002) 3151).
" Certains additifs (sels inorganiques) ont été utilisés lors de la formulation des gels précurseurs afin de modifier éventuellement la composition superficielle des carbones poreux finaux (N. Job et al, Carbon 42 (2004) 3217).
• WO 01/19904 décrit un matériau carboné mésoporeux préparé par polymérisation d'un système résorcinol/formaldéhyde en présence d'un tensioactif puis traitement du gel obtenu par pyrolyse. Les applications concernées sont la production d'électrodes supercapacitives et de résines de chromatographie. Toutefois, la capacité spécifique des matériaux décrits dans l'art antérieur peut encore être améliorée.
La capacité spécifique mesurée dans les documents de l'art antérieur (notamment WO 01/19904) est calculée par rapport à la masse sèche du matériau. Ce mode de calcul n'est néanmoins pas satisfaisant car il n'est pas représentatif des performances du matériau lorsqu'il est employé en tant qu'électrode.
Une meilleure adéquation entre l'évaluation numérique quantitative et la réalité des performances peut être obtenue par l'évaluation de la capacité massique pleine du matériau, qui tient compte du volume poreux de ce matériau. L'un des objectifs qui est atteint par l'invention est l'obtention de matériaux issus d'un gel de type RF après une étape de pyrolyse, ces matériaux ayant une capacité massique pleine supérieure à celle des matériaux de l'art antérieur. Et l'on a également cherché à obtenir des matériaux carbonés dotés d'une structure graphitique. Le carbone amorphe présente une basse conductibilité. Dans la fabrication des électrodes pour capacités, le carbone amorphe doit de façon habituelle être mélangé avec du carbone graphitique ou des particules métalliques pour augmenter sa conductivité. L'avantage de posséder une structure partiellement graphitisée est donc de diminuer la résistivité du carbone monolithique obtenu par un procédé simple ne nécessitant pas de mélange.
Ces matériaux, leurs procédés de préparation et leurs utilisations, sont décrits ci-dessous.
Cet objectif a pu être atteint notamment grâce à un contrôle de la porosité permettant l'obtention de matériaux carbonés dont la porosité est différente de celle des matériaux de l'art antérieur.
Les matériaux poreux sont caractérisés par la taille des pores qu'ils comprennent.
Les matériaux dont les diamètres des pores sont inférieurs à 2 nm sont dits microporeux. Ceux dont les diamètres des pores sont compris entre 2 et 50 nm sont dits mésoporeux. Enfin les matériaux dont les pores ont un diamètre supérieur à 50 nm sont qualifiés de macroporeux. Le procédé décrit dans WO 01/19904 conduit à des matériaux carbonés essentiellement mésoporeux, le choix de ce type de pores permettant prétendument d'optimiser la capacité massique du matériau.
La présente invention repose sur le constat qu'un matériau carboné doté d'une porosité contrôlée comportant un réseau de pores dont une partie est mésoporeux et dont le volume poreux global est réduit permet d'améliorer les performances de ces matériaux par rapport aux matériaux de l'art antérieur lorsque ils sont utilisés notamment comme électrodes. En outre, une grande partie des matériaux carbonés de l'art antérieur présente une résistance mécanique limitée qui ne permet pas leur usinage. Pour produire des électrodes à partir de tels matériaux il faut tout d'abord les réduire en une poudre qui est ensuite compressée en mélange avec un liant, le plus souvent un polymère fluoré. Le liant étant en matériau non conducteur, la capacité massique de telles électrodes est limitée et inférieure à celle du matériaux carboné lui-même s'il était sous forme d'un monolithe.
On a donc cherché à mettre au point un matériau qui ait à la fois une densité, et donc une résistance mécanique, élevée, et également une capacité massique pleine élevée. L'invention concerne notamment un matériau carboné monolithique usinable.
On a en outre cherché des produits et des procédés qui soient économiques et dont la mise en œuvre soit simple, que l'on puisse appliquer à l'échelle industrielle.
L'invention a pour objet des gels de polymères de porosité contrôlée, leur procédé de préparation, leur utilisation pour produire des matériaux carbonés monolithiques ayant une résistance mécanique élevée, une forte capacité massique pleine et donc une forte conductivité. Elle a pour objet les électrodes obtenues à partir de ces matériaux carbonés.
L'invention a pour premier objet un gel d'au moins un polymère hydrophile et d'au moins un latex, le polymère et le latex étant co-réticulés.
Par gel on entend le mélange d'une matière colloïdale et d'un liquide, qui se forme spontanément ou sous l'action d'un catalyseur par la floculation et la coagulation d'une solution colloïdale.
L'invention a encore pour objet un xérogel d'au moins un polymère hydrophile et d'au moins un latex, le polymère et le latex étant co-réticulés.
Par xérogel on entend un gel dont le solvant volatil est parti pour donner une structure plus dure et de volume réduit.
Par polymère hydrophile on entend soit un polymère hydrosoluble, soit un polymère hydrodispersable. Par polymère hydrosoluble on entend un polymère qui peut être solubilisé dans l'eau sans adjonction d'additifs (tensioactifs notamment).
Un polymère hydrodispersable est un polymère susceptible de former une dispersion lorsqu'il est mélangé à de l'eau.
Le caractère hydrosoluble ou hydrodispersable d'un polymère peut varier en fonction de différents paramètres tels que la température et le pH de l'eau.
Parmi les polymères utilisables dans la présente invention on peut citer les systèmes suivants : hydroquinone/résorcinol/formaldéhyde, phloroglucinol/résorcinol/formaldéhyde, catéchol/résorcinol/formaldéhyde, chlorure de polyvinyle, phénol/formaldéhyde, polyamino phénol/benzaldéhyde, époxy phénol/formaldéhyde, phénol/benzaldéhyde, polystyrène oxydé, alcool polyfurfurylique, alcool polyvinylique, polyacrylonitrile, chlorure de polyvinylidène, cellulose, polybutylène, acétate de cellulose, mélamine/formaldéhyde, acétate de polyvinyl, éthyl cellulose, résines époxy, acrylonitrile/styrène, polystyrène, polyamide, polyisobutylène, polyéthylène, polyméthyl-méthacrylate et divinylbenzène/styrène.
De préférence, les polymères utilisés dans l'invention sont des polymères du type polyhydroxybenzène/formaldéhyde, c'est-à-dire des polymères résultant de la poly condensation d'au moins un monomère du type polyhydroxybenzène et d'au moins un monomère formaldéhy de.
Cette réaction de polymérisation peut impliquer plus de deux monomères distincts, les monomères additionnels étant du type polyhydroxybenzène ou non.
Les polyhydroxybenzènes utilisables pour la réalisation de l'invention sont préférentiellement des di- ou des tri- hydroxybenzènes, et avantageusement le résorcinol (1,3-di hydroxybenzène) ou le mélange du résorcinol avec un autre composé choisi parmi le catéchol, l'hydroquinone, le phloroglucinol.
Le système polymère, de préférence un système résorcinol/formaldéhyde, est mélangé avec un latex.
Par latex on entend une dispersion aqueuse d'un élastomère. Avantageusement, selon l'invention on utilise un latex de pH compris entre 3 et 7,5, avantageusement entre 5,5 et 7,5.
De façon préférentielle le latex est un latex azoté c'est-à-dire un latex porteur de fonctions azotées telles que des fonctions nitrile, azo, aminé, amide.
Avantageusement le latex azoté se caractérise par une quantité de monomères azotés qui représente entre 2 et 90 % en moles par rapport à l'ensemble des monomères du latex. Ces quantités sont évaluées sur la matière active, en excluant l'eau dans laquelle est dispersé le latex.
Selon l'invention, le latex peut être un mélange d'au moins deux latex, un latex azoté et un latex non azoté. Avantageusement, le latex azoté représente de 5 à 100% en masse de la masse de latex.
Parmi les latex utilisables dans l'invention on peut citer : les caoutchoucs nitriles, les copolymères d'acrylonitrile et de butadiène (NBR), les copolymères d'acrylonitrile et de butadiène hydrogénés (HNBR), les copolymères de styrène et d'acrylonitrile (SAN), les terpolymères d'acrylonitrile, de butadiène et de styrène (ABS), les terpolymères de styrène, d'acrylonitrile et de styrène (SAS), les élastomères de polyuréthane. Ces polymères peuvent être sous la forme de latex ou éventuellement de suspension de particules ou de fibres. Ils peuvent être partiellement pré-réticulés ou non et ils peuvent être sous la forme de micro-gels. De tels produits sont disponibles commercialement sous les références suivantes : NIPOL ®, LIPOLAN ®, PERBUNAN-N ®. Les produits NBR hydrogéné (HNBR), NBR carboxylés (XNBR) et les HXNBR sont fabriqués par les sociétés Polymer Latex, Lanxess, Sumitomo et Nippon Zeon. Les latex de styrène acrylonitrile (SAN) sont décrits dans Colloid and
Polymer Science (1975) vol 253 pp 538-54, les latex cœur-enveloppe SAN Butadiène Styrène sont décrits dans US 6753382.
Il est possible d'ajouter à cette composition de gel ou de xérogel d'autres composés qui possèdent un taux élevé de résidus à la pyrolyse comme des polymères basés sur des carbohydrates (cellulose, hémicellulose, rayonne, polysaccharides), les
PolyAcryloNitriles (sous forme de suspensions ou de fibres) ou les polyimides d'acide amique (Torlon ® AiIO commercialisé par la société Solvay en solution)
Dans le gel ou le xérogel de l'invention les composants sont présents dans les quantités suivantes : Le rapport molaire du polyhydroxybenzène, désigné R, et qui est de préférence le résorcinol, et du formaldéhyde, désigné F, est 0,4 < R/F < 0,6, de préférence 0,45 < R/F < 0,55. Avantageusement R/F ≈ 0,5.
Le rapport massique des particules de latex (ML) à la somme de tous les constituants ML + MR + Mp, avec MR = masse de polyhydroxybenzène (de préférence résorcinol), Mp = masse de formaldéhyde, est compris dans les limites suivantes : de préférence ce rapport est compris entre 1 et 40%, encore plus préférentiellement entre 1 et 30% et avantageusement entre 2 et 15%, de façon à favoriser l'augmentation de densité du produit et donc sa résistance mécanique. Dans ce calcul, la masse des particules du latex ML est évaluée hors solvant. On calcule la masse des particules de latex en déduisant la masse d'eau de la masse totale de la dispersion de latex.
L'invention a en outre pour objet un procédé de fabrication d'un xérogel d'au moins un polymère hydrophile et d'au moins un latex co-réticulés tels que décrits ci- dessus, ce procédé comprenant les étapes de :
(i) mélange en solution aqueuse des monomères entrant dans la composition du polymère hydrophile ;
(ii) introduction du latex et mélange ;
(iii) ajout d'une solution aqueuse basique de façon à ajuster le pH à une valeur comprise entre 5,5 et 7,5 ;
(iv) gélification, de préférence par chauffage ;
(v) séchage. Le mélange des monomères à l'étape (i) est fait dans les proportions indiquées plus haut. La quantité d'eau totale (incluant l'eau du latex et des additifs éventuels) est choisie pour avoir un rapport massique MR/MW ≤ 1 ,4 avec MR la masse des monomères de type polyhydroxybenzène (de préférence résorcinol) et Mw la masse d'eau. De façon facultative on peut prévoir de remplacer une partie de l'eau par un solvant miscible à l'eau tel que : le méthanol, l'éthanol, l'isopropanol, l'acétone, l'acétonitrile, le diméthylformamide, le diméthylsulfoxyde, le dioxane, le tétrahydrofurane, l'hexaméthylphosphotriamide. La quantité de solvant organique est avantageusement inférieure à 20 % en masse par rapport à la masse totale de solvant. Conjointement à l'introduction du latex ou avant l'étape (iii) on peut prévoir d'ajouter au mélange un ou plusieurs additifs qui peuvent être choisis parmi : les particules métalliques, les tensioactifs, les charges minérales ou organiques, les aérogels, les agents viscosifiants.
Parmi les particules métalliques on peut citer les sels de lithium, les sels de bore.
Parmi les tensioactifs, on peut choisir un tensioactif cationique, non- ionique ou anionique, comme par exemple un ammonium quaternaire, un alkyl sulfate ou un alkyl sulfonate, un poly(oxyde d'éthylène).
Parmi les aérogels, on peut citer les produits décrits dans US-5,508,341, qui sont sous forme de microsphères, ou ceux décrits dans US-4, 873,218, que l'on introduit sous forme de poudre.
Parmi les charges minérales ou organiques, on peut citer : le noir de carbone, les nanotubes de carbone, les particules d'aluminium, de nickel, de palladium, de platine, les billes de verre creuses, les particules de silice recouvertes d'un métal. Parmi les agents viscosifiants on peut citer les polyéthylènes glycols.
La solution aqueuse basique est avantageusement une solution d'une base minérale, telle qu'un carbonate. Par exemple on peut utiliser une solution IM de Na2CO3.
Le passage du pH à une valeur comprise entre 5,5 et 7,5, accompagné ou suivi d'un chauffage, entraîne la formation d'un gel. Le chauffage se fait avantageusement à volume constant, de préférence sous pression, par exemple par passage en étuve dans un récipient fermé. A l'échelle industrielle, le chauffage peut être fait à pression contrôlée. La durée du chauffage est avantageusement de 24 à 72 heures et la température est comprise entre 70 et 90°C.
Le gel ainsi obtenu est alors séché. Différents modes de séchage peuvent être envisagés : soit par chauffage sous flux gazeux de façon à favoriser l'évaporation (séchage convectif), soit par lyophilisation ou séchage en milieu CO2 supercritique.
De préférence on choisit d'appliquer un séchage convectif qui est le moins coûteux. On obtient alors un xérogel de polymère hydrophile et de latex, de préférence un xérogel de résorcinol-formaldéhyde (RF)/latex.
Le procédé de l'invention, contrairement aux procédés de l'art antérieur permet d'obtenir des xérogels de densité élevée, notamment de densité supérieure ou égale à 1,5.
Un xérogel de l'invention se distingue des xérogels de l'art antérieur par la présence de fonctions azotées lorsque le latex est lui-même porteur de fonctions azotées.
Un tel matériau a l'aspect d'un gel, il est utilisable comme matériau isolant phonique ou thermique. Un autre objet de l'invention est un matériau carboné susceptible d'être obtenu par pyrolyse du xérogel de l'invention.
Le matériau carboné de l'invention est un monolithe de carbone comportant du graphite.
Le graphite est une forme allotropique du carbone caractérisée par des couches d'atomes en arrangement hexagonal.
Avantageusement, le matériau carboné de l'invention comporte 0,1 à 20%, préférentiellement de 0,5 à 10%, en masse de graphite par rapport à la masse totale du matériau.
La présence du graphite peut être observée par analyse aux rayons X et notamment, on observe la présence des pics suivants dans le spectre de diffraction aux rayons X mesuré sur un diffractomètre en configuration thêta-thêta, équipé d'une anticathode de cuivre et exprime en termes d'angle de Bragg 2 thêta :
Angle 2-thêta 26,2 (*) 54,4 (*) 56,1 (**)
** valeurs ±0,5° * valeur ±1°
Les spectres de carbone obtenus présentent des pics décalés par rapport au graphite pur. Les spectres peuvent également présenter des pics à 61°,75°,79° et 81,5°et ce sont des valeurs à +- 1°.
L'amplitude des pics varie en proportion de la quantité de graphite présente et il suffit que les trois pics correspondant aux angles inférieurs à 60° soient présents pour caractériser la présence de graphite.
Le matériau de l'invention se caractérise en outre par une densité comprise entre 0,5 et 1,5 préférentiellement entre 0,7 et 1,2. Le matériau carboné de l'invention se distingue des matériaux carbonés de l'art antérieur par la présence d'un réseau de pores dont au moins 10% est mésoporeux, préférentiellement plus de 20%, et par un volume poreux total : 0,4-1 cm3/g, de préférence
0,5-1 cmVg (mesuré par la méthode BET ou imprégnation sèche), surface BET totale de moins de 1000m /g, surface extérieure de l'échantillon inférieure à 300m /g.
Par monolithe de carbone on entend un matériau d'un seul bloc constitué essentiellement d'atomes de carbone.
Le matériau de l'invention se caractérise par une capacité massique pleine supérieure ou égale à 75 F/g, mesurée dans une solution aqueuse molaire de H2SO4. La capacité massique pleine est la capacité massique du matériau mesurée sur le matériau rempli d'électrolyte. Elle est mesurée après immersion du matériau dans une solution d'électrolyte. Elle varie en fonction de l'électrolyte utilisé, et en particulier elle est fonction de la densité de l'électrolyte.
L'invention a encore pour objet un procédé de production d'un matériau carboné de l'invention, ce procédé comprenant une étape de chauffage d'un xérogel tel que décrit ci-dessus à une température comprise entre 700 et 1050°C pendant une durée comprise entre 5 et 8 heures.
Avantageusement ce chauffage est opéré sous atmosphère d'azote. Il en résulte une carbonisation de tous les composants du xérogel. Le matériau subit une réduction de volume et se présente sous la forme d'un monolithe de résistance mécanique élevée, ce qui permet son usinage, notamment pour produire des électrodes. De telles électrodes qui ne comportent pas de matériau liant sont, à volume égal, de capacité supérieure à celle des électrodes obtenues à partir d'une poudre.
Selon une variante de l'invention, ce matériau carboné peut si on le souhaite être réduit en poudre et employé dans toutes les applications habituelles des carbones électroconducteurs, et notamment comme charge dans des matières plastiques pour la production de pièces électroconductrices. On peut citer par exemple des pièces de carrosserie automobile qui doivent être peintes par peinture électrostatique.
Un autre objet de l'invention est l'utilisation d'un matériau carboné tel que décrit ci-dessus pour produire des électrodes.
PARTIE EXPERIMENTALE I- Protocole de synthèse
1- Préparation du xérogel
Les gels organiques sont issus de la polycondensation du résorcinol avec le formaldéhyde, en présence de particules de latex.
Le rapport molaire résorcinol/formaldéhyde (R/F) et le rapport massique résorcinol/eau (R/W), ont été fixés respectivement à 0,5 et 0,4. Le formaldéhyde employé est sous forme d'une solution aqueuse (stabilisé en présence de 10 à 15% de méthanol), la quantité d'eau qu'il contient est prise en compte dans le volume total d'eau présente dans la formulation, donc dans le rapport R/W. Le résorcinol (10,204 g, fourni par la société Acros, qualité 98%) est d'abord dissout dans l'eau distillée. On ajoute ensuite la solution aqueuse de formaldéhyde (Riedel de Haën, en solution à 36,5%) : 14,944 g.
La teneur en particules de latex ajoutées (Latex Perbunan® RN-2890) au système est définie par le rapport : ^
Cette masse calculée représente la masse de particules de latex, et non la masse globale de solution de latex. On a fait des essais avec les trois teneurs en latex suivantes : 5, 10 et 25%.
Le pH est ensuite ajusté à pH 5,5 ou 6,5 par ajout de quelques gouttes d'une solution de carbonate de sodium (5M et/ou IM).
Le mélange final est placé au sein de tubes à essais, qui sont ensuite scellés, puis placés à l'étuve à 90°C pendant 1 journée. Les gels obtenus sont lavés en les immergeant dans l'eau distillée pendant 2 h, de manière à supprimer les traces de réactifs encore présents. Ils sont ensuite placés au four tubulaire pendant 6 h à 85°C, et sous azote
(10 L/min) pendant une durée qui peut varier de 1 jour à 7 jours.
2- Préparation du matériau carboné
Les gels séchés (xérogels de RF + latex), sont soumis à une pyrolyse à 800°C sous flux d'azote 10 L/min. Chaque produit est caractérisé par sa teneur en latex et son pH de gélification.
H- Mesure des capacités et des densités d'énergie
Les capacités des matériaux carbonés de l'invention ont été caractérisées au sein d'un dispositif électrochimique à trois électrodes, notamment par chronopotentiométrie (1 A/g en milieu aqueux et 0,5 A/g en milieu organique). On a mesuré leur capacité et produit une courbe de charge-décharge pour chacun de ces matériaux dans un électrolyte aqueux et dans un électrolyte non aqueux. Les courbes de charge et de décharge ont été obtenues en appliquant une impulsion de courant constant et en suivant la réponse en voltage au cours du temps, en utilisant un potentiomètre VersaStat (EG&G) avec une interface informatique (IBM). Le logiciel EG&G Model 270 a été utilisé pour l'application fonction d'onde et l'acquisition de données. La capacité a été mesurée en farads (F) et la résistance de la cellule en ohms à partir de la courbe de charge/décharge en utilisant des procédures classiques et l'équation : C=ItZ(V1-V2).
L'électrolyte aqueux est une solution d'H2SO4 IM, tandis que l'électrolyte organique est une solution de perchlorate de sodium dans l'acétonitrile : NaClO4 2M + ACN.
L'électrode de travail est constituée d'une grille de platine au sein de laquelle est placé le carbone monolithique à analyser (de masse et de surface connues). La contre électrode utilisée est en platine, l'électrode de référence est une électrode au calomel saturé en milieu aqueux, et une électrode aux limites de potentiel en milieu organique. Les densités d'énergie ont été mesurées conformément au protocole décrit dans JR Miller et AF Burke "Electric vehicle capacitor test procédure manual" 1994 DOE/ID 1049 l, p.21-25.
IH- Comparatif des performances
On distingue la capacité spécifique mesurée par rapport à la masse sèche de carbone, qui donne simplement une idée des performances, et la capacité spécifique estimée par rapport à la masse réelle mise en jeu, à savoir la masse de carbone imprégné d'électrolyte (capacités réelles ou effectives).
1 - Capacité en milieux aqueux et organiques
La capacité estimée par rapport à la masse sèche de carbone, puis par rapport à la masse remplie d'acide sulfurique IM, pour le carbone provenant du système RF + Latex 5% (pH 6,5) est comparée à celle du carbone provenant du RF classique équivalent (même rapport R/F et R/W et même pH mais pas de latex). Les résultats sont résumés dans le tableau 1.
Les deux carbones ont un rapport R/W identique, mais leurs propriétés capacitives sont différentes, le latex joue sur les propriétés texturales qui régissent le comportement capacitif.
Tableau 1 : Capacités effectives et spécifiques par rapport au volume poreux de carbone sec. Mesuré par immersion de l'électrode de carbone dans H2SO4 IM. On constate l'augmentation de la densité et de la capacité volumique du xérogel de carbone contenant initialement du latex.
Une fois rempli d'électrolyte, le système RF + Latex (5%) est plus intéressant du fait de son volume poreux plus faible qui réduit la quantité d'électrolyte utile.
Dans le tableau 2 sont présentés les résultats des caractéristiques en milieu organique.
Tableau 2 : Capacités effectives et spécifiques par rapport au volume poreux de carbone sec. Mesuré par immersion de l'électrode de carbone dans ACN + NaClO4 2M.
Dans ce second exemple, la capacité du carbone issu du système RF + Latex par rapport au volume poreux est améliorée par comparaison avec celle de son homologue sans latex. Le carbone issu du système RF + Latex est donc nettement plus performant.
2- Evolutions des propriétés texturales et capacitives (H2SO4 IM) en fonction de la teneur initiale de latex dans les gels
On suit le même protocole qu'en I, en faisant varier la quantité de latex : 0% (système RF) ; 5% (système RF-L0,05) ; 10% (système RF-LO, 1) et le pH de gélification.
Les résultats sont exposés dans les tableaux 3 et 4. a- Matériaux réalisés à pH 6,5
Tableau 3 : Evolution des capacités en fonction de la teneur initiale de latex à pH 6,5. b- Matériaux réalisés à pH 5,5
Tableau 4 : Evolution des capacités volumiques (calculées par rapport à la masse du carbone sec) en fonction de la teneur initiale de latex à pH 5,5.
Dans les deux tableaux précédents, on peut constater que la densité croît toujours avec la teneur initiale en latex et de même pour la capacité volumique. La présence du latex engendre une réduction d'une partie du volume poreux « mort » (où aucun rôle n'est joué par l'électrolyte dans les processus électrochimiques), parallèlement à l'obtention de bonne performances capacitives : il y a donc une optimisation des propriétés supercapacitives par unité de volume poreux
IV- Mesure du volume mésoporeux et de la surface BET : La surface spécifique et la distribution de taille de pore ont été analysées par adsorption d'azote sur un appareil Micromeritics Gemini et par porosimétrie au mercure sur un appareil Micromeritics Autopore II 9220.
Ces mesures sont faites sur les matériaux réalisés à pH 6,5
Tableau 5 : Surface spécifique et volume mésoporeux des différents carbones
V- Diffractogrammes RX des différents xérogels de carbones On utilise un appareil RX PW 1830 Panalytical
- Type de détecteur : linéaire
- Tension et intensité de fonctionnement : 135 W 45 kv, 30 mA
- type de source de RX : Cu
Un matériau carboné supplémentaire est préparé à partir d'un latex à haute teneur en groupement nitrile, avec 5% de latex Synthomer 6617 (40% ACN), préparé à pH 6,5.
Figures :
- Figure IA : Diffractogramme aux rayons X du carbone issu du système RF préparé à pH = 5,5. - Figure IB : Diffractogramme aux rayons X du carbone issu du système
RF-latex (25%) préparé à pH = 5,5.
- Figure 2 A : Diffractogramme aux rayons X du carbone issu du système RF préparé à pH = 6,5.
- Figure 2B : Diffractogramme aux rayons X du carbone issu du système RF-latex (5%) préparé à pH = 6,5.
- Figure 2C : Diffractogramme aux rayons X du carbone issu du système
RF-latex (10%) préparé à pH = 6,5.
- Figure 2D : Diffractogramme aux rayons X du carbone issu du système RF Latex (5%) préparé à pH 6,5 avec un latex à haute teneur en groupement nitrile (40% ACN Synthomer 6617)
Les xérogels de carbone provenant de gels RF classiques sont des carbones totalement amorphes (figures IA et 2A). On peut observer sur les diffractogrammes IB, 2B et 2C que la présence initiale de latex génère des zones graphitiques au sein des carbones, il y a en effet apparition de raies caractéristiques sur les spectres. Ce sont les résidus de carbone provenant des particules de latex qui s'organisent sous forme de feuillets. VI - Exemple comparatif :
On prépare un xérogel et un matériau carboné suivant le même protocole que ci-dessus en remplaçant le latex par un latex styrénique. A - Préparation du xérogel :
Le gel est issu de la polycondensation du résorcinol avec le formaldéhyde, en présence de particules de latex.
Le rapport molaire résorcinol/formaldéhyde (RJF) et le rapport massique résorcinol/eau (R/W), ont été fixés respectivement à 0,5 et 0,4.
Le formaldéhyde employé est sous forme d'une solution aqueuse (stabilisé en présence de 10 à 15% de méthanol), la quantité d'eau qu'il contient est prise en compte dans le volume total d'eau présente dans la formulation, donc dans le rapport R/W.
Le résorcinol (30,62g, fourni par la société SAFC, qualité 98%) est d'abord dissout dans l'eau distillée. On ajoute ensuite la solution aqueuse de formaldéhyde (Merck, en solution à 37%) : 50,05g La teneur en particules de latex ajoutées (Latex Synthomer® 9076 latex styrénique) au système est définie par le rapport :
ML ML + MR +MF
Cette masse calculée représente la masse de particules de latex, et non la masse globale de solution de latex. On fait l'essai avec une teneur en latex de 5%. Le pH est ensuite ajusté à pH 6,5 par ajout de quelques gouttes d'une solution de carbonate de sodium (IM).
Le mélange final est placé au sein de tubes à essais, qui sont ensuite scellés, puis placés à l'étuve à 90°C pendant une journée. Les gels obtenus sont lavés en les immergeant dans l'eau distillé pendant 2h, de manière à supprimer les traces de réactifs encore présents.
Ils sont ensuite placés à l'étuve pendant 6h à 85°C. B- Préparation du matériau carboné :
Les gels séchés (Xérogels RF + latex styrénique), sont soumis à une pyrolyse à 800°C sous flux d'azote lOL/min. C - Résultats : Dans le tableau ci-dessous, on compare les propriétés du produit obtenu selon le procédé de l'invention avec 0,05% de latex azoté et à pH 6,5 (RF-L0,05) et le produit obtenu à partir du latex styrénique (0,05%) à pH 6,5 (RF-LStyr 0,05).

Claims

REVENDICATIONS
1. Matériau carboné susceptible d'être obtenu par pyrolyse d'un xérogel d'au moins un polymère hydrophile et d'au moins un latex azoté, le polymère et le latex étant co-réticulés, caractérisé en ce qu'il est sous forme d'un monolithe de carbone comportant de 0,1 à 20 % de graphite, en masse par rapport à la masse totale du matériau.
2. Matériau carboné selon la revendication 1 , caractérisé par la présence d'au moins 3 des pics suivants dans le spectre de diffraction aux rayons X mesuré sur un diffractomètre en configuration thêta-thêta, équipé d'une anti-cathode de cuivre et exprime en termes d'angle de Bragg 2 thêta :
Angle 2-thêta 26,2 (•) 54,4 (*) 56,1 (**)
** valeurs ±0,5° * valeur ±1°
3. Matériau carboné selon la revendication 1 ou la revendication 2, qui comporte un réseau de pores dont au moins 10% est mésoporeux et un volume poreux compris entre 0,4 et 1 cm3 /g
4. Matériau carboné selon l'une quelconque des revendications précédentes, qui présente une capacité massique pleine supérieure ou égale à 75 F/g, mesurée dans une solution aqueuse molaire de H2SO4.
5. Procédé de production d'un matériau carboné selon l'une des revendications 1 à 4, ce procédé comprenant une étape de chauffage d'un xérogel d'au moins un polymère hydrophile et d'au moins un latex azoté à une température comprise entre 700 et 1050°C pendant une durée comprise entre 5 et 8 heures.
6. Procédé selon la revendication 5, dans lequel le xérogel est obtenu par le procédé comprenant les étapes de :
(i) mélange en solution aqueuse des monomères entrant dans la composition du polymère hydrophile ;
(ii) introduction du latex et mélange ;
(iii) ajout d'une solution aqueuse basique de façon à ajuster le pH à une valeur comprise entre 5,5 et 7,5 ;
(iv) gélification ; (v) séchage.
7. Procédé selon la revendication 6, dans lequel la quantité d'eau totale est choisie pour avoir un rapport massique MR/MW ≤ 1 ,4 avec MR la masse des monomères de type polyhydroxybenzène et Mw la masse d'eau.
8. Procédé selon l'une quelconque des revendications 6 et 7, dans lequel la gélification se fait par chauffage à volume constant, de préférence sous pression.
9. Procédé selon l'une quelconque des revendications 6 à 8, dans lequel le gel est séché par séchage convectif.
10. Gel susceptible d'être utilisé dans le procédé selon l'une des revendications 5 à 9, d'au moins un polymère hydrophile du type polyhydroxybenzène/formaldéhyde et d'au moins un latex azoté, le polymère et le latex étant co-réticulés, dans lequel le rapport massique des particules de latex (ML) à la somme de tous les constituants ML + MR + MF, avec MR = masse de polyhydroxybenzène, MF = masse de formaldéhyde, est compris dans les limites suivantes :
11. Gel selon la revendication 10, dans lequel le polyhydroxybenzène est choisi parmi le résorcinol et un mélange du résorcinol avec un autre composé choisi parmi le catéchol, l'hydroquinone, le phloroglucinol.
12. Gel selon l'une quelconque des revendications 10 et 11 dans lequel le latex azoté comporte une quantité de monomères azotés qui représente entre 2 et 90 % en moles par rapport à l'ensemble des monomères du latex.
13. Gel selon l'une quelconque des revendications 10 à 12 dans lequel le latex est choisi parmi : les caoutchoucs nitrile.
14. Gel selon l'une quelconque des revendications 10 à 13 dans lequel le rapport molaire du polyhydroxybenzène, désigné R, et du formaldéhyde, désigné F, est 0,4 < R/F < 0,6, de préférence 0,45 < R/F < 0,55.
15. Utilisation d'un matériau carboné selon l'une quelconque des revendications 1 à 4 pour produire des électrodes.
16. Utilisation d'un matériau carboné selon l'une quelconque des revendications 1 à 4 comme charge dans des matières plastiques pour la production de pièces électroconductrices.
EP09731201A 2008-03-26 2009-03-26 Materiaux carbones issus de latex Withdrawn EP2271423A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0801639A FR2929284B1 (fr) 2008-03-26 2008-03-26 Materiaux carbones issus de latex
PCT/FR2009/000332 WO2009125094A2 (fr) 2008-03-26 2009-03-26 Materiaux carbones issus de latex

Publications (1)

Publication Number Publication Date
EP2271423A2 true EP2271423A2 (fr) 2011-01-12

Family

ID=39719111

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09731201A Withdrawn EP2271423A2 (fr) 2008-03-26 2009-03-26 Materiaux carbones issus de latex

Country Status (9)

Country Link
US (1) US9017579B2 (fr)
EP (1) EP2271423A2 (fr)
JP (1) JP5535189B2 (fr)
KR (1) KR101596819B1 (fr)
CN (1) CN102123787B (fr)
CA (1) CA2719465C (fr)
FR (1) FR2929284B1 (fr)
RU (1) RU2505480C2 (fr)
WO (1) WO2009125094A2 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967669B1 (fr) 2010-11-23 2012-11-30 Hutchinson Nouveau materiau carbone poreux monolithique modifie au soufre, son procede de preparation et ses utilisations pour le stockage et la restitution d'energie
FR2978438B1 (fr) * 2011-07-27 2016-01-08 Centre Nat Rech Scient Procede de preparation d'une mousse de carbone, materiau obtenu et applications.
FR2985598B1 (fr) 2012-01-06 2016-02-05 Hutchinson Composition carbonee pour electrode de cellule de supercondensateur, electrode, son procede de fabrication et cellule l'incorporant.
EP3045901A1 (fr) 2015-01-19 2016-07-20 Hutchinson S.A. Utilisation de zone de surface spécifique élevée de matériaux de carbone en tant que contre-électrode destiné à des mesures électrochimiques
US10767062B2 (en) * 2017-06-05 2020-09-08 Lawrence Livermore National Security, Llc System and method for forming activated carbon aerogels and performing 3D printing

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE485726A (fr) *
LU32709A1 (fr) * 1953-06-24
JPS62132717A (ja) * 1985-12-05 1987-06-16 Mitsui Petrochem Ind Ltd 接合された炭素質製品の製造方法
JPH1036450A (ja) * 1996-07-16 1998-02-10 Maruzen Petrochem Co Ltd 炭素材料製造用のポリアクリロニトリル−ピッチ系素原料
RU2103766C1 (ru) * 1996-07-31 1998-01-27 Акционерное Общество Открытого Типа "Новосибирский завод Химконцентратов" Углеродсодержащий материал для электродов химических источников тока и способ изготовления из него пористых электродов
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
US20060057051A1 (en) * 2004-09-10 2006-03-16 Sheng Dai Highly ordered porous carbon materials having well defined nanostructures and method of synthesis
JP4899042B2 (ja) * 2005-08-01 2012-03-21 国立大学法人 宮崎大学 レゾルシノール系ポリマーを前駆体としたワイヤー状炭素粒子とその製造方法及び用途
WO2007143237A2 (fr) * 2006-02-09 2007-12-13 Headwaters Technology Innovation Llc Matériaux polymères incorporant des nanostructures carbonées et méthodes de fabrication
US20080112876A1 (en) * 2006-11-09 2008-05-15 Indspec Chemical Corporation Method of Stabilizing Resorcinol Resins and Gel Compositions Made Therefrom

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN102123787A (zh) 2011-07-13
WO2009125094A2 (fr) 2009-10-15
US9017579B2 (en) 2015-04-28
KR20100135827A (ko) 2010-12-27
KR101596819B1 (ko) 2016-02-23
FR2929284A1 (fr) 2009-10-02
RU2505480C2 (ru) 2014-01-27
JP2011517650A (ja) 2011-06-16
JP5535189B2 (ja) 2014-07-02
FR2929284B1 (fr) 2012-01-20
CN102123787B (zh) 2014-03-05
US20110140051A1 (en) 2011-06-16
CA2719465C (fr) 2016-08-09
WO2009125094A3 (fr) 2009-12-10
RU2010143551A (ru) 2012-05-10
CA2719465A1 (fr) 2009-10-15

Similar Documents

Publication Publication Date Title
JP6080352B2 (ja) 新規な硫黄改質モノリシック多孔質炭素系材料、その調製のための方法、ならびにエネルギーの貯蔵および放出におけるその使用
CA2719465C (fr) Materiaux carbones issus de latex
WO2015098758A1 (fr) Matériau d&#39;électrode de condensateur, son procédé de fabrication et condensateur à double couche électrique
KR20160145565A (ko) 양친매성 유기 화합물을 포함하는 분산물로부터 탄소질 입자의 비결정형 탄소 코팅
EP1726023A2 (fr) PROCEDE DE FABRICATION D&amp;rsquo;ELECTRODE, ELECTRODE AINSI OBTENUE ET SUPERCONDENSATEUR LA COMPRENANT
EP3134346A1 (fr) Composition polymerique aqueuse gelifiee, reticulee et non sechee, aerogel et carbone poreux pour electrode de supercondensateur et leurs procedes de preparation
FR3099885A1 (fr) Procédé de préparation d’un matériau carboné poreux et azoté avec dopant métallique, notamment utile à titre de catalyseur pour la réduction de l’oxygène (ORR)
RU2648326C2 (ru) Композиция органического геля и его пиролизат, способ его получения, электрод, сформированный из пиролизата, и содержащий его суперконденсатор
EP2909137A1 (fr) Composition thermiquement isolante pour gel monolithique organique, son utilisation et son procede de preparation
JP2010034300A (ja) 電気二重層キャパシタの分極性電極用炭素材料、その製造方法および電気二重層キャパシタ
WO2007132077A1 (fr) Composition catalytioue a base de charbon actif catalytioue et nanotubes de carbone, procede de fabrication, electrode et supercondensateur comprenant le composite catalytioue
WO2013150151A1 (fr) Electrode hybride pour supercondensateur
CN109336083B (zh) 一种高内相乳液模板法可控制备泡沫碳/碳纳米管复合材料的方法
WO2017182743A1 (fr) Carbone microporeux de densite elevee et son procede de preparation
EP3113874A1 (fr) Composition gelifiee pour gel monolithique organique, ses utilisations et son procede de preparation
CN108884394B (zh) 碳凝胶阳极材料及其制备方法
JPH11339780A (ja) 非水電解質二次電池用電極の製造方法
CN112599716A (zh) 一种氟化碳基极片及其制备方法和用途
CN112938932B (zh) 一种醛糖对高内相乳液模板法制备多孔碳的调控方法
WO2015189776A1 (fr) Composition polymerique aqueuse gelifiee, composition carbonee pyrolysee qui en est issue pour electrode de supercondensateur et leurs procedes de preparation
CN113205967A (zh) 一种氮掺杂石墨烯膜其制备方法
WO2024097452A2 (fr) Matériaux de revêtement d&#39;électrode de supercondensateur comprenant des particules composites actives et des particules conductrices contenant du carbone
CN116487197A (zh) 一种用于超级电容器电极材料的氮硫共掺杂纳米炭材料及其制备方法和电容
JPH03147261A (ja) 有機電解質電池用電極

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101022

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170713