EP2262059B1 - Antenne diélectrique - Google Patents

Antenne diélectrique Download PDF

Info

Publication number
EP2262059B1
EP2262059B1 EP10004964.2A EP10004964A EP2262059B1 EP 2262059 B1 EP2262059 B1 EP 2262059B1 EP 10004964 A EP10004964 A EP 10004964A EP 2262059 B1 EP2262059 B1 EP 2262059B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
section
transition section
horn
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10004964.2A
Other languages
German (de)
English (en)
Other versions
EP2262059A2 (fr
EP2262059A3 (fr
Inventor
Gunnar Armbrecht
Christian Zietz
Eckhard Denicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Priority to EP13000629.9A priority Critical patent/EP2592693B1/fr
Priority to EP13000630.7A priority patent/EP2592694B1/fr
Priority to EP14186480.1A priority patent/EP2840653B1/fr
Priority to EP13000632.3A priority patent/EP2592695B1/fr
Publication of EP2262059A2 publication Critical patent/EP2262059A2/fr
Publication of EP2262059A3 publication Critical patent/EP2262059A3/fr
Application granted granted Critical
Publication of EP2262059B1 publication Critical patent/EP2262059B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Definitions

  • the invention relates to a dielectric antenna having a dielectric feed section, a first transition section comprising a dielectric rod, a second transition section forming a dielectric horn and a dielectric emission section, the supply section being exposed to electromagnetic radiation, electromagnetic radiation with the first transition section and the second transition section is feasible and the electromagnetic radiation from the radiating portion can be emitted as a free space wave.
  • Dielectric antennas per se have long been known and are used in a variety of configurations and sizes for very different purposes, such as in industrial process monitoring to determine distances - for example, media surfaces in tanks - on the transit time of reflected electromagnetic waves (radar applications).
  • the invention described herein is completely independent of the field in which the subsequently treated antennas are used; By way of example, reference will be made below to the use of the antennas in question in the field of fill level measuring technology.
  • XP 575262 discloses a prior art dielectric antenna
  • the emission section and the second transition section forming a dielectric horn coincide and are usually referred to as horn antennas, also referred to as horn radiators in the transmission case.
  • horn antennas also referred to as horn radiators in the transmission case.
  • Via a metallic waveguide such a dielectric antenna with a TE-wave or a TM-wave is fed, such. B. with a TE 11 wave (equivalent to H 11 wave), the electric field strength thus has no share in the propagation direction of the electromagnetic wave.
  • dielectric antennas essentially consist of a body of dielectric material, electromagnetic waves also being guided in the material and being radiated over the material in the emission direction .
  • emission direction is here meant essentially the main emission direction of the dielectric antenna, ie the direction in which the directivity of the dielectric antenna is particularly pronounced.
  • Dielectric antennas are often used in industrial process measurement technology - as mentioned above - for level measurement. In such applications, it is of particular advantage if the antennas used have the smallest possible main emission direction and at the same time the most compact possible design. However, these requirements are contradictory with regard to the constructive measures that usually have to be taken for their technical implementation.
  • a narrow directional characteristic in the main emission direction can, as is known, only be achieved by a large aperture-that is, aperture area-of the emission section, which necessitates a large expansion of the antenna perpendicular to the main emission direction.
  • the electromagnetic radiation emitted by the emission section must have as flat a phase front as possible, such a planar phase front usually only being able to be realized with increasing length of the antenna, which also counteracts the desired compact design.
  • an additional problem often is that the geometric aperture can only be increased within narrow limits, otherwise the antenna is no longer in the volume to be monitored -.
  • the second transition section thus acts as a "real" transitional section between physically separate regions of the dielectric antenna, namely between the first transition section comprising a dielectric rod radiation section.
  • the continuation of the electromagnetic waves over the emission-side dielectric tube has the advantage that with optimal - ie modest-pure - excitation a considerable variability of the length of the dielectric antenna is achieved.
  • the wall thickness of the dielectric tube forming the emission section is selected to be such that only electromagnetic waves in the hybrid fundamental mode HE 11 are propagated along the dielectric tube.
  • the rod geometry of the dielectric antenna in the first transition section and the tube geometry in the emission section of the dielectric antenna in the electromagnetic sense represent self-wave systems, along which each field distribution can be represented as a superposition of individual eigen waves.
  • the fundamental mode is hybrid in the two systems and is referred to as the HE 11 mode.
  • the second transition section which forms a dielectric horn, thus represents a waveguide transition between two different self-wave systems
  • the transitions from the rod-shaped first transition section into the second transition section and from the second transition section in the dielectric emission section for the guided electromagnetic waves represent discontinuities which are sources of higher order field distributions. If the higher modes excited by the discontinuities are below the cut-off frequency of the self-wave systems of the dielectric antenna, the higher modes can not be guided along the dielectric structures, but the associated electromagnetic radiation radiates directly into the discontinuity at the location of the discontinuities Free space, which leads to a curvature of the phase fronts and thus to a reduction in the directivity of the antenna.
  • the dielectric horn comprising second transition portion has a non-linear, increasingly in the emission direction inner contour, said inner contour usually the interface of the dielectric horn to a forms cavity enclosed by the dielectric horn.
  • the non-linear inner contour of the second transition section comprising the dielectric horn a mode purity with a comparatively short second transition section in the axial direction-main emission direction-can be achieved compared to linear second transition sections which are otherwise relatively long in the axial direction.
  • shortening of the second transition section forming a dielectric horn can be achieved by more than a third of the length otherwise necessary for a linear horn.
  • Such inner contours have been found to be particularly suitable, which can be described by a power function with fractional exponent greater than one, these power functions having as an independent variable the spatial coordinate of the antenna extending in the main emission direction.
  • the exponent chosen is a value in the range between 1.09 and 1.13, more preferably a fractional exponent in the range of 1.10 to 1.12, preferably an exponent of substantially 1.11.
  • the zero point of the aforementioned spatial coordinate can also be displaced into the first transitional section, which comprises a dielectric rod.
  • the inner contour of the dielectric horn of the second transition section in the first Transition-forming dielectric rod continues, in particular, namely steplessly continued in the first transition portion forming dielectric rod. This means that, in particular, a cavity within the dielectric antenna continues into the dielectric bar of the first transition section.
  • the inner contour of the dielectric rod is preferably also described by a power function with fractional exponent greater than one, the power function again having as independent variable the spatial coordinate pointing in the main emission direction of the antenna, and the fractional exponent being preferably in the range from 1.09 to 1.13, in particular in the range 1.10 to 1.12 and very particularly preferably substantially has the value 1.11.
  • the discontinuity between the first transition section and the second transition section is least when the inner contour of the first transition section comprising the dielectric rod and the inner contour of the second transition section comprising the dielectric horn are described by the same power function.
  • the inner contour of the first transition section comprising the dielectric rod has a stepped impedance converter in the transition to the feed-side full-bar region forms according to the principle of a quarter-wave transformer, in particular namely a single-stage impedance converter. It has been found that this wideband suppression of reflections can be significantly increased without affecting the desired field distribution negative.
  • a further stepped impedance converter in particular simply stepped, is preferably provided in the transition of the emitting section designed as a dielectric tube into the free space.
  • the dielectric feed section is formed as a stepped impedance converter according to the principle of a quarter-wave transformer, in particular as a two-stage impedance converter, which achieves better results in the transition region of a metal waveguide usually used on the dielectric feed section as a single-stepped impedance converter
  • the stepped impedance converter provided in the dielectric feed section preferably has an inner contour with a cross-section which tapers in the emission direction, wherein preferably at least one step with an inner hexagonal profile is provided as the inner contour.
  • the hexagon socket profile is particularly advantageous for mounting purposes, but it is also superior to other shapes from the electromagnetic point of view since it has the greatest possible robustness with respect to unknown angles of rotation.
  • a significant improvement of the transient reflection behavior can be achieved by a further design measure, namely, when the outer diameter of the feed section is selected such that in the assembled state of the antenna, a radial gap between the feed section and a feeding waveguide is formed, in which protrudes the feed section, in particular wherein the gap extends in the emission direction substantially over the axial extent - extension in the main emission direction - of the stepped impedance converter formed in the dielectric feed section.
  • a gap width of about 1 mm has been reinforced.
  • the stepped impedance converters provided in the food area and in the first transition section also lead to reflection reductions in the case of dielectric Antennas which do not have a dielectric tube as the emission section are therefore to be understood as being independent of the feature of the emission section designed as a dielectric tube.
  • a further increase in directivity can be achieved in a preferred embodiment of the dielectric antenna according to the invention in that the dielectric rod is surrounded in the first transition section by a metallic horn projection opening in the emission direction of the antenna, wherein the metallic horn projection in particular neither into the region of in the dielectric feed section formed stepped impedance converter still extends into the region of the stepped impedance converter in the first transition section.
  • a metallic Horn approach the directivity of the dielectric antenna according to the invention is further increased, since the fundamental mode of the electromagnetic radiation at the end of the metallic Horn approach coupled with causing minimal leakage in the desired HE 11 -Stabmode.
  • the opening inner contour of the metallic horn approach can be configured differently, is preferably designed linear, since with non-linear inner contours hardly improve the radiation characteristics can be achieved and linear inner contours are easier to produce.
  • FIG. 2 shows cross-sections of complete dielectric antennas 1, which have a dielectric feed section 2, a first transition section 3 comprising a dielectric rod, a second transition section 4 forming a dielectric horn, and a dielectric emission section 5, the dielectric feed section 2 being exposed to electromagnetic radiation 6, electromagnetic radiation 6 can be guided with the first transition section 3 and the second transition section 4, and the electromagnetic radiation 6 can be emitted by the emission section 5 as a free-space wave.
  • Dielectric antennas 1 shown more or less faithfully - are characterized in that the emission section 5 is designed as a dielectric tube adjoining the second transition section 4. It is thereby achieved that the length of the dielectric antenna 1 can be varied within wide ranges, namely by different choice of the length of the first transition section 3 comprising the dielectric rod and by selecting the length of the radiating section 5 embodied as a dielectric tube. Both areas 3 and 5 are In the electromagnetic sense, self-wave systems with the second transition section 4 forming a dielectric horn as a waveguide transition between these different self-wave systems.
  • the wall thickness of the emission section 5 designed as a dielectric tube is selected such that only electromagnetic radiation 6 in the hybrid fundamental mode HE 11 runs along the guided dielectric capable of propagation, so that the electromagnetic radiation 6 is basically pure state passed over the dielectric rod first transition section 3 and designed as a dielectric tube radiating section 5.
  • the higher modes occurring at the discontinuity points are radiated directly into the free space at the location of the discontinuities, ie in particular in the region of the second transition section 4 forming a dielectric horn.
  • the release of the parasitic electromagnetic leakage field is shown in FIG Fig.
  • the wall thickness of the dielectric tube of the Abstrahlabitess 5 is less than 5% of the outer diameter of the tube.
  • the outer diameter of the tube is 43 mm with a wall thickness of 2.0 mm, which, when using polypropylene (PP, Fig. 1 ) and polytetrafluoroethylene (PTFE, Fig. 2 ) and at an excitation frequency of 9.5 GHz leads to the desired selective transmission behavior.
  • the transmission behavior of the first, comprising the dielectric rod transition section 3 to the designed as a dielectric tube radiating section 5 is in the illustrated embodiments according to Fig. 1 and 2 in that the second transition section 4 comprising the dielectric horn has a nonlinear inner contour 8 which increasingly opens in the emission direction 7, the inner contour 8 being described by a power function with fractional exponent> 1 as a function of the spatial coordinate in the main emission direction 7 of the antenna 1 ; in the present case, the exponent has the value of essentially 1.1.
  • the antennas according to Fig. 1 and 2 is also common that the dielectric horn comprehensive second transition section 4 has a linear, opening in the emission direction 7 outer contour 9. It has been found that the shaping of the outer contour 9 is not decisive to the same extent for the transmission behavior of the second transition section 4 as the configuration of the inner contour 8; In that regard, the easiest to produce outer contour 9 has been chosen here.
  • the inner contour 8 of the dielectric horn of the second transition section 4 continues in an inner contour 10 of the first transition section 3 forming the dielectric rod, namely in this case continuously in the first transition section 3 forming dielectric rod continues.
  • the inner contour 10 of the dielectric first connecting portion 3 and the inner contour 8 of the dielectric horn comprehensive second transition portion 4 is described by the same power function, whereby any discontinuities in the transition region between the first transition section 3 and the second transition section 4 are avoided ,
  • x is the spatial coordinate in the emission direction 7 of the antenna and is given in millimeters
  • r (x) denotes the height of the inner contours 8, 10 above the axis of the independent spatial coordinate x.
  • the zero point of the spatial coordinate x is here 80 mm within the transition of the first transition section 3 to the second transition section 4, wherein the formed as a dielectric horn second transition section 4 has an extension of 150 mm in total in the emission 7.
  • the adjoining, designed as a dielectric tube radiating section 5 has in the direction of radiation 7 of the dielectric antenna 1 an extension of only 15 mm.
  • Table 1 below shows the transmission behavior and characteristic radiation parameters upon excitation of short emission sections 5 designed as a dielectric tube with different transition sections 4 designed as a dielectric horn when excited at 9.5 GHz.
  • Tab. 1 Transmittance behavior with different linear inner contours and a nonlinear inner contour of a dielectric antenna at 9.5 GHz.
  • Fig. 4a is the directivity as a function of the length of designed as a dielectric tube second transition section 4 shown for the designed as a dielectric horn second transition sections 4 with a linear inner contour (150 mm, 350 mm, 550 mm) and for the excitation of a variable-length radiating section. 5 via a formed as a dielectric horn second transition section 4 with non-linear inner contour (230 mm).
  • An increase of the HE 11 mode purity leads to a reduction of the increase in directivity over the tube length and thus to a reduced length dependence of the radiation behavior.
  • a first stepped impedance converter 11 is formed by the inner contour 10 of the dielectric rod comprising the first transition section 3 in the transition to the feed side full bar area, which is formed in the present case as a single-stage impedance converter.
  • Single-stage impedance converters already lead to good results in purely dielectric transition regions with regard to the avoidance of internal reflections.
  • the dielectric feed section 2 is formed as a further stepped impedance converter 12, which also operates on the principle of a quarter-wave transformer.
  • the stepped impedance converter 12 has an inner contour with a tapering in the emission direction 7 cross-section, wherein the smallest step is formed with a hexagon socket as the inner contour, which is in terms of mounting the dielectric antenna 1 is advantageous, but also - as already stated above - is a particularly preferred structure in terms of electromagnetic properties.
  • the outer diameter of the dielectric feed section 2 is selected so that in the assembled state of the antenna, a radial gap 13 between the feed section 2 and a feeding waveguide 14 is formed in the In the present case, the radial gap 13 extends in the emission direction 7 substantially over the axial extent of the stepped impedance converter 12 formed in the dielectric feed section 2, which is particularly evident in FIG Fig. 5 can be seen.
  • the metallic horn lug 15 is surrounded by a dielectric sheath 16, the dielectric sheath 16 mechanically connecting the metallic horn lug 15 to the dielectric antenna 1 and fixing the metallic horn lug 15 to the dielectric antenna.
  • the dielectric sheath 16 is integral with Namely, it is formed on the other dielectric parts of the dielectric antenna 1, namely, it is molded on the dielectric antenna 1 in an injection process.
  • the dielectric sheaths 16 according to the embodiments in FIGS Fig. 1 and 5 also have external thread 17 for mounting the dielectric antenna 1 in a process-side flange, wherein the process-side flange is not shown here.
  • the wrapper 16 in Fig. 1 is configured adjacent to the external thread 17 as a nut, which facilitates the assembly of the antenna 1 as a whole.
  • the dielectric sheath 16 according to FIG Fig. 2 is additionally configured as extending vertically to the emission direction 7 of the antenna 1 extension, which serves as a sealing plate between mounting flanges, not shown; Such is in a simple manner - assuming a sufficient thickness of the gasket - also an explosion and / or flame protection achievable.
  • the dielectric sheath 16 brings for all shown embodiments, Fig. 1 . 2 and 5 , several advantages, which are practically significant Meaning may be such. As the encapsulation of all metal parts to the process and the ability to dispense with otherwise conventional sealing elements within the rod geometry or the waveguide, since the sealing elements can bring electromagnetically considerable disadvantages.
  • a cylindrical metal sleeve 18 is formed, which serves as a transition to a feeding metallic waveguide 14, or, even in this section, the feeding waveguide 14 represents.
  • a thread formed between the feed section 2 and the metallic horn projection 15 or the surrounding metal sleeve 18 is indicated, with which the dielectric part of the antenna is secured in the metallic horn projection 15 or the surrounding metal sleeve 18.

Landscapes

  • Waveguide Aerials (AREA)

Claims (6)

  1. Antenne diélectrique, dotée d'une section d'alimentation diélectrique (2), d'une tige diélectrique comprenant une première section de transition (3), d'une deuxième section de transition (4) supplémentaire formant un cornet diélectrique et d'une section de rayonnement diélectrique (5), la section d'alimentation (2) pouvant être alimentée en rayonnement électromagnétique (6), ledit rayonnement électromagnétique (6) pouvant être amené par la première section de transition (3) et la deuxième section de transition (4) et le rayonnement électromagnétique pouvant rayonner à partir de la section de rayonnement (5) sous la forme d'une onde d'espace libre, la deuxième section de transition (4) comprenant le cornet diélectrique comportant un contour intérieur s'ouvrant de plus en plus dans la direction de rayonnement et ce contour intérieur formant la surface limite du cornet diélectrique par rapport à un espace creux comprenant le cornet diélectrique et le rayonnement électromagnétique (6) amené dans la section d'alimentation (2) étant propagé par le biais de la section d'alimentation diélectrique (2) dans la première section de transition (3) comprenant la tige diélectrique et de là dans la deuxième section de transition (4) supplémentaire formant un cornet diélectrique puis étant envoyé par rayonnement au travers de la section de rayonnement (5), et la deuxième section de transition (4) comprenant le cornet diélectrique présentant un contour extérieur linéaire, s'ouvrant dans la direction de rayonnement (7) ; caractérisée en ce que :
    le contour intérieur (8) du cornet diélectrique de la deuxième section de transition (4) se poursuit dans le contour intérieur (10) de la tige diélectrique formant la première section de transition (3) et que la section de rayonnement (5) prend la forme d'un tube diélectrique raccordé à la deuxième section de transition (4) et présentant un diamètre extérieur.
  2. Antenne diélectrique selon la revendication 1, caractérisée en ce que l'épaisseur de paroi du tube diélectrique est choisie au maximum de telle sorte que dans le mode de base hybride HE11, seul le rayonnement électromagnétique (6) puisse se diffuser de façon guidée le long du tube diélectrique, l'épaisseur de paroi du tube diélectrique représentant notamment au naximum 5 du diamètre extérieur du tube diélectrique.
  3. Antenne diélectrique selon la revendication 1 ou 2, caractérisée en ce que le contour intérieur (8) du cornet diélectrique de la deuxième section de transition (4) dotée d'un contour intérieur (10) se poursuit sans discontinuité dans la tige diélectrique formant la première section de transition (3).
  4. Antenne diélectrique selon l'une quelconque des revendications 1 à 3, caractérisée en ce que la tige diélectrique est entourée dans la première section de transition (3) d'un appendice de cornet (15) métallique s'ouvrant dans la direction de rayonnement (7) de l'antenne (1), l'appendice de cornet (15) métallique ne s'étendant notamment ni dans la région du convertisseur d'impédance (12) par paliers de la section d'alimentation (2) diélectrique ni dans la région du convertisseur d'impédance (11) par palier prévu dans la première section de transition (3).
  5. Antenne diélectrique selon la revendication 4, caractérisée en ce que le diamètre extérieur maximal de l'appendice de cornet (15) métallique dépasse le diamètre extérieur de la tige diélectrique prévue dans la première section de transition (3) au maximum du facteur 2,5, de préférence au maximum du facteur 2,3, tout au plus du facteur 2.
  6. Antenne diélectrique selon la revendication 4 ou 5, caractérisée en ce qu'un fourreau métallique (18) cylindrique forme l'appendice de cornet (15) métallique dans la direction de la section d'alimentation (2), notamment sous la forme d'une transition avec un conducteur creux métallique alimenté.
EP10004964.2A 2009-05-25 2010-05-11 Antenne diélectrique Active EP2262059B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13000629.9A EP2592693B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000630.7A EP2592694B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP14186480.1A EP2840653B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000632.3A EP2592695B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009022511.0A DE102009022511B4 (de) 2009-05-25 2009-05-25 Dielektrische Antenne

Related Child Applications (7)

Application Number Title Priority Date Filing Date
EP13000630.7A Division EP2592694B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000632.3A Division EP2592695B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP14186480.1A Division EP2840653B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000629.9A Division EP2592693B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000630.7 Division-Into 2013-02-07
EP13000629.9 Division-Into 2013-02-07
EP13000632.3 Division-Into 2013-02-07

Publications (3)

Publication Number Publication Date
EP2262059A2 EP2262059A2 (fr) 2010-12-15
EP2262059A3 EP2262059A3 (fr) 2011-03-30
EP2262059B1 true EP2262059B1 (fr) 2013-04-17

Family

ID=42646278

Family Applications (5)

Application Number Title Priority Date Filing Date
EP13000632.3A Active EP2592695B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP10004964.2A Active EP2262059B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000629.9A Not-in-force EP2592693B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP14186480.1A Active EP2840653B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000630.7A Active EP2592694B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13000632.3A Active EP2592695B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP13000629.9A Not-in-force EP2592693B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP14186480.1A Active EP2840653B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique
EP13000630.7A Active EP2592694B1 (fr) 2009-05-25 2010-05-11 Antenne diélectrique

Country Status (4)

Country Link
US (1) US8354970B2 (fr)
EP (5) EP2592695B1 (fr)
CN (1) CN101944658B (fr)
DE (1) DE102009022511B4 (fr)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087198A1 (fr) * 2010-12-20 2012-06-28 Saab Ab Antenne à fente effilée
US8970424B2 (en) * 2012-10-24 2015-03-03 Rosemount Tank Radar Ab Radar level gauge system with reduced antenna reflection
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
DE102013106978A1 (de) * 2013-07-03 2015-01-22 Endress + Hauser Gmbh + Co. Kg Antennenanordnung für ein Füllstandsmessgerät
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
TWI528637B (zh) * 2013-12-26 2016-04-01 啟碁科技股份有限公司 防水組件
JP6289277B2 (ja) 2014-03-31 2018-03-07 東京計器株式会社 ホーンアンテナ
US9882285B2 (en) 2014-04-24 2018-01-30 Honeywell International Inc. Dielectric hollow antenna
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
CN104569889A (zh) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 同心锥形tem室及其传输段内外导体半夹角的设计方法
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
DE102015115395B4 (de) * 2015-09-11 2017-06-14 Krohne Messtechnik Gmbh Antenne mit einer Linse
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
EP3168581B1 (fr) * 2015-11-13 2022-01-19 VEGA Grieshaber KG Antenne a cornet et appareil de mesure de niveau de remplissage radar dote d'une antenne a cornet
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) * 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10637149B2 (en) * 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
EP3622582B1 (fr) * 2017-06-30 2021-10-20 Huawei Technologies Co., Ltd. Ensemble d'alimentation d'antenne multibande et antenne multibande
US10305197B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Multimode antenna system and methods for use therewith
US10205231B1 (en) 2017-09-06 2019-02-12 At&T Intellectual Property I, L.P. Antenna structure with hollow-boresight antenna beam
US10305179B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Antenna structure with doped antenna body
US10230426B1 (en) 2017-09-06 2019-03-12 At&T Intellectual Property I, L.P. Antenna structure with circularly polarized antenna beam
US11493622B1 (en) 2018-02-08 2022-11-08 Telephonics Corp. Compact radar with X band long-distance weather monitoring and W band high-resolution obstacle imaging for landing in a degraded visual environment
CN110600868B (zh) * 2019-09-12 2020-10-16 哈尔滨工业大学 一种用于18-40GHz频段的超宽带介质棒天线
EP4002590B1 (fr) * 2020-11-18 2023-09-13 TMY Technology Inc. Antenne cornet non-métallique à ultra large bande

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB656200A (en) * 1948-05-28 1951-08-15 Emi Ltd Improvements in or relating to radiating or receiving devices for electromagnetic waves
US2801413A (en) * 1949-03-30 1957-07-30 Bell Telephone Labor Inc Directive dielectric antennas
DE1904130C3 (de) * 1969-01-28 1978-06-15 Siemens Ag, 1000 Berlin Und 8000 Muenchen Dielektrische Hornantenne
DE2744841C3 (de) 1977-10-05 1980-08-21 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Sich exponentiell erweiternder Hornstrahler für eine Mikrowellenantenne
DE7730798U1 (de) * 1977-10-05 1980-09-04 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Mikrowellenantenne
NO157480C (no) * 1985-02-28 1988-03-30 Sintef Hybridmodus hornantenne.
JP2765255B2 (ja) * 1991-03-28 1998-06-11 三菱電機株式会社 ホーンアンテナ
US5642121A (en) * 1993-03-16 1997-06-24 Innova Corporation High-gain, waveguide-fed antenna having controllable higher order mode phasing
DE9412243U1 (de) * 1994-07-29 1994-09-29 Vega Grieshaber Kg, 77709 Wolfach Antenneneinrichtung für ein Füllstandmeßgerät
US5486839A (en) * 1994-07-29 1996-01-23 Winegard Company Conical corrugated microwave feed horn
DE4432687C2 (de) * 1994-09-14 1998-07-16 Karlsruhe Forschzent Feuchtesensor und dessen Verwendung
US6005528A (en) * 1995-03-01 1999-12-21 Raytheon Company Dual band feed with integrated mode transducer
JP2000201013A (ja) * 1999-01-06 2000-07-18 Alps Electric Co Ltd フィ―ドホ―ン
JP2001053537A (ja) 1999-08-13 2001-02-23 Alps Electric Co Ltd 一次放射器
DE10057441B4 (de) * 2000-11-20 2014-02-13 Vega Grieshaber Kg Hornantenne für ein Radargerät
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
JP3893305B2 (ja) * 2002-04-09 2007-03-14 アルプス電気株式会社 一次放射器
JP4084299B2 (ja) * 2003-12-26 2008-04-30 シャープ株式会社 フィードホーン、電波受信用コンバータおよびアンテナ
DE102008015409B4 (de) * 2008-03-20 2015-07-30 KROHNE Meßtechnik GmbH & Co. KG Dielektrische Hornantenne

Also Published As

Publication number Publication date
EP2592695A3 (fr) 2013-07-17
EP2592695A2 (fr) 2013-05-15
US8354970B2 (en) 2013-01-15
CN101944658B (zh) 2013-12-18
EP2840653A1 (fr) 2015-02-25
DE102009022511A1 (de) 2010-12-02
EP2592693A3 (fr) 2013-07-17
EP2262059A2 (fr) 2010-12-15
US20100295745A1 (en) 2010-11-25
EP2592695B1 (fr) 2014-10-29
EP2592694A3 (fr) 2013-07-17
EP2840653B1 (fr) 2015-10-21
EP2592694A2 (fr) 2013-05-15
EP2592693A2 (fr) 2013-05-15
DE102009022511B4 (de) 2015-01-08
EP2592694B1 (fr) 2014-11-19
CN101944658A (zh) 2011-01-12
EP2262059A3 (fr) 2011-03-30
EP2592693B1 (fr) 2015-11-18

Similar Documents

Publication Publication Date Title
EP2262059B1 (fr) Antenne diélectrique
EP2830156B1 (fr) Émetteur de rayonnement à conducteur creux, émetteur de rayonnement de réseaux d'antennes et émetteur de rayonnement de radar à ouverture synthétique
DE19982430B4 (de) Aperturantenne und Verfahren zur Einspeisung von elektrischer Leistung in eine Aperturantenne
EP1881551A1 (fr) Coude progressif
EP3533110B1 (fr) Cornet d'émission à double polarisation
DE10359622A1 (de) Antenne mit zumindest einem Dipol oder einer dipolähnlichen Strahleranordnung
DE1766436A1 (de) Breitstrahlhorn fuer Parabolantennen
EP2105991B1 (fr) Antenne à cornet diélectrique
EP2100348B1 (fr) Émetteur de rayonnement à conducteur creux pour systèmes de radar à ouverture synthétique
DE69015460T2 (de) Ineinandergeschachtelte Anordnung von Hornstrahlern.
EP2161552B1 (fr) Guide d'onde et antenne à cornet
DE3688086T2 (de) Trichterstrahler fuer zirkular polarisierte wellen.
EP0933833B1 (fr) Radiateur à guide d'ondes
EP2553757A1 (fr) Structure de conducteurs coaxiaux
WO2018188687A1 (fr) Antenne à fentes large bande à face arrière recouverte et groupes d'antennes la comprenant
DE1043425B (de) Antennenspeisevorrichtung
DE2551545A1 (de) Drehsymmetrische cassegrain-antenne
DE102009034429A1 (de) Flachantenne
EP1043797B1 (fr) Illuminateur ou source pour une antenne satellite
DE1616745C (de) Antennenanordnung mit wenigstens einer Gruppe einander paralleler Dipol strahier
DE1303784B (de) Hornstrahler
DE1947120A1 (de) Antenne zur Ausstrahlung elektromagnetischer Wellen,insbesondere Mikrowellen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20120119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002908

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

BERE Be: lapsed

Owner name: KROHNE MESSTECHNIK G.M.B.H.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002908

Country of ref document: DE

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100511

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 607802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230523

Year of fee payment: 14

Ref country code: IT

Payment date: 20230526

Year of fee payment: 14

Ref country code: FR

Payment date: 20230526

Year of fee payment: 14

Ref country code: CH

Payment date: 20230605

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 14