CN102123787B - 源自胶乳的碳基材料 - Google Patents

源自胶乳的碳基材料 Download PDF

Info

Publication number
CN102123787B
CN102123787B CN200980118475.8A CN200980118475A CN102123787B CN 102123787 B CN102123787 B CN 102123787B CN 200980118475 A CN200980118475 A CN 200980118475A CN 102123787 B CN102123787 B CN 102123787B
Authority
CN
China
Prior art keywords
latex
carbon
weight
poly
formaldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200980118475.8A
Other languages
English (en)
Other versions
CN102123787A (zh
Inventor
菲利普·索塔克
达维德·艾梅-佩多
吉恩-米歇尔·西蒙
塞尔日·瓦尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchinson SA
Original Assignee
Hutchinson SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchinson SA filed Critical Hutchinson SA
Publication of CN102123787A publication Critical patent/CN102123787A/zh
Application granted granted Critical
Publication of CN102123787B publication Critical patent/CN102123787B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/528Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components
    • C04B35/532Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from carbonaceous particles with or without other non-organic components containing a carbonisable binder
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0022Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors
    • C04B38/0032Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof obtained by a chemical conversion or reaction other than those relating to the setting or hardening of cement-like material or to the formation of a sol or a gel, e.g. by carbonising or pyrolysing preformed cellular materials based on polymers, organo-metallic or organo-silicon precursors one of the precursor materials being a monolithic element having approximately the same dimensions as the final article, e.g. a paper sheet which after carbonisation will react with silicon to form a porous silicon carbide porous body
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • C08J2309/04Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2313/00Characterised by the use of rubbers containing carboxyl groups
    • C08J2313/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2321/00Characterised by the use of unspecified rubbers
    • C08J2321/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08J2361/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L13/00Compositions of rubbers containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/04Macromolecular compounds according to groups C08L7/00 - C08L49/00, or C08L55/00 - C08L57/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials
    • C08L2666/14Macromolecular compounds according to C08L59/00 - C08L87/00; Derivatives thereof
    • C08L2666/16Addition or condensation polymers of aldehydes or ketones according to C08L59/00 - C08L61/00; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供一种间苯二酚-甲醛型的有机凝胶以及通过热分解该凝胶获得的具有可调孔隙率的碳基材料。这类碳基材料尤其适用于电极的制造。

Description

源自胶乳的碳基材料
技术领域
本发明的主要内容包括新的间苯二酚/甲醛型的有机凝胶(“RF凝胶”)以及通过热分解该有机凝胶获得的具有可调孔隙率(tailored porosity)的碳基材料。这类碳基材料尤其适用于电极的制造。 
背景技术
文献WO 2007/024241描述了一种用于制造多孔碳基材料的方法。例如,根据该方法,为了形成有一定结构的材料,碳基前体比如间苯二酚与嵌段聚合物的混合物被形成。接着,碳基前体与甲醛交联,然后所得复合产品被热分解。获得有组织的纳米结构的碳基材料,其包括的孔具有可在4-100nm间变化的均一尺寸。 
然而,该方法在有机介质中进行,从而存在污染的问题,并且由于组分之间互混性的问题而使该合成复杂化,故该方法是昂贵的并且产量低。最后,获得的产品总体上并不令人满意。 
文献Chem.Mater,2002,14,1665-1670描述了中孔碳基材料的制备。该方法使用聚苯乙烯微球作为具有间苯二酚/甲醛树脂水性悬液的混合物。该聚苯乙烯胶乳导致尺寸在50-100nm之间的孔的形成,这导致较低的全电容。 
文献FR 1097512描述了用于制造基于胶乳和间苯二酚/甲醛树脂的海绵的方法。该胶乳和树脂与各种助剂混合,然后该混合物被凝胶化和硬化。 
文献FR 0961294涉及一种用于增强胶乳混合物的方法。胶乳与树脂被混合,然后被凝胶化和干燥。 
文献J.Adhesion,1984,vol.16,p.179-216涉及基于胶乳以及间苯二酚/甲醛混合物的粘胶剂组合物。该文献对这些材料的结构以及它们的基本性质进行了研究。 
文献Journal of Noncrystalline Solids,353(2007),2893-2899描述了由间苯二酚/甲醛树脂以及PMMA胶乳制备的碳基材料。在第一步骤中,凝胶被形成并被干燥,然后被热分解。胶乳可导致碳基材料中形成中孔结构。提及石墨结构的存在,但X射线谱没有检测到该结构。 
文献US 4873218描述了低密度的RF型的干凝胶以及它们的热分解,其导致同样低密度的泡沫碳的形成。在高能物理学或在催化学、或在制备离子交换树脂的应用中,这些干凝胶被用作隔音材料和/或隔热材料。 
这些材料通过包括如下步骤的方法制备:混合反应物并在水介质中使用碱性催化剂进行它们的聚合,用有机溶剂代替溶剂并在超临界的CO2介质中进行干燥操作。特别地,因为该方法需要大量使用有机溶剂,故其具有很高的成本并且难以适应大规模生产。 
此外,热分解后获得的材料具有很高的孔隙率(从而具有低密度),这对应于相对不能令人满意的导电性质。 
人们已提出了对该方法以及这些材料的各种改进措施: 
■用于产生RF干凝胶(C.Lin和A.Ritter,Carbon,35(1997),1271)的对流干燥方法(接着进行热分解以产生碳干凝胶),该方法尤其具有如下优点:一方面,对流干燥方法具有简单、便宜的优点;以及另一方面,材料保持非常好的结构和组织特性,这使得它们可以呈粉末形式(C.Lin等,J.Electrochem.Soc.,146(1999),3639)或以单块形式(N.Job等,Carbon,43(2005),2481)被使用。 
■合成或后合成(物理或化学活化)中的某些参数(pH、反应物的含量等)的变化可以调整并控制碳干凝胶最终的结构、组织和机械性能(比表面、孔体积、密度等)(E.J.Zanto等,Ind.Eng.Chem.Res.,41(2002),3151)。 
■为了视需要改变最终的多孔碳的表面组成,在前体凝胶的形成期间,使用了一些助剂(无机盐)(N.Job等,Carbon,42(2004),3217)。 
■WO 01/19904描述了一种中孔碳基材料,其通过如下步骤制得:在存在表面活性剂的条件下,进行间苯二酚/甲醛体系的聚合,接着通过热分解处理获得的凝胶。该申请涉及超级电容器电极和层析树脂(chromatography resin)的制备。 
然而,可进一步改善现有技术中描述的材料的比电容。 
现有技术文献(特别是WO 01/19904)中测定的比电容是以材料的干重为基准进行计算的。然而,该计算方法不能令人满意,因为当材料用作电极时,其不能代表材料的性能。 
通过评估考虑了该材料的孔体积的按材料重量计的全电容,在定量数值评估与真实性能之间可获得更好的平衡。 
发明内容
本发明实现的目标之一是来自热分解步骤之后的RF型凝胶的材料的制备,这些材料具有比现有技术中的材料更高的按重量计的全电容。此外,本发明的另一目标是获得具有石墨结构的碳基材料。无定形碳显示出低导电率。在用于电容器的电极的制造中,无定形碳通常必须与石墨碳或金属颗粒混合以提高其导电率。因此,具有部分石墨化结构的优点因此是降低通过简单工艺而无需进行混合所获得的单块碳的电阻率。 
下面对这些材料、它们的制备方法以及它们的应用进行描述。 
特别地,该目标尤其可通过控制孔隙率以便可能获得孔隙率不同于现有材料的碳基材料来实现。 
该多孔材料通过它们包含的孔的尺寸来表征。 
孔径小于2nm的材料称为“微孔(材料)”。孔径在2-50nm之间的那些材料称为“中孔(材料)”。孔径大于50nm的材料被称为“大孔(材料)”。 
WO 01/19904中描述的方法导致了基本上中孔的碳基材料,据推测,该类孔的选择可优化材料的按重量计的电容。 
本发明基于如下发现:特别地,具有受控孔隙率的碳基材料包括孔网络,其中该碳基材料的孔网络中的一部分孔为中孔并且其总的孔体积被降低,这有可能使该材料特别是在用作电极时相对于现有材料具有更高的性能。 
此外,现有技术中的许多碳基材料显示出有限的机械强度,从而不允许它们被机械加工。为了用这类材料制造电极,首先需要将它们加工成粉末,随后将其与粘结剂(通常为氟聚合物)一起压缩成混合物。由于粘结剂是非导电性材料,故这类电极的按重量计的电容受限制,并且如果其为单块形式,那么其按重量计的电容低于碳基材料本身的电容。 
因此,本发明的目标在于开发出一种材料,其同时地具有高密度(即高机械强度)和较高的按重量计的全电容。特别地,本发明涉及一种可机械加工的单块碳基材料。 
本发明的目的还在于开发经济的、易于实现的并能大规模应用的产品和工艺。 
本发明的主题包括由孔隙率受控的聚合物所形成的凝胶、该凝胶的制备工艺以及该凝胶在制备单块碳基材料中的应用,其中该碳基材料具有较高的机械强度、较高的按重量计的全电容以及高导电率。本发明还涉及由这些碳基材料获得的电极。 
本发明中的第一主题为至少一种亲水聚合物和至少一种胶乳的凝胶,该聚合物和该胶乳共交联。 
术语“凝胶”被理解为是指胶体物质和液体的混合物,其通过胶体溶液的凝聚和凝结自发地或在催化剂的作用下形成。 
本发明的另一主题是至少一种亲水聚合物和至少一种胶乳的干凝胶,其中该聚合物和该胶乳共交联。 
术语“干凝胶”被理解为是指一种凝胶,其挥发性溶剂被除去从而形成具有降低的体积的硬结构(harder structure)。 
术语“亲水聚合物”被理解为是指水溶性聚合物或水分散性聚合物。 
术语“水溶性聚合物”被理解为是指无需额外的助剂(尤其是表面活性剂)就可溶解于水中的聚合物。 
术语“水分散性聚合物”是指在与水混合时能形成分散体系的聚合物。 
聚合物的水溶性或水分散性特征可根据各种参数比如水的温度和pH改变。 
可提及的是,可用于本发明中的聚合物包括如下体系:对苯二酚/间苯二酚/甲醛、间苯三酚/间苯二酚/甲醛、邻苯二酚/间苯二酚/甲醛、聚氯乙烯、苯酚/甲醛、聚氨基苯酚/苯甲醛、环氧苯酚/甲醛、苯酚/苯甲醛、氧化聚苯乙烯、聚糠基醇、聚乙烯醇、聚丙烯腈、聚偏二氯乙烯、纤维素、聚丁烯、乙酸纤维素、蜜胺/甲醛、聚醋酸乙烯酯、乙基纤维素、环氧树脂、丙烯腈/苯乙烯、聚苯乙烯、聚酰胺、聚异丁烯、聚乙烯、聚甲基丙烯酸甲酯以及二乙烯基苯/苯乙烯。 
优选地,用于本发明的聚合物是聚羟基苯/甲醛型的聚合物,即通过至少一种聚羟基苯型单体与至少一种甲醛单体的缩聚获得的聚合物。 
该聚合反应可包括两种以上不同的单体,另外增加的单体可以是或者不是聚羟基苯型单体。 
可用于实施本发明的聚羟基苯优选为二羟基苯或三羟基苯,并且更优选为间苯二酚(1,3-二羟基苯)或间苯二酚与选自邻苯二酚、对苯二酚或间苯三酚的另一种化合物的混合物。 
将该聚合物体系,优选间苯二酚/甲醛体系与胶乳相混合。 
术语“胶乳”被理解为是指弹性体的水分散体。优选地,根据本发明,使用pH为3-7.5之间的胶乳,更优选pH为5.5-7.5之间的胶乳。 
优选胶乳是氮基胶乳,即具有氮基官能团比如腈、偶氮、胺或酰胺官能团的胶乳。 
优选氮基胶乳具有如下特征:以胶乳中组合的单体(combined monomer)为基准,氮基单体的含量为2-90摩尔%。这些含量的评估针对的是活性物质,不包括用于分散胶乳的水。 
根据本发明,胶乳可以是至少两种胶乳:氮基胶乳和非氮基胶乳的混合物。优选氮基胶乳占胶乳总重量的5-100wt%。
可用于本发明的胶乳包括如下物质:丁腈橡胶、丙烯腈和丁二烯的共聚物(NBR),丙烯腈和丁二烯的氢化共聚物(HNBR),苯乙烯和丙烯腈的共聚物(SAN),丙烯腈、丁二烯和苯乙烯的三元共聚物(ABS),苯乙烯、丙烯腈和苯乙烯的三元共聚物(SAS)或聚氨酯弹性体。这些聚合物可以呈胶乳形式,或者可选地为颗粒的悬浮液形式或纤维形式。它们可以部分地预交联或者未发生部分地预交联,并且它们可以为微凝胶形式。 
这类产品可在市场上获得,比如: 或 氢化NBR(HNBR)、羧基化的NBR(XNBR),并且HXNBR产品由Polymer Latex、Lanxess、Sumitomo和Nippon Zeon公司制造。 
Colloid and Polymer Science(1975),vol.253,pp.538-54中描述了苯乙烯/丙烯腈(SAN)胶乳,US 6753382中描述了SAN丁二烯苯乙烯核/外壳胶乳。 
可以向该凝胶或干凝胶组合物中添加其他具有高水平热分解残基的化合物,比如基于碳水化合物(纤维素、半纤维素、人造纤维、多糖)的聚合物、聚丙烯腈(悬浮液形式或纤维形式)或酰胺酸聚酰亚胺( 
Figure DEST_PATH_GSB00000434227900013
Solvay公司以溶液出售)。 
在本发明的凝胶或干凝胶中,各组分以如下含量存在: 
表示为R的聚羟基苯(优选为间苯二酚)与表示为F的甲醛的摩尔比为0.4≤R/F≤0.6,优选为0.45≤R/F≤0.55。更优选R/F≈0.5。 
胶乳颗粒的重量(ML)与所有组分的总重量ML+MR+MF(其中MR为聚羟基苯(优选为间苯二酚)的重量,MF为甲醛的重量)的比值在如下范围内: 
0.1 ≤ M L M L + M R + M F ≤ 95 % ,
为了促进产品的密度的提高从而提高其机械强度,该比值优选为1-40%,更优选为1-30%,进一步优选为2-15%。 
在该计算中,所述胶乳颗粒的重量ML不包括溶剂。通过从胶乳分散体系的总重量中扣除水的重量来计算胶乳颗粒的重量。 
本发明的另一主题是用于制造如上所述发生共交联的至少一种亲水聚合物和至少一种胶乳的干凝胶的方法,该方法包括如下步骤: 
(i)在水溶液中,混合构成亲水聚合物的单体; 
(ii)引入胶乳并混合; 
(iii)添加碱性水溶液,以便将pH调整到5.5-7.5之间的值; 
(iv)优选通过加热进行凝胶化; 
(v)干燥。 
步骤(i)中的单体的混合物按上述比例制备。将水的总量(包括胶乳和可选的助剂中的水)设定为使得重量比MR/MW≤1.4,其中MR为聚羟基苯型(优选间苯二酚)单体的重量,MW为水的重量。 
可选地,可以用可与水混溶的溶剂取代一部分水,该溶剂比如是:甲醇、乙醇、异丙醇、丙酮、乙腈、二甲基甲酰胺、二甲亚砜、二氧六环、四氢呋喃或六甲基磷酰胺。以溶剂的总重量为基准,有机溶剂的量优选为小于20重量%。 
在引入胶乳时或在步骤(iii)之前,可向混合物中添加选自下组的一种以上助剂:金属颗粒、表面活性剂、无机或有机填料、气凝胶或增粘剂。 
金属颗粒可使用锂盐或硼盐。 
例如,表面活性剂可使用阳离子型、非离子型的或阴离子型表面活性剂,比如季铵盐、烷基硫酸盐或烷基磺酸盐、或聚(环氧乙烷)。 
气凝胶可以使用US 5508341中描述的以微球形式存在的产品,或者US 4873218中描述的以粉末形式引入的那些产品。 
无机或有机填料可以使用:炭黑,碳纳米管,铝、镍、钯或铂颗粒,涂覆有金属的中空玻璃珠或二氧化硅颗粒。 
增粘剂可使用聚乙二醇。 
优选碱性水溶液是无机碱比如碳酸盐的溶液。例如,可使用1M Na2CO3溶液。 
将pH调整为5.5-7.5之间的值,并伴随着或接着进行加热操作来形成凝胶。例如,优选地,在恒定体积下,优选在压力下,通过向密闭容器的炉子中传递来进行加热。在工业规模上,可在可控压力下进行加热。加热的周期优选为24-72小时,温度为70-90℃。 
然后干燥由此获得的凝胶。可以使用各种干燥方法:或者在气流下加热以促进蒸发(对流干燥方法),或者进行冷冻干燥或在超临界的CO2介质中干燥。 
优选使用更便宜的对流干燥方法。 
然后获得亲水聚合物和胶乳的干凝胶,优选获得间苯二酚-甲醛(RF)/胶乳的干凝胶。 
与现有方法相比,本发明的方法可以获得高密度,尤其是密度大于或等于1.5的干凝胶。 
当胶乳本身具有氮基官能团时,本发明的干凝胶因存在氮基官能团而不同于现有技术中的干凝胶。 
这类材料具有凝胶的外观,它可用作隔音或隔热材料。 
本发明的另一主题是可通过热分解本发明的干凝胶而获得的碳基材料。 
本发明的碳基材料是由包含石墨的碳形成的单块。 
石墨是碳的同素异形体,其特征是具有六方形排列的原子层。 
以碳基材料的总重量为基准,本发明的碳基材料包括0.1-20wt%、优选0.5-10wt%的石墨。 
可通过X射线分析观察到石墨的存在,特别地,在通过配有铜阳极的θ-θ设置的衍射仪测定的X射线衍射谱中,观察到用布拉格2θ角度表示的如下衍射峰的存在: 
2θ角度 
26.2(*
54.4(*
56.1(**
**数值±0.5° 
*数值±1°。 
获得的碳谱显示出涉及相对于纯石墨发生偏移的衍射峰。该谱还显示出在61°、75°、79°以及81.5°处的衍射峰,并且这些值可为±1°的值。 
衍射峰的振幅随存在的石墨含量的变化而成比例改变,并且三个角度小于60°的衍射峰的存在足以说明石墨的存在。 
本发明的材料还具有如下特征:其密度在0.5-1.5之间,优选在0.7-1.2之间。 
本发明的碳基材料因具有如下特点而不同于现有技术中的碳基材料:其内存在孔网络,其中至少10%、优选超过20%的孔为中孔,并且其总的孔体积为0.4-1cm3/g,优选为0.5-1cm3/g(通过干燥浸渍法或BET方法测定)。另外其总的BET比表面小于1000m2/g,并且样品的外部比表面小于300m2/g。 
术语“碳块”被理解为是指由主要包括碳原子的单块形成的材料。 
本发明的碳基材料具有如下特征:其在1M H2SO4水溶液中测定的按重量计的全电容大于或等于75F/g。 
按重量计的全电容是在充满电解质的材料上测定的材料的按重量计的电容。在将材料浸入电解质溶液之后测定其按重量计的全电容。按重量计的全电容根据所用电解质而改变,特别地,其取决于电解质的密度。 
本发明的另一主题是用于制造本发明的碳基材料的方法,该方法包括在700-1050℃的温 度下加热如上所述的干凝胶5-8小时的步骤。 
优选该加热操作在氮气保护下进行。这导致干凝胶中的所有组分的碳化。该碳基材料经历了体积的减小,并以高机械强度的单块形式存在,这使得其可被机械加工,特别地可用于制备电极。该类不包括粘结材料的电极在等体积下的电容高于由粉末获得的电极的电容。 
根据本发明的可选形式,可视需要将该碳基材料减小为粉末并将其用于导电碳的所有常规应用中,尤其作为塑料中的填料用于导电组件的生产。例如,其可用于制备必需用静电喷涂进行喷漆的汽车车体部件。 
本发明的另一主题是如上所述的碳基材料在制备电极中的应用。 
附图说明
图1A所示为来自于在pH=5.5处制备的RF体系的碳的X射线衍射图。 
图1B所示为来自于在pH=5.5处制备的RF-胶乳(25%)体系的碳的X射线衍射图。 
图2A所示为来自于在pH=6.5处制备的RF体系的碳的X射线衍射图。 
图2B所示为来自于在pH=6.5处制备的RF-胶乳(5%)体系的碳的X射线衍射图。 
图2C所示为来自于在pH=6.5处制备的RF-胶乳(10%)体系的碳的X射线衍射图。 
图2D所示为来源于在pH=6.5处制备的RF-胶乳(5%)体系以及包含高含量腈基的胶乳(40%ACN,Synthomer 6617)的碳的X射线衍射图。 
具体实施方式
实验部分 
I-合成方案
1-干凝胶的制备
在存在胶乳颗粒的条件下,通过间苯二酚与甲醛的缩聚形成有机凝胶。 
间苯二酚/甲醛(R/F)的摩尔比以及间苯二酚/水(R/W)的重量比被分别设定为0.5和0.4。 
使用的甲醛呈水溶液形式(在10-15%的甲醇下稳定存在);存在于该甲醛水溶液中的水的含量被考虑包含在计算式中的水的总体积中从而被包含在R/W比值中。 
间苯二酚(10.204g,由Acros公司提供,98质量%)首先被溶解在蒸馏水中。随后添加14.944g的甲醛水溶液(Riedel de  
Figure BPA00001257592200081
36.5%溶液)。 
被添加到该体系中的胶乳颗粒(Latex Perbunan
Figure BPA00001257592200082
RN-2890)的含量由该比值定义: 
M L M L + M R + M F .
该计算的重量代表胶乳颗粒的重量,而不是胶乳溶液的总重量。在如下三个胶乳含量:5%、10%和25%下进行实验。 
随后通过添加几滴碳酸钠溶液(5M和/或1M)将pH调整为pH 5.5或6.5。 
将最终的混合物放置在试验管中,该试验管随后被密封并在90℃的炉子中放置1天。通过将获得的凝胶浸入蒸馏水中2小时来洗涤该获得的凝胶,从而除去仍残留的微量反应物。 
随后将它们放置在85℃的管状炉子中6小时,并在氮气(10升/分钟)下放置一段时间(可放置1天至7天)。 
2-碳基材料的制备 
在10升/分钟的氮气流下,经干燥的凝胶(由RF+胶乳形成的干凝胶)在800℃下进行热分解。 
各个产品用其胶乳含量及其凝胶pH表征。 
II-电容和能量密度的测定
本发明的碳基材料的电容在包括三个电极的电化学装置中被表征,尤其通过计时电位分析法表征(在水介质中为1A/g,在有机介质中为0.5A/g)。它们的电容被测定,并且获得各个这些材料分别在含水电解质中以及在无水电解质中的充电/放电曲线。通过施加恒定电流脉冲并使用具有计算机接口(IBM公司制造)的VersaStat(EG&G公司制造)电位计监测电压-时间曲线,来获得充放电曲线。EG&G Model 270软件被用于波函数应用以及数据获取。使用常规程序以及等式:C=It/(V1-V2),由充电/放电曲线来测定电容,其中电容的单位选用法拉(F)并且电池电阻的单位选用欧姆。 
含水电解质是1M H2SO4溶液,而有机电解质是高氯酸钠的乙腈(ACN)溶液:2MNaClO4+ACN。 
工作电极由铂网构成,在该铂网内放置了待分析的(已知重量的以及已知表面积的)单块碳。使用的相对电极由铂制成,并且参比电极是在水介质中的饱和汞电极以及在有机介质中的处于电势极限的电极。 
根据J.R.Miller和A.F.Burke,《电动车辆电容器实验步骤手册》,1994DOE/ID10491,pp.21-25中描述的流程测定能量密度。 
III-性能比较
选出就碳的干重测定的比电容(仅给出性能的概念)、以及就涉及的实际重量即被电解质浸透的碳的重量估算的比电容(真正的或实际电容)。 
1-在水以及有机介质中的电容
就碳的干重估算的电容以及随后就充满1M硫酸的来源于RF+5%胶乳体系(pH 6.5)的碳的重量估算的电容与来源于等量的常规RF(相同的R/F和R/W比以及相同的pH,但没有胶乳)的碳的电容被比较。 
结果被概括在表1中。 
这两种碳具有相同的R/W比,但它们的电容性能是不同的;胶乳对主导电容性能的组织特征起作用。 
表1:就干燥碳的孔体积而言的实际比电容。通过将碳黑电极浸没在1M H2SO4中进行测定。 
Figure BPA00001257592200101
观察到最始包含胶乳的碳干凝胶的密度和按体积计的电容增加。 
一旦充满电解质,RF+胶乳(5%)体系因其较低的孔体积而更为有利,这降低了工作电解质的量。 
有机介质中的性能结果如表2所示。 
表2:就干燥碳的孔体积而言的实际比电容,将碳电极浸没在ACN+2M NaClO4中进行测定。 
Figure BPA00001257592200102
在该第二实施例中,与无胶乳的同系物相比,RF+胶乳体系得到的就孔体积而言的碳的电容被提高。于是,RF+胶乳体系得到的碳明显地更有效。 
2-组织性能及电容性能(1M H 2 SO 4 )与凝胶中胶乳初始含量的关系的变化
进行与I部分中相同的流程,胶乳的量变化如下:0%(RF体系);5%(RF-L0.05体系);10%(RF-L0.1体系),并且凝胶pH被改变。 
结果显示在表3和4中。 
a-在pH 6.5处制造的材料
表3:在pH6.5处电容与初始胶乳含量的关系的变化。 
Figure BPA00001257592200111
b-在pH 5.5处制造的材料
表4:在pH5.5处,按体积计的电容(就干燥碳的重量计算的)与初始胶乳含量的关系的变化。 
Figure BPA00001257592200112
在上述两个表中,可以观察到密度总是随着初始胶乳含量的增加而增加,这同样适用于按体积计的电容。 
胶乳的存在导致了一部分“死的”孔体积(在电化学方法中没有起到电解质的作用)的减少,同时获得较好的电容性能:于是使每单位孔体积的超级电容性能最优化。 
IV-中孔体积和BET比表面积的测定。
通过在Micromeritics Gemini装置上的氮吸附、以及通过Micromeritics Autopore II 9220装置上的水银孔隙度计对比表面积和孔径分布进行分析。 
对在pH 6.5处制备的材料进行这些测定。 
表5:各种碳的比表面积和中孔体积 
Figure BPA00001257592200121
V-各种碳干凝胶的X射线衍射图
使用PW 1830 Panalytical X射线装置: 
-检测器的类型:线性 
-工作电压和强度:135W 45kV,30mA 
-X射线源的类型:Cu 
由包含高含量腈基的胶乳和在pH6.5处制备的5%的Synthomer 6617胶乳(40%ACN)来制备另外的碳基材料。 
来源于常规RF凝胶的碳干凝胶完全为无定形碳(图1A和2A)。在图1B、2B和2C的衍射图中可观察到,初始存在的胶乳产生了在碳中的石墨区,具体地说,特征线出现在衍射谱上。这些是来源于以薄片形式排列的胶乳颗粒碳残留物。 
VI-对照例
按照与上述相同的方案制备干凝胶和碳基材料,不同的是用苯乙烯胶乳代替胶乳。 
A-干凝胶的制备
在胶乳颗粒存在的条件下,通过间苯二酚与甲醛的缩聚来产生凝胶。 
间苯二酚/甲醛(R/F)摩尔比以及间苯二酚/水(R/W)重量比分别设置为0.5和0.4。 
使用的甲醛呈水溶液的形式(在10-15%的甲醇中保持稳定),存在于甲醛中的水的量被考虑包括在计算式中使用的水的总体积中,从而被包括在R/W比值中。 
间苯二酚(30.62g,SAFC公司提供,98质量%)首先被溶解在蒸馏水中。随后添加50.05g甲醛水溶液(Merck,37%溶液)。 
添加到体系中的胶乳颗粒(Latex 
Figure DEST_PATH_GSB00000434227900041
9076苯乙烯胶乳)的含量用下述比值定义: 
M L M L + M R + M F .
该计算的重量代表胶乳颗粒的重量而不是胶乳溶液的总重量。用5%的胶乳含量进行实验。 
随后通过添加几滴碳酸钠溶液(1M)来将pH调整为pH 6.5 
将最终的混合物放置在试验管中,随后将该试验管密封并将其放置在90℃的炉子中1天。通过将获得的凝胶浸没在蒸馏水中2小时来洗涤获得的凝胶,从而除去仍存在的微量反应物。 
随后将它们放置在85℃的炉子中6小时。 
B-碳基材料的制备
在10升/分钟的氮气流下,经干燥的凝胶(RF+苯乙烯胶乳的干凝胶)在800℃下进行热分解。 
C-结果
根据本发明的方法使用0.05%的氮基胶乳以及在pH6.5处获得的产品(RF-L0.05)的性能与在pH 6.5处由苯乙烯胶乳(0.05%)获得的产品(RF-LStyr0.05)的性能在下表中被比较。 
Figure DEST_PATH_GSB00000434227900043

Claims (14)

1.一种碳基材料,其能够通过热分解包含如下两种组分的干凝胶来获得:至少一种聚羟基苯/甲醛体系的亲水聚合物和至少一种氮基胶乳,所述聚合物和所述胶乳共交联,其特征在于,
胶乳颗粒的重量ML与所有组分的总重量ML+MR+MF的重量比满足下式:
1 % ≤ M L M L + M R + M F ≤ 40 % ,
其中MR为聚羟基苯的重量,MF为甲醛的重量;
以所述胶乳中组合的单体为基准,所述氮基胶乳包括的氮基单体的量为2-90摩尔%;
表示为R的聚羟基苯与表示为F的甲醛的摩尔比为0.4≤R/F≤0.6;以及
所述碳基材料呈由碳形成的单块形式,以所述碳基材料的总重量为基准,所述碳包含0.1-20重量%的石墨。
2.如权利要求1所述的碳基材料,其特征在于,在通过配有铜阳极的θ-θ设置的衍射仪测定、并以布拉格2θ角度表示的X射线衍射谱中,存在至少三个如下的衍射峰:
2θ角度
26.2(*)
54.4(*)
56.1(**)
**数值±0.5°
*数值±1°。
3.如权利要求1或2所述的碳基材料,其特征在于,所述碳基材料具有孔网络,其中至少10%为中孔,并且孔体积在0.4-1cm3/g之间。
4.如在前权利要求1或2所述的碳基材料,其特征在于,所述碳基材料在1M H2SO4水溶液中测定的按重量计的全电容大于或等于75F/g。
5.一种用于制造如权利要求1-4中任一项所述的碳基材料的方法,所述方法包括如下步骤:在700-1050℃温度范围下,加热干凝胶5-8小时,所述干凝胶包含如下两种组分:至少一种聚羟基苯/甲醛体系的亲水聚合物和至少一种氮基胶乳,所述聚合物与所述胶乳共交联,其中,
胶乳颗粒的重量ML与所有组分的总重量ML+MR+MF的重量比满足下式:
1 % ≤ M L M L + M R + M F ≤ 40 % ,
其中MR为聚羟基苯的重量,MF为甲醛的重量;
以所述胶乳中组合的单体为基准,所述氮基胶乳包括的氮基单体的量为2-90摩尔%;以及
表示为R的聚羟基苯与表示为F的甲醛的摩尔比为0.4≤R/F≤0.6。
6.如权利要求5所述的方法,其特征在于,所述干凝胶通过包括如下步骤的工艺获得:
(i)在水溶液中混合构成亲水聚合物组分的单体;
(ii)引入胶乳并混合;
(iii)添加碱性水溶液,以调整pH到5.5-7.5之间;
(iv)凝胶化;
(v)干燥。
7.如权利要求6所述的方法,其特征在于,将水的总量设定成使重量比MR/MW≤1.4,其中MR为聚羟基苯型单体的重量,MW为水的重量。
8.如权利要求6-7中任一项所述的方法,其特征在于,所述凝胶化是在恒定体积下、优选在压力下通过加热进行。
9.如权利要求6所述的方法,其特征在于,使用对流干燥法干燥所述凝胶。
10.一种可用于如权利要求5-9中任一项所述的方法中的凝胶,其包括至少一种聚羟基苯/甲醛体系的亲水聚合物和至少一种氮基胶乳,其中所述聚合物与所述胶乳共交联,其中胶乳颗粒的重量ML与所有组分的总重量ML+MR+MF的重量比满足下式:
1 % ≤ M L M L + M R + M F ≤ 40 % ,
其中MR为聚羟基苯的重量,MF为甲醛的重量,
以所述胶乳中组合的单体为基准,所述氮基胶乳包括的氮基单体的量为2-90摩尔%;以及
表示为R的聚羟基苯与表示为F的甲醛的摩尔比为0.4≤R/F≤0.6。
11.如权利要求10所述的凝胶,其特征在于,所述聚羟基苯选自于间苯二酚和间苯二酚与选自邻苯二酚、对苯二酚和间苯三酚的另一化合物的混合物。
12.如权利要求10-11中任一项所述的凝胶,其特征在于,所述胶乳选自于丁腈橡胶。
13.如权利要求1-4中任一项所述的碳基材料用于制造电极的应用。
14.如权利要求1-4中任一项所述的碳基材料作为塑料中的填料在导电组件制造中的应用。
CN200980118475.8A 2008-03-26 2009-03-26 源自胶乳的碳基材料 Expired - Fee Related CN102123787B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0801639 2008-03-26
FR0801639A FR2929284B1 (fr) 2008-03-26 2008-03-26 Materiaux carbones issus de latex
PCT/FR2009/000332 WO2009125094A2 (fr) 2008-03-26 2009-03-26 Materiaux carbones issus de latex

Publications (2)

Publication Number Publication Date
CN102123787A CN102123787A (zh) 2011-07-13
CN102123787B true CN102123787B (zh) 2014-03-05

Family

ID=39719111

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980118475.8A Expired - Fee Related CN102123787B (zh) 2008-03-26 2009-03-26 源自胶乳的碳基材料

Country Status (9)

Country Link
US (1) US9017579B2 (zh)
EP (1) EP2271423A2 (zh)
JP (1) JP5535189B2 (zh)
KR (1) KR101596819B1 (zh)
CN (1) CN102123787B (zh)
CA (1) CA2719465C (zh)
FR (1) FR2929284B1 (zh)
RU (1) RU2505480C2 (zh)
WO (1) WO2009125094A2 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967669B1 (fr) 2010-11-23 2012-11-30 Hutchinson Nouveau materiau carbone poreux monolithique modifie au soufre, son procede de preparation et ses utilisations pour le stockage et la restitution d'energie
FR2978438B1 (fr) 2011-07-27 2016-01-08 Centre Nat Rech Scient Procede de preparation d'une mousse de carbone, materiau obtenu et applications.
FR2985598B1 (fr) 2012-01-06 2016-02-05 Hutchinson Composition carbonee pour electrode de cellule de supercondensateur, electrode, son procede de fabrication et cellule l'incorporant.
EP3045901A1 (en) 2015-01-19 2016-07-20 Hutchinson S.A. Use of high specific surface area carbon materials as counter electrode for electrochemical measurements
US10767062B2 (en) * 2017-06-05 2020-09-08 Lawrence Livermore National Security, Llc System and method for forming activated carbon aerogels and performing 3D printing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR961294A (zh) * 1950-05-09
FR1097512A (fr) * 1953-06-24 1955-07-06 Wingfoot Corp éponge de caoutchouc en mousse de latex renforcée
WO2007024241A3 (en) * 2004-09-10 2007-04-12 Ut Battelle Llc Highly ordered porous carbon materials having well defined nanostructures and method of synthesis

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62132717A (ja) * 1985-12-05 1987-06-16 Mitsui Petrochem Ind Ltd 接合された炭素質製品の製造方法
JPH1036450A (ja) * 1996-07-16 1998-02-10 Maruzen Petrochem Co Ltd 炭素材料製造用のポリアクリロニトリル−ピッチ系素原料
RU2103766C1 (ru) * 1996-07-31 1998-01-27 Акционерное Общество Открытого Типа "Новосибирский завод Химконцентратов" Углеродсодержащий материал для электродов химических источников тока и способ изготовления из него пористых электродов
US6297293B1 (en) * 1999-09-15 2001-10-02 Tda Research, Inc. Mesoporous carbons and polymers
JP4899042B2 (ja) * 2005-08-01 2012-03-21 国立大学法人 宮崎大学 レゾルシノール系ポリマーを前駆体としたワイヤー状炭素粒子とその製造方法及び用途
EP1981706A4 (en) * 2006-02-09 2010-04-07 Headwaters Tech Innovation Llc POLYMERIC MATERIALS INCORPORATING CARBON NANOSTRUCTURES AND METHODS OF MAKING
WO2008118199A2 (en) * 2006-11-09 2008-10-02 Indspec Chemical Corporation Method of stabilizing resorcinol resins and gel compositions made therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR961294A (zh) * 1950-05-09
FR1097512A (fr) * 1953-06-24 1955-07-06 Wingfoot Corp éponge de caoutchouc en mousse de latex renforcée
WO2007024241A3 (en) * 2004-09-10 2007-04-12 Ut Battelle Llc Highly ordered porous carbon materials having well defined nanostructures and method of synthesis

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde;Wen-Cui Li et al.;《Carbon》;20011101;第39卷;1989-1994 *
Novel monolithic mesoporous foamed carbons prepared using micro-colloidal particles as templates;Tianying Guo et al.;《Journal of Non-Crystalline Solids》;20070724;第353卷;第2893-2899页 *
Synthesis of mesoporous carbon foams templated by organic colloids;Wayne W et al;《Chem. Mater.》;20021231;第14卷(第4期);1665-1670 *
Tianying Guo et al..Novel monolithic mesoporous foamed carbons prepared using micro-colloidal particles as templates.《Journal of Non-Crystalline Solids》.2007,第353卷第2893-2899页.
Wayne W et al.Synthesis of mesoporous carbon foams templated by organic colloids.《Chem. Mater.》.2002,第14卷(第4期),1665-1670.
Wen-Cui Li et al..Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde.《Carbon》.2001,第39卷1989-1994.

Also Published As

Publication number Publication date
WO2009125094A3 (fr) 2009-12-10
CN102123787A (zh) 2011-07-13
WO2009125094A2 (fr) 2009-10-15
EP2271423A2 (fr) 2011-01-12
FR2929284A1 (fr) 2009-10-02
KR20100135827A (ko) 2010-12-27
CA2719465C (fr) 2016-08-09
KR101596819B1 (ko) 2016-02-23
US9017579B2 (en) 2015-04-28
RU2010143551A (ru) 2012-05-10
JP2011517650A (ja) 2011-06-16
RU2505480C2 (ru) 2014-01-27
US20110140051A1 (en) 2011-06-16
CA2719465A1 (fr) 2009-10-15
JP5535189B2 (ja) 2014-07-02
FR2929284B1 (fr) 2012-01-20

Similar Documents

Publication Publication Date Title
CN102123787B (zh) 源自胶乳的碳基材料
Inagaki et al. Templated mesoporous carbons: Synthesis and applications
Wang et al. Nitrogen-doped hierarchical porous carbon as an efficient electrode material for supercapacitors
Wang et al. Effect of pore packing defects in 2-D ordered mesoporous carbons on ionic transport
Fang et al. Ordered hierarchical nanostructured carbon as a highly efficient cathode catalyst support in proton exchange membrane fuel cell
JP4662730B2 (ja) エネルギー貯蔵装置において有用なマクロレティキュラー炭質材料
Han et al. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material
Wang et al. Preparation and performances of carbon aerogel microspheres for the application of supercapacitor
Shen et al. Supercapacitor electrodes based on nano-polyaniline deposited on hollow carbon spheres derived from cross-linked co-polymers
Sun et al. Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors
CN103440995A (zh) 一种用于超级电容器的电极材料及其制备方法
Zhou et al. Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor
Kwon et al. Preparation of activated carbon aerogel and its application to electrode material for electric double layer capacitor in organic electrolyte: Effect of activation temperature
Liu et al. Solvent-induced synthesis of nitrogen-doped hollow carbon spheres with tunable surface morphology for supercapacitors
Du et al. Facile fabrication of hierarchical porous carbon for a high-performance electrochemical capacitor
Cai et al. Phenol–formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors
CN105518814A (zh) 蓄电装置的电极用活性炭及其制备方法
Wang et al. Ionic liquid as template to synthesize carbon xerogels by coupling with KOH activation for supercapacitors
Zhou et al. One-step synthesis of chitin-derived nitrogen-rich porous carbon fiber assisted with ammonium chloride chemical blowing for supercapacitors
Xin et al. Synthesis of biomass-derived mesoporous carbon with super adsorption performance by an aqueous cooperative assemble route
Chou et al. Fabrication of hierarchically ordered porous carbons using sugarcane bagasse as the scaffold for supercapacitor applications
Yu et al. Nitrogen-doped hollow carbon spheres from bio-inspired dopamine: Hexamethylenetetramine-induced polymerization, morphology control and supercapacitor performance
JP5045761B2 (ja) 電気二重層キャパシタ用電極およびその製造方法
Macías et al. On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization
Zhou et al. Enhanced mesoporosity and capacitance property of spherical carbon aerogel prepared by associating Mg (OH) 2 with non-ionic surfactant

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140305

Termination date: 20180326

CF01 Termination of patent right due to non-payment of annual fee