EP2262059B1 - Dielectric antenna - Google Patents

Dielectric antenna Download PDF

Info

Publication number
EP2262059B1
EP2262059B1 EP10004964.2A EP10004964A EP2262059B1 EP 2262059 B1 EP2262059 B1 EP 2262059B1 EP 10004964 A EP10004964 A EP 10004964A EP 2262059 B1 EP2262059 B1 EP 2262059B1
Authority
EP
European Patent Office
Prior art keywords
dielectric
section
transition section
horn
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10004964.2A
Other languages
German (de)
French (fr)
Other versions
EP2262059A2 (en
EP2262059A3 (en
Inventor
Gunnar Armbrecht
Christian Zietz
Eckhard Denicke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krohne Messtechnik GmbH and Co KG
Original Assignee
Krohne Messtechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krohne Messtechnik GmbH and Co KG filed Critical Krohne Messtechnik GmbH and Co KG
Priority to EP13000629.9A priority Critical patent/EP2592693B1/en
Priority to EP13000630.7A priority patent/EP2592694B1/en
Priority to EP14186480.1A priority patent/EP2840653B1/en
Priority to EP13000632.3A priority patent/EP2592695B1/en
Publication of EP2262059A2 publication Critical patent/EP2262059A2/en
Publication of EP2262059A3 publication Critical patent/EP2262059A3/en
Application granted granted Critical
Publication of EP2262059B1 publication Critical patent/EP2262059B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/24Non-resonant leaky-waveguide or transmission-line antennas; Equivalent structures causing radiation along the transmission path of a guided wave constituted by a dielectric or ferromagnetic rod or pipe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/08Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens for modifying the radiation pattern of a radiating horn in which it is located

Definitions

  • the invention relates to a dielectric antenna having a dielectric feed section, a first transition section comprising a dielectric rod, a second transition section forming a dielectric horn and a dielectric emission section, the supply section being exposed to electromagnetic radiation, electromagnetic radiation with the first transition section and the second transition section is feasible and the electromagnetic radiation from the radiating portion can be emitted as a free space wave.
  • Dielectric antennas per se have long been known and are used in a variety of configurations and sizes for very different purposes, such as in industrial process monitoring to determine distances - for example, media surfaces in tanks - on the transit time of reflected electromagnetic waves (radar applications).
  • the invention described herein is completely independent of the field in which the subsequently treated antennas are used; By way of example, reference will be made below to the use of the antennas in question in the field of fill level measuring technology.
  • XP 575262 discloses a prior art dielectric antenna
  • the emission section and the second transition section forming a dielectric horn coincide and are usually referred to as horn antennas, also referred to as horn radiators in the transmission case.
  • horn antennas also referred to as horn radiators in the transmission case.
  • Via a metallic waveguide such a dielectric antenna with a TE-wave or a TM-wave is fed, such. B. with a TE 11 wave (equivalent to H 11 wave), the electric field strength thus has no share in the propagation direction of the electromagnetic wave.
  • dielectric antennas essentially consist of a body of dielectric material, electromagnetic waves also being guided in the material and being radiated over the material in the emission direction .
  • emission direction is here meant essentially the main emission direction of the dielectric antenna, ie the direction in which the directivity of the dielectric antenna is particularly pronounced.
  • Dielectric antennas are often used in industrial process measurement technology - as mentioned above - for level measurement. In such applications, it is of particular advantage if the antennas used have the smallest possible main emission direction and at the same time the most compact possible design. However, these requirements are contradictory with regard to the constructive measures that usually have to be taken for their technical implementation.
  • a narrow directional characteristic in the main emission direction can, as is known, only be achieved by a large aperture-that is, aperture area-of the emission section, which necessitates a large expansion of the antenna perpendicular to the main emission direction.
  • the electromagnetic radiation emitted by the emission section must have as flat a phase front as possible, such a planar phase front usually only being able to be realized with increasing length of the antenna, which also counteracts the desired compact design.
  • an additional problem often is that the geometric aperture can only be increased within narrow limits, otherwise the antenna is no longer in the volume to be monitored -.
  • the second transition section thus acts as a "real" transitional section between physically separate regions of the dielectric antenna, namely between the first transition section comprising a dielectric rod radiation section.
  • the continuation of the electromagnetic waves over the emission-side dielectric tube has the advantage that with optimal - ie modest-pure - excitation a considerable variability of the length of the dielectric antenna is achieved.
  • the wall thickness of the dielectric tube forming the emission section is selected to be such that only electromagnetic waves in the hybrid fundamental mode HE 11 are propagated along the dielectric tube.
  • the rod geometry of the dielectric antenna in the first transition section and the tube geometry in the emission section of the dielectric antenna in the electromagnetic sense represent self-wave systems, along which each field distribution can be represented as a superposition of individual eigen waves.
  • the fundamental mode is hybrid in the two systems and is referred to as the HE 11 mode.
  • the second transition section which forms a dielectric horn, thus represents a waveguide transition between two different self-wave systems
  • the transitions from the rod-shaped first transition section into the second transition section and from the second transition section in the dielectric emission section for the guided electromagnetic waves represent discontinuities which are sources of higher order field distributions. If the higher modes excited by the discontinuities are below the cut-off frequency of the self-wave systems of the dielectric antenna, the higher modes can not be guided along the dielectric structures, but the associated electromagnetic radiation radiates directly into the discontinuity at the location of the discontinuities Free space, which leads to a curvature of the phase fronts and thus to a reduction in the directivity of the antenna.
  • the dielectric horn comprising second transition portion has a non-linear, increasingly in the emission direction inner contour, said inner contour usually the interface of the dielectric horn to a forms cavity enclosed by the dielectric horn.
  • the non-linear inner contour of the second transition section comprising the dielectric horn a mode purity with a comparatively short second transition section in the axial direction-main emission direction-can be achieved compared to linear second transition sections which are otherwise relatively long in the axial direction.
  • shortening of the second transition section forming a dielectric horn can be achieved by more than a third of the length otherwise necessary for a linear horn.
  • Such inner contours have been found to be particularly suitable, which can be described by a power function with fractional exponent greater than one, these power functions having as an independent variable the spatial coordinate of the antenna extending in the main emission direction.
  • the exponent chosen is a value in the range between 1.09 and 1.13, more preferably a fractional exponent in the range of 1.10 to 1.12, preferably an exponent of substantially 1.11.
  • the zero point of the aforementioned spatial coordinate can also be displaced into the first transitional section, which comprises a dielectric rod.
  • the inner contour of the dielectric horn of the second transition section in the first Transition-forming dielectric rod continues, in particular, namely steplessly continued in the first transition portion forming dielectric rod. This means that, in particular, a cavity within the dielectric antenna continues into the dielectric bar of the first transition section.
  • the inner contour of the dielectric rod is preferably also described by a power function with fractional exponent greater than one, the power function again having as independent variable the spatial coordinate pointing in the main emission direction of the antenna, and the fractional exponent being preferably in the range from 1.09 to 1.13, in particular in the range 1.10 to 1.12 and very particularly preferably substantially has the value 1.11.
  • the discontinuity between the first transition section and the second transition section is least when the inner contour of the first transition section comprising the dielectric rod and the inner contour of the second transition section comprising the dielectric horn are described by the same power function.
  • the inner contour of the first transition section comprising the dielectric rod has a stepped impedance converter in the transition to the feed-side full-bar region forms according to the principle of a quarter-wave transformer, in particular namely a single-stage impedance converter. It has been found that this wideband suppression of reflections can be significantly increased without affecting the desired field distribution negative.
  • a further stepped impedance converter in particular simply stepped, is preferably provided in the transition of the emitting section designed as a dielectric tube into the free space.
  • the dielectric feed section is formed as a stepped impedance converter according to the principle of a quarter-wave transformer, in particular as a two-stage impedance converter, which achieves better results in the transition region of a metal waveguide usually used on the dielectric feed section as a single-stepped impedance converter
  • the stepped impedance converter provided in the dielectric feed section preferably has an inner contour with a cross-section which tapers in the emission direction, wherein preferably at least one step with an inner hexagonal profile is provided as the inner contour.
  • the hexagon socket profile is particularly advantageous for mounting purposes, but it is also superior to other shapes from the electromagnetic point of view since it has the greatest possible robustness with respect to unknown angles of rotation.
  • a significant improvement of the transient reflection behavior can be achieved by a further design measure, namely, when the outer diameter of the feed section is selected such that in the assembled state of the antenna, a radial gap between the feed section and a feeding waveguide is formed, in which protrudes the feed section, in particular wherein the gap extends in the emission direction substantially over the axial extent - extension in the main emission direction - of the stepped impedance converter formed in the dielectric feed section.
  • a gap width of about 1 mm has been reinforced.
  • the stepped impedance converters provided in the food area and in the first transition section also lead to reflection reductions in the case of dielectric Antennas which do not have a dielectric tube as the emission section are therefore to be understood as being independent of the feature of the emission section designed as a dielectric tube.
  • a further increase in directivity can be achieved in a preferred embodiment of the dielectric antenna according to the invention in that the dielectric rod is surrounded in the first transition section by a metallic horn projection opening in the emission direction of the antenna, wherein the metallic horn projection in particular neither into the region of in the dielectric feed section formed stepped impedance converter still extends into the region of the stepped impedance converter in the first transition section.
  • a metallic Horn approach the directivity of the dielectric antenna according to the invention is further increased, since the fundamental mode of the electromagnetic radiation at the end of the metallic Horn approach coupled with causing minimal leakage in the desired HE 11 -Stabmode.
  • the opening inner contour of the metallic horn approach can be configured differently, is preferably designed linear, since with non-linear inner contours hardly improve the radiation characteristics can be achieved and linear inner contours are easier to produce.
  • FIG. 2 shows cross-sections of complete dielectric antennas 1, which have a dielectric feed section 2, a first transition section 3 comprising a dielectric rod, a second transition section 4 forming a dielectric horn, and a dielectric emission section 5, the dielectric feed section 2 being exposed to electromagnetic radiation 6, electromagnetic radiation 6 can be guided with the first transition section 3 and the second transition section 4, and the electromagnetic radiation 6 can be emitted by the emission section 5 as a free-space wave.
  • Dielectric antennas 1 shown more or less faithfully - are characterized in that the emission section 5 is designed as a dielectric tube adjoining the second transition section 4. It is thereby achieved that the length of the dielectric antenna 1 can be varied within wide ranges, namely by different choice of the length of the first transition section 3 comprising the dielectric rod and by selecting the length of the radiating section 5 embodied as a dielectric tube. Both areas 3 and 5 are In the electromagnetic sense, self-wave systems with the second transition section 4 forming a dielectric horn as a waveguide transition between these different self-wave systems.
  • the wall thickness of the emission section 5 designed as a dielectric tube is selected such that only electromagnetic radiation 6 in the hybrid fundamental mode HE 11 runs along the guided dielectric capable of propagation, so that the electromagnetic radiation 6 is basically pure state passed over the dielectric rod first transition section 3 and designed as a dielectric tube radiating section 5.
  • the higher modes occurring at the discontinuity points are radiated directly into the free space at the location of the discontinuities, ie in particular in the region of the second transition section 4 forming a dielectric horn.
  • the release of the parasitic electromagnetic leakage field is shown in FIG Fig.
  • the wall thickness of the dielectric tube of the Abstrahlabitess 5 is less than 5% of the outer diameter of the tube.
  • the outer diameter of the tube is 43 mm with a wall thickness of 2.0 mm, which, when using polypropylene (PP, Fig. 1 ) and polytetrafluoroethylene (PTFE, Fig. 2 ) and at an excitation frequency of 9.5 GHz leads to the desired selective transmission behavior.
  • the transmission behavior of the first, comprising the dielectric rod transition section 3 to the designed as a dielectric tube radiating section 5 is in the illustrated embodiments according to Fig. 1 and 2 in that the second transition section 4 comprising the dielectric horn has a nonlinear inner contour 8 which increasingly opens in the emission direction 7, the inner contour 8 being described by a power function with fractional exponent> 1 as a function of the spatial coordinate in the main emission direction 7 of the antenna 1 ; in the present case, the exponent has the value of essentially 1.1.
  • the antennas according to Fig. 1 and 2 is also common that the dielectric horn comprehensive second transition section 4 has a linear, opening in the emission direction 7 outer contour 9. It has been found that the shaping of the outer contour 9 is not decisive to the same extent for the transmission behavior of the second transition section 4 as the configuration of the inner contour 8; In that regard, the easiest to produce outer contour 9 has been chosen here.
  • the inner contour 8 of the dielectric horn of the second transition section 4 continues in an inner contour 10 of the first transition section 3 forming the dielectric rod, namely in this case continuously in the first transition section 3 forming dielectric rod continues.
  • the inner contour 10 of the dielectric first connecting portion 3 and the inner contour 8 of the dielectric horn comprehensive second transition portion 4 is described by the same power function, whereby any discontinuities in the transition region between the first transition section 3 and the second transition section 4 are avoided ,
  • x is the spatial coordinate in the emission direction 7 of the antenna and is given in millimeters
  • r (x) denotes the height of the inner contours 8, 10 above the axis of the independent spatial coordinate x.
  • the zero point of the spatial coordinate x is here 80 mm within the transition of the first transition section 3 to the second transition section 4, wherein the formed as a dielectric horn second transition section 4 has an extension of 150 mm in total in the emission 7.
  • the adjoining, designed as a dielectric tube radiating section 5 has in the direction of radiation 7 of the dielectric antenna 1 an extension of only 15 mm.
  • Table 1 below shows the transmission behavior and characteristic radiation parameters upon excitation of short emission sections 5 designed as a dielectric tube with different transition sections 4 designed as a dielectric horn when excited at 9.5 GHz.
  • Tab. 1 Transmittance behavior with different linear inner contours and a nonlinear inner contour of a dielectric antenna at 9.5 GHz.
  • Fig. 4a is the directivity as a function of the length of designed as a dielectric tube second transition section 4 shown for the designed as a dielectric horn second transition sections 4 with a linear inner contour (150 mm, 350 mm, 550 mm) and for the excitation of a variable-length radiating section. 5 via a formed as a dielectric horn second transition section 4 with non-linear inner contour (230 mm).
  • An increase of the HE 11 mode purity leads to a reduction of the increase in directivity over the tube length and thus to a reduced length dependence of the radiation behavior.
  • a first stepped impedance converter 11 is formed by the inner contour 10 of the dielectric rod comprising the first transition section 3 in the transition to the feed side full bar area, which is formed in the present case as a single-stage impedance converter.
  • Single-stage impedance converters already lead to good results in purely dielectric transition regions with regard to the avoidance of internal reflections.
  • the dielectric feed section 2 is formed as a further stepped impedance converter 12, which also operates on the principle of a quarter-wave transformer.
  • the stepped impedance converter 12 has an inner contour with a tapering in the emission direction 7 cross-section, wherein the smallest step is formed with a hexagon socket as the inner contour, which is in terms of mounting the dielectric antenna 1 is advantageous, but also - as already stated above - is a particularly preferred structure in terms of electromagnetic properties.
  • the outer diameter of the dielectric feed section 2 is selected so that in the assembled state of the antenna, a radial gap 13 between the feed section 2 and a feeding waveguide 14 is formed in the In the present case, the radial gap 13 extends in the emission direction 7 substantially over the axial extent of the stepped impedance converter 12 formed in the dielectric feed section 2, which is particularly evident in FIG Fig. 5 can be seen.
  • the metallic horn lug 15 is surrounded by a dielectric sheath 16, the dielectric sheath 16 mechanically connecting the metallic horn lug 15 to the dielectric antenna 1 and fixing the metallic horn lug 15 to the dielectric antenna.
  • the dielectric sheath 16 is integral with Namely, it is formed on the other dielectric parts of the dielectric antenna 1, namely, it is molded on the dielectric antenna 1 in an injection process.
  • the dielectric sheaths 16 according to the embodiments in FIGS Fig. 1 and 5 also have external thread 17 for mounting the dielectric antenna 1 in a process-side flange, wherein the process-side flange is not shown here.
  • the wrapper 16 in Fig. 1 is configured adjacent to the external thread 17 as a nut, which facilitates the assembly of the antenna 1 as a whole.
  • the dielectric sheath 16 according to FIG Fig. 2 is additionally configured as extending vertically to the emission direction 7 of the antenna 1 extension, which serves as a sealing plate between mounting flanges, not shown; Such is in a simple manner - assuming a sufficient thickness of the gasket - also an explosion and / or flame protection achievable.
  • the dielectric sheath 16 brings for all shown embodiments, Fig. 1 . 2 and 5 , several advantages, which are practically significant Meaning may be such. As the encapsulation of all metal parts to the process and the ability to dispense with otherwise conventional sealing elements within the rod geometry or the waveguide, since the sealing elements can bring electromagnetically considerable disadvantages.
  • a cylindrical metal sleeve 18 is formed, which serves as a transition to a feeding metallic waveguide 14, or, even in this section, the feeding waveguide 14 represents.
  • a thread formed between the feed section 2 and the metallic horn projection 15 or the surrounding metal sleeve 18 is indicated, with which the dielectric part of the antenna is secured in the metallic horn projection 15 or the surrounding metal sleeve 18.

Landscapes

  • Waveguide Aerials (AREA)

Description

Die Erfindung betrifft eine dielektrische Antenne mit einem dielektrischen Speiseabschnitt, einem einen dielektrischen Stab umfassenden ersten Übergangsabschnitt, einem ein dielektrisches Horn bildenden zweiten Übergangsabschnitt und einem dielektrischen Abstrahlabschnitt, wobei der Speiseabschnitt mit elektromagnetischer Strahlung beaufschlagbar ist, mit dem ersten Übergangsabschnitt und dem zweiten Übergangsabschnitt elektromagnetische Strahlung führbar ist und die elektromagnetische Strahlung von dem Abstrahlabschnitt als Freiraumwelle abstrahlbar ist.The invention relates to a dielectric antenna having a dielectric feed section, a first transition section comprising a dielectric rod, a second transition section forming a dielectric horn and a dielectric emission section, the supply section being exposed to electromagnetic radiation, electromagnetic radiation with the first transition section and the second transition section is feasible and the electromagnetic radiation from the radiating portion can be emitted as a free space wave.

Dielektrische Antennen an sich sind seit langem bekannt und werden in unterschiedlichen Ausgestaltungen und Größen für ganz unterschiedliche Zwecke verwendet, so beispielsweise auch in der industriellen Prozessüberwachung zur Bestimmung von Abständen - beispielsweise von Medienoberflächen in Tanks - über die Laufzeitermittlung von reflektierten elektromagnetischen Wellen (Radaranwendungen). Die hier beschriebene Erfindung ist vollkommen unabhängig von dem Gebiet, in dem die nachfolgend behandelten Antennen zur Anwendung kommen; exemplarisch wird im folgenden auf die Verwendung der in Rede stehenden Antennen in dem Bereich der Füllstandsmeßtechnik Bezug genommen.Dielectric antennas per se have long been known and are used in a variety of configurations and sizes for very different purposes, such as in industrial process monitoring to determine distances - for example, media surfaces in tanks - on the transit time of reflected electromagnetic waves (radar applications). The invention described herein is completely independent of the field in which the subsequently treated antennas are used; By way of example, reference will be made below to the use of the antennas in question in the field of fill level measuring technology.

XP 575262 offenbart eine dielektrische Antenne nach dem Stand der TechnikXP 575262 discloses a prior art dielectric antenna

Bei aus dem Stand der Technik bekannten dielektrischen Antennen fallen der Abstrahlabschnitt und der ein dielektrisches Horn bildende zweite Übergangsabschnitt zusammen und werden üblicherweise als Hornantennen - im Sendefall auch als Hornstrahler - bezeichnet. Über einen metallischen Hohlleiter wird eine solche dielektrische Antenne mit einer TE-Welle oder einer TM-Welle gespeist, wie z. B. mit einer TE11-Welle (gleichbedeutend mit H11-Welle), deren elektrische Feldstärke also keinen Anteil in der Fortpflanzungsrichtung der elektromagnetischen Welle aufweist. Die von dem Hohlleiter geführte elektromagnetische Welle pflanzt sich über den dielektrischen Speiseabschnitt in den den dielektrischen Stab umfassenden ersten Übergangsabschnitt und von dort aus in den weiteren, ein dielektrisches Horn bildenden zweiten Übergangsabschnitt fort und wird bis zur Apertur des zweiten Übergangsabschnitts, der in diesem Fall also den Abstrahlabschnitt bildet, weitergeführt und über diese Apertur in den Raum als Freiraumwelle abgestrahlt, Im Unterschied zu den verbreiteten Hornantennen mit metallischer Wandung bestehen dielektrische Antennen hingegen im Wesentlichen aus einem Körper aus dielektrischem Material, wobei elektromagnetische Wellen auch in dem Material geführt werden und über das Material in Abstrahlrichtung abgestrahlt werden. Mit "Abstrahlrichtung" ist hier im Wesentlichen die Hauptabstrahlrichtung der dielektrischen Antenne gemeint, also die Richtung, in der die Richtwirkung der dielektrischen Antenne besonders ausgeprägt ist.In the case of dielectric antennas known from the prior art, the emission section and the second transition section forming a dielectric horn coincide and are usually referred to as horn antennas, also referred to as horn radiators in the transmission case. Via a metallic waveguide, such a dielectric antenna with a TE-wave or a TM-wave is fed, such. B. with a TE 11 wave (equivalent to H 11 wave), the electric field strength thus has no share in the propagation direction of the electromagnetic wave. The electromagnetic wave guided by the waveguide propagates via the dielectric feed section into the first transition section comprising the dielectric rod and from there into the further second transition section forming a dielectric horn and becomes the aperture of the second transition section, ie in this case forms the radiating section, continued In contrast to the widespread horn antennas with a metallic wall, dielectric antennas, on the other hand, essentially consist of a body of dielectric material, electromagnetic waves also being guided in the material and being radiated over the material in the emission direction , By "emission direction" is here meant essentially the main emission direction of the dielectric antenna, ie the direction in which the directivity of the dielectric antenna is particularly pronounced.

Dielektrische Antennen werden in der industriellen Prozessmesstechnik - wie eingangs erwähnt - häufig zur Füllstandsmessung verwendet. Bei solchen Anwendungen ist es von besonderem Vorteil, wenn die verwendeten Antennen eine möglichst schmale Hauptabstrahlrichtung und gleichzeitig eine möglichst kompakte Bauform aufweisen. Diese Anforderungen widersprechen sich jedoch hinsichtlich der konstruktiven Maßnahmen, die üblicherweise zu ihrer technischen Umsetzung ergriffen werden müssen.Dielectric antennas are often used in industrial process measurement technology - as mentioned above - for level measurement. In such applications, it is of particular advantage if the antennas used have the smallest possible main emission direction and at the same time the most compact possible design. However, these requirements are contradictory with regard to the constructive measures that usually have to be taken for their technical implementation.

Eine schmale Richtcharakteristik in Hauptabstrahlrichtung kann bekanntlich erst durch eine große Apertur - also Öffnungsfläche - des Abstrahlabschnitts erzielt werden, was eine große Ausdehnung der Antenne senkrecht zur Hauptabstrahlrichtung erforderlich macht. Damit die Apertur auch im Sinne einer schmalen Hauptabstrahlrichtung genutzt wird, muss die von dem Abstrahlabschnitt abgestrahlte elektromagnetische Strahlung eine möglichst ebene Phasenfront aufweisen, wobei eine solche ebene Phasenfront meist nur mit zunehmender Länge der Antenne realisierbar ist, was der gewünschten kompakten Bauform ebenfalls entgegensteht. Im Bereich der Füllstandsmesstechnik besteht ein zusätzliches Problem häufig darin, dass die geometrische Apertur nur in engen Grenze vergrößert werden kann, da die Antenne andernfalls nicht mehr in das zu überwachende Volumen - z. B, über bereits vorhandene Tanköffnungen und Stutzen - eingebracht und dort nicht mehr montiert werden kann. Ferner müssen - bedingt durch die geometrischen Gegebenheiten der Einbausituation - elektromagnetische Wellen abstrahlungsarm durch Einbaugeometrien geführt werden, um parasitäre Tankeinbaureflexionen zu verhindern, die zu einer Verzerrung des Nutzsignals führenA narrow directional characteristic in the main emission direction can, as is known, only be achieved by a large aperture-that is, aperture area-of the emission section, which necessitates a large expansion of the antenna perpendicular to the main emission direction. In order for the aperture to also be used in the sense of a narrow main emission direction, the electromagnetic radiation emitted by the emission section must have as flat a phase front as possible, such a planar phase front usually only being able to be realized with increasing length of the antenna, which also counteracts the desired compact design. In the field of level measurement, an additional problem often is that the geometric aperture can only be increased within narrow limits, otherwise the antenna is no longer in the volume to be monitored -. B, over existing tank openings and nozzles - introduced and can not be mounted there. Furthermore, owing to the geometric conditions of the installation situation, electromagnetic waves must be conducted with low-emission through installation geometries in order to prevent parasitic tank installation reflections which lead to a distortion of the useful signal

Es ist daher Aufgabe der vorliegenden Erfindung, eine dielektrische Antenne anzugeben, die möglichst verlustarm an verschiedene Einbausituationen anpassbar ist, die zusätzlich möglichst reflexionsarm und gleichzeitig hochbündelnd ist.It is therefore an object of the present invention to provide a dielectric antenna which is as low loss adaptable to different installation situations, which is also possible low reflection and at the same time hochbündelnd.

Die zuvor hergeleitete und beschriebene Aufgabe ist erfindungsgemäß eine dielektrischen Antenne nach Anspruch 1. Bei der erfindungsgemäßen dielektrischen Antenne fungiert der zweite Übergangsabschnitt folglich als "echter" Übergangsabschnitt zwischen körperlich getrennten Bereichen der dielektrischen Antenne, nämlich zwischen dem ersten, einen dielektrischen Stab umfassenden Übergangsabschnitt und dem Abstrahlabschnitt. Die Weiterführung der elektromagnetischen Wellen über das abstrahlseitige dielektrische Rohr hat den Vorteil, dass bei optimaler - also modenreiner - Anregung eine erhebliche Variabilität der Länge der dielektrischen Antenne erzielt wird.The above-derived and described object is according to the invention a dielectric antenna according to claim 1. In the dielectric antenna according to the invention, the second transition section thus acts as a "real" transitional section between physically separate regions of the dielectric antenna, namely between the first transition section comprising a dielectric rod radiation section. The continuation of the electromagnetic waves over the emission-side dielectric tube has the advantage that with optimal - ie modest-pure - excitation a considerable variability of the length of the dielectric antenna is achieved.

Bei einer vorteilhaften Ausgestaltung der erfindungsgemäßen dielektrischen Antenne ist vorgesehen, dass die Wandstärke des den Abstrahlabschnitt bildenden dielektrischen Rohres maximal so gewählt ist, dass lediglich elektromagnetische Wellen im hybriden Grundmode HE11 entlang des dielektrischen Rohres geführt ausbreitungsfähig sind. Hierbei ist erkannt worden, dass die Stabgeometrie der dielektrischen Antenne im ersten Übergangsabschnitt und die Rohrgeometrie im Abstrahlabschnitt der dielektrischen Antenne im elektromagnetischen Sinne Eigenwellensysteme darstellen, entlang derer sich jede Feldverteilung als eine Überlagerung einzelner Eigenwellen darstellen lässt. Der Grundmode ist in den beiden Systemen hybrid und wird als HE11-Mode bezeichnet. Mit dem erfindungsgemäß ausgestalteten dünnwandigen dielektrischen Rohr lässt sich die höchste Direktivität bei gegebenem maximalen Außendurchmesser des Rohres erreichen und gleichzeitig wird eine modenreine Führung der elektromagnetischen Wellen erzielt.In an advantageous embodiment of the dielectric antenna according to the invention, it is provided that the wall thickness of the dielectric tube forming the emission section is selected to be such that only electromagnetic waves in the hybrid fundamental mode HE 11 are propagated along the dielectric tube. In this case, it has been recognized that the rod geometry of the dielectric antenna in the first transition section and the tube geometry in the emission section of the dielectric antenna in the electromagnetic sense represent self-wave systems, along which each field distribution can be represented as a superposition of individual eigen waves. The fundamental mode is hybrid in the two systems and is referred to as the HE 11 mode. With the inventively designed thin-walled dielectric tube, the highest directivity for a given maximum outer diameter of the tube can be achieved and at the same time a fashion-pure guidance of the electromagnetic waves is achieved.

Der zweite Übergangsabschnitt, der ein dielektrisches Horn bildet, stellt folglich einen Wellenleiterübergang zwischen zwei verschiedenen Eigenwellensystemen dar, wobei die Übergänge vom stabförmigen ersten Übergangsabschnitt in den zweiten Übergangsabschnitt und von dem zweiten Übergangsabschnitt in den dielektrischen Abstrahlabschnitt für die geführten elektromagnetischen Wellen Diskontinuitäten darstellen, die Quellen von Feldverteilungen höherer Ordnung sind. Wenn die durch die Diskontinuitäten angeregten höheren Moden unter der Grenzfrequenz (Cut-Off-Frequenz) der Eigenwellensysteme der dielektrischen Antenne liegen, können die höheren Moden nicht entlang der dielektrischen Strukturen geführt werden, sondern die zugehörige elektromagnetische Strahlung strahlt direkt am Ort der Diskontinuitäten in den Freiraum ab, was zu einer Krümmung der Phasenfronten und damit zu einer Reduktion der Direktivität der Antenne führt.The second transition section, which forms a dielectric horn, thus represents a waveguide transition between two different self-wave systems, the transitions from the rod-shaped first transition section into the second transition section and from the second transition section in the dielectric emission section for the guided electromagnetic waves represent discontinuities which are sources of higher order field distributions. If the higher modes excited by the discontinuities are below the cut-off frequency of the self-wave systems of the dielectric antenna, the higher modes can not be guided along the dielectric structures, but the associated electromagnetic radiation radiates directly into the discontinuity at the location of the discontinuities Free space, which leads to a curvature of the phase fronts and thus to a reduction in the directivity of the antenna.

Dem vorgenannten Phänomen wird durch eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen dielektrischen Antenne entgegengewirkt, die sich dadurch auszeichnen, dass der das dielektrische Horn umfassende zweite Übergangsabschnitt eine nichtlineare, sich in Abstrahlrichtung zunehmend öffnende Innenkontur aufweist, wobei diese Innenkontur üblicherweise die Grenzfläche des dielektrischen Horns zu einem von dem dielektrischen Horn umfassten Hohlraum bildet. Durch die nichtlineare Innenkontur des das dielektrische Horn umfassenden zweiten Übergangsabschnitts kann eine Modenreinheit mit in axialer Richtung - Hauptabstrahlrichtung - vergleichsweise kurzem zweiten Übergangsabschnitt erzielt werden gegenüber sonst in axialer Richtung vergleichsweise lang erstreckten linearen zweiten Übergangsabschnitten. Durch die vorgenannte Maßnahme lassen sich Verkürzungen des ein dielektrisches Horn bildenden zweiten Übergangsabschnitts um mehr als ein Drittel der sonst bei einem linearen Horn notwendigen Länge erzielen.The above-mentioned phenomenon is counteracted by a further advantageous embodiment of the dielectric antenna according to the invention, characterized in that the dielectric horn comprising second transition portion has a non-linear, increasingly in the emission direction inner contour, said inner contour usually the interface of the dielectric horn to a forms cavity enclosed by the dielectric horn. As a result of the non-linear inner contour of the second transition section comprising the dielectric horn, a mode purity with a comparatively short second transition section in the axial direction-main emission direction-can be achieved compared to linear second transition sections which are otherwise relatively long in the axial direction. By means of the aforementioned measure, shortening of the second transition section forming a dielectric horn can be achieved by more than a third of the length otherwise necessary for a linear horn.

Als besonders geeignet haben sich solche Innenkonturen herausgestellt, die durch eine Potenzfunktion mit gebrochenem Exponenten größer Eins beschreibbar sind, wobei diese Potenzfunktionen als unabhängige Variable die in Hauptabstrahlrichtung verlaufende Ortskoordinate der Antenne haben. Vorzugsweise wird als Exponent ein Wert im Bereich zwischen 1,09 und 1,13 gewählt, besonders bevorzugt ein gebrochener Exponent im Bereich von 1,10 bis 1,12, bevorzugt ein Exponent mit im Wesentlichen dem Wert 1,11. Dabei kann der Nullpunkt der vorgenannten Ortskoordinate auch in den ersten Übergangsabschnitt verlagert sein, der einen dielektrischen Stab umfasst. In diesem Zusammenhang ist es besonders vorteilhaft, wenn sich die Innenkontur des dielektrischen Horns des zweiten Übergangsabschnitts in den den ersten Übergangsabschnitt bildenden dielektrischen Stab fortsetzt, insbesondere sich nämlich stufenlos in den den ersten Übergangsabschnitt bildenden dielektrischen Stab fortsetzt. Das bedeutet, dass sich insbesondere ein Hohlraum innerhalb der dielektrischen Antenne bis in den dielektrischen Stabs des ersten Übergangsabschnitts fortsetzt.Such inner contours have been found to be particularly suitable, which can be described by a power function with fractional exponent greater than one, these power functions having as an independent variable the spatial coordinate of the antenna extending in the main emission direction. Preferably, the exponent chosen is a value in the range between 1.09 and 1.13, more preferably a fractional exponent in the range of 1.10 to 1.12, preferably an exponent of substantially 1.11. In this case, the zero point of the aforementioned spatial coordinate can also be displaced into the first transitional section, which comprises a dielectric rod. In this context, it is particularly advantageous if the inner contour of the dielectric horn of the second transition section in the first Transition-forming dielectric rod continues, in particular, namely steplessly continued in the first transition portion forming dielectric rod. This means that, in particular, a cavity within the dielectric antenna continues into the dielectric bar of the first transition section.

Bevorzugt wird auch die Innenkontur des dielektrischen Stabes durch eine Potenzfunktion mit gebrochenem Exponenten größer Eins beschrieben, wobei die Potenzfunktion wiederum als unabhängige Variable die in Hauptabstrahlrichtung der Antenne weisende Ortskoordinate hat, und wobei der gebrochene Exponent bevorzugt im Bereich 1,09 bis 1,13, insbesondere im Bereich 1,10 bis 1,12 liegt und ganz besonders bevorzugt im Wesentlichen den Wert 1,11 aufweist. Die Diskontinuität zwischen dem ersten Übergangsabschnitt und dem zweiten Übergangsabschnitt ist dann am geringsten, wenn die Innenkontur des den dielektrischen Stab umfassenden ersten Übergangsabschnitts und die Innenkontur des das dielektrische Horn umfassenden zweiten Übergangsabschnitts durch dieselbe Potenzfunktion beschrieben werden.The inner contour of the dielectric rod is preferably also described by a power function with fractional exponent greater than one, the power function again having as independent variable the spatial coordinate pointing in the main emission direction of the antenna, and the fractional exponent being preferably in the range from 1.09 to 1.13, in particular in the range 1.10 to 1.12 and very particularly preferably substantially has the value 1.11. The discontinuity between the first transition section and the second transition section is least when the inner contour of the first transition section comprising the dielectric rod and the inner contour of the second transition section comprising the dielectric horn are described by the same power function.

Die in Zusammenhang mit der Innenkontur des ersten Übergangsabschnitts und der Innenkontur des zweiten Übergangsabschnitts stehende erfindungsgemäße Lehre erzielt auch losgelöst von der eingangs beschriebenen Lehre der Erfindung den gewünschten Effekt einer erhöhten Direktivität bei kompakterer Bauform, also nicht nur bei solchen dielektrischen Antennen, die einen als dielektrisches Rohr ausgestalteten Abstrahlabschnitt aufweisen, gleichwohl können beide Aspekte vorteilhaft zusammen realisiert werden.The teaching of the invention in connection with the inner contour of the first transition section and the inner contour of the second transition section also achieved detached from the teachings of the invention described above, the desired effect of increased directivity in a more compact design, ie not only in such dielectric antennas, the one as a dielectric Having tube configured radiating portion, however, both aspects can be advantageously realized together.

Im Laufe der Entwicklung der vorbeschriebenen dielektrischen Antennen ist erkannt worden, dass eine Optimierung des Antennendesigns hinsichtlich der Strahlungscharakteristik zu hervorragendem Bündelungseigenschaften führt, jedoch interne Reflexionen elektromagnetischer Strahlung Störsignale verursachen können und das resultierende "Antennenklingeln" zu Messfehlem führen kann. Zur Verhinderung von ungewünschten antenneninhärenten Reflexionen ist deshalb bei einer besonders vorteilhaften Ausgestaltung der erfindungsgemäßen dielektrischen Antenne vorgesehen, dass die Innenkontur des den dielektrischen Stab umfassenden ersten Übergangsabschnitts im Übergang zum speiseseitigen Vollstabbereich einen gestuften Impedanzwandler nach dem Prinzip eines Viertelwellen-Transformators bildet, insbesondere nämlich einen einstufigen Impedanzwandler. Es hat sich herausgestellt, dass dadurch breitbandig die Unterdrückung von Reflexionen deutlich angehoben werden kann, ohne die gewünschte Feldverteilung negativ zu beeinflussen.In the course of development of the above-described dielectric antennas, it has been recognized that optimizing the antenna design with respect to the radiation characteristic results in excellent bundling characteristics, but internal reflections of electromagnetic radiation can cause spurious signals and the resulting "antenna ringing" can lead to measurement errors. In order to prevent unwanted antenna-inherent reflections, it is therefore provided in a particularly advantageous embodiment of the dielectric antenna according to the invention that the inner contour of the first transition section comprising the dielectric rod has a stepped impedance converter in the transition to the feed-side full-bar region forms according to the principle of a quarter-wave transformer, in particular namely a single-stage impedance converter. It has been found that this wideband suppression of reflections can be significantly increased without affecting the desired field distribution negative.

Ein weiterer gestufter, insbesondere einfach gestufter Impedanzwandler ist vorzugsweise vorgesehen im Übergang des als dielektrisches Rohr ausgestalteten Abstrahlabschnitts in den Freiraum. Gemäß einer besonders bevorzugten Ausgestaltung ist vorgesehen, dass der dielektrische Speiseabschnitt als gestufter Impedanzwandler nach dem Prinzip eines Viertelwellen-Transformators ausgebildet ist, insbesondere als zweistufiger Impedanzwandler, was im Übergangsbereich eines meist verwendeten metallischen Hohlleiters auf den dielektrischen Speiseabschnitt bessere Ergebnisse erzielt als ein einfach gestufter Impedanzwandler. Der im dielektrischen Speiseabschnitt vorgesehene gestufte Impedanzwandler weist bevorzugt eine Innenkontur mit sich in Abstrahlrichtung verjüngendem Querschnitt auf, wobei bevorzugt wenigstens eine Stufe mit einem Innensechskantprofil als Innenkontur vorgesehen ist. Das Innensechskantprofil ist insbesondere für Montagezwecke vorteilhaft, jedoch ist es auch vom elektromagnetischen Standpunkt her anderen Formen überlegen, da es die größtmögliche Robustheit gegenüber unbekannten Rotationswinkeln aufweist.A further stepped impedance converter, in particular simply stepped, is preferably provided in the transition of the emitting section designed as a dielectric tube into the free space. According to a particularly preferred embodiment, it is provided that the dielectric feed section is formed as a stepped impedance converter according to the principle of a quarter-wave transformer, in particular as a two-stage impedance converter, which achieves better results in the transition region of a metal waveguide usually used on the dielectric feed section as a single-stepped impedance converter , The stepped impedance converter provided in the dielectric feed section preferably has an inner contour with a cross-section which tapers in the emission direction, wherein preferably at least one step with an inner hexagonal profile is provided as the inner contour. The hexagon socket profile is particularly advantageous for mounting purposes, but it is also superior to other shapes from the electromagnetic point of view since it has the greatest possible robustness with respect to unknown angles of rotation.

Eine signifikante Verbesserung des transienten Reflexionsverhaltens kann durch eine weitere konstruktive Maßnahme erzielt werden, wenn nämlich der Außendurchmesser des Speiseabschnitts so gewählt ist, dass im Montagezustand der Antenne ein radialer Spalt zwischen dem Speiseabschnitt und einem speisenden Hohlleiter ausgebildet ist, in den der Speiseabschnitt hineinragt, insbesondere wobei sich der Spalt in Abstrahlrichtung im Wesentlichen über die axiale Ausdehnung - Erstreckung in Hauptabstrahlrichtung - des im dielektrischen Speiseabschnitt ausgebildeten gestuften Impedanzwandlers erstreckt. Bei üblichen Antennenabmessungen mit beispielsweise einem Vollstabdurchmesser im Bereich von 22 mm hat sich eine Spaltbreite von etwa 1 mm bewehrt.A significant improvement of the transient reflection behavior can be achieved by a further design measure, namely, when the outer diameter of the feed section is selected such that in the assembled state of the antenna, a radial gap between the feed section and a feeding waveguide is formed, in which protrudes the feed section, in particular wherein the gap extends in the emission direction substantially over the axial extent - extension in the main emission direction - of the stepped impedance converter formed in the dielectric feed section. In conventional antenna dimensions with, for example, a solid rod diameter in the range of 22 mm, a gap width of about 1 mm has been reinforced.

Auch die im Speisebereich und im ersten Übergangsabschnitt vorgesehenen gestuften Impedanzwandler führen zur Reflexionsreduzierungen bei dielektrischen Antennen, die kein dielektrisches Rohr als Abstrahlabschnitt aufweisen, sind insoweit also unabhängig von dem Merkmal des als dielektrisches Rohr ausgestalteten Abstrahlabschnitts zu verstehen.The stepped impedance converters provided in the food area and in the first transition section also lead to reflection reductions in the case of dielectric Antennas which do not have a dielectric tube as the emission section are therefore to be understood as being independent of the feature of the emission section designed as a dielectric tube.

Eine weitere Steigerung der Direktivität kann bei einer bevorzugten Ausgestaltung der erfindungsgemäßen dielektrischen Antenne dadurch erzielt werden, dass der dielektrische Stab im ersten Übergangsabschnitt von einem metallischen, sich in Abstrahlrichtung der Antenne öffnenden Hornansatz umgeben ist, wobei sich der metallische Hornansatz insbesondere weder in den Bereich des im dielektrischen Speiseabschnitt ausgebildeten gestuften Impedanzwandlers noch in den Bereich des gestuften Impedanzwandlers im ersten Übergangsabschnitt erstreckt. Durch einen solchen metallischen Hornansatz ist die Direktivität der erfindungsgemäßen dielektrischen Antenne weiter steigerbar, da der Grundmode der elektromagnetischen Strahlung am Ende des metallischen Hornansatzes unter Verursachung minimaler Leckabstrahlung in den gewünschten HE11-Stabmode überkoppelt. Die sich öffnende Innenkontur des metallischen Hornansatzes kann verschieden ausgestaltet werden, wird bevorzugt linear ausgestaltet, da mit nichtlinearen Innenkonturen kaum eine Verbesserung der Abstrahlcharakteristik erzielbar ist und lineare Innenkonturen einfacher herstellbar sind.A further increase in directivity can be achieved in a preferred embodiment of the dielectric antenna according to the invention in that the dielectric rod is surrounded in the first transition section by a metallic horn projection opening in the emission direction of the antenna, wherein the metallic horn projection in particular neither into the region of in the dielectric feed section formed stepped impedance converter still extends into the region of the stepped impedance converter in the first transition section. By such a metallic Horn approach the directivity of the dielectric antenna according to the invention is further increased, since the fundamental mode of the electromagnetic radiation at the end of the metallic Horn approach coupled with causing minimal leakage in the desired HE 11 -Stabmode. The opening inner contour of the metallic horn approach can be configured differently, is preferably designed linear, since with non-linear inner contours hardly improve the radiation characteristics can be achieved and linear inner contours are easier to produce.

Im Einzelnen gibt es nun verschiedene Möglichkeiten, die erfindungsgemäßen dielektrischen Antennen auszugestalten und weiterzubilden. Dazu wird verwiesen auf die dem Patentanspruch 1 nachgeordneten Patentansprüche und auf die Beschreibung bevorzugter Ausführungsbeispiele in Verbindung mit der Zeichnung. In der Zeichnung zeigen

Fig. 1
einen Querschnitt durch ein erstes Ausführungsbeispiel einer erfindungsgemäßen dielektrischen Antenne,
Fig. 2
einen Querschnitt durch ein zweites Ausfürungsbeispiel einer erfindungsgemäßen dielektrischen Antenne,
Fig. 3
schematisch eine erfindungsgemäße dielektrische Antenne mit dem gesamten erzeugten elektrischen Feld der abgestrahlten elektromagnetischen Strahlung in der E-Ebene, Modenfeld mit parasitärem Leckfeld,
Fig. 4a, 4b
die mit Ausführungsbeispielen erfindungsgemäßer dielektrischer Antennen erzielbare Direktivität gegenüber der Direktivität herkömmlicher Antennen und
Fig. 5
einen Querschnitt durch eine erfindungsgemäße dielektrische Antenne in Detailansicht.
In particular, there are now various possibilities for designing and developing the dielectric antennas according to the invention. Reference is made to the claims subordinate to claim 1 and to the description of preferred embodiments in conjunction with the drawings. In the drawing show
Fig. 1
a cross section through a first embodiment of a dielectric antenna according to the invention,
Fig. 2
a cross section through a second Ausfürungsbeispiel of a dielectric antenna according to the invention,
Fig. 3
schematically a dielectric antenna according to the invention with the entire generated electric field of the radiated electromagnetic Radiation in the E-plane, mode field with parasitic leakage field,
Fig. 4a, 4b
the achievable with embodiments of the invention of the dielectric antenna directivity over the directivity of conventional antennas and
Fig. 5
a cross section through a dielectric antenna according to the invention in detail view.

In den Fig. 1 und 2 sind Querschnitte vollständiger dielektrischer Antennen 1 dargestellt, die einen dielektrischen Speiseabschnitt 2, einen einen dielektrischen Stab umfassenden ersten Übergangsabschnitt 3, einen ein dielektrisches Horn bildenden zweiten Übergangsabschnitt 4 und einen dielektrischen Abstrahlabschnitt 5 aufweisen, wobei der dielektrische Speiseabschnitt 2 mit elektromagnetischer Strahlung 6 beaufschlagbar ist, mit dem ersten Übergangsabschnitt 3 und dem zweiten Übergangsabschnitt 4 elektromagnetische Strahlung 6 führbar ist und die elektromagnetische Strahlung 6 von dem Abstrahlabschnitt 5 als Freiraumwelle abstrahlbar ist.In the Fig. 1 and 2 FIG. 2 shows cross-sections of complete dielectric antennas 1, which have a dielectric feed section 2, a first transition section 3 comprising a dielectric rod, a second transition section 4 forming a dielectric horn, and a dielectric emission section 5, the dielectric feed section 2 being exposed to electromagnetic radiation 6, electromagnetic radiation 6 can be guided with the first transition section 3 and the second transition section 4, and the electromagnetic radiation 6 can be emitted by the emission section 5 as a free-space wave.

Alle in den Fig. 1 bis 3 - mehr oder weniger detailgetreu - dargestellten dielektrischen Antennen 1 zeichnen sich dadurch aus, dass der Abstrahlabschnitt 5 als sich an den zweiten Übergangsabschnitt 4 anschließendes dielektrisches Rohr ausgestaltet ist. Dadurch wird erreicht, dass die Länge der dielektrischen Antenne 1 in großen Bereichen variierbar ist, nämlich durch unterschiedliche Wahl der Länge des den dielektrischen Stab umfassenden ersten Übergangsabschnitts 3 und durch Wahl der Länge des als dielektrisches Rohr ausgestalteten Abstrahlabschnitts 5. Beide Bereiche 3 und 5 sind im elektromagnetischen Sinn Eigenwellensysteme mit dem ein dielektrisches Horn bildenden zweiten Übergangsabschnitt 4 als Wellenleiterübergang zwischen diesen verschiedenen Eigenwellensystemen.All in the Fig. 1 to 3 - Dielectric antennas 1 shown more or less faithfully - are characterized in that the emission section 5 is designed as a dielectric tube adjoining the second transition section 4. It is thereby achieved that the length of the dielectric antenna 1 can be varied within wide ranges, namely by different choice of the length of the first transition section 3 comprising the dielectric rod and by selecting the length of the radiating section 5 embodied as a dielectric tube. Both areas 3 and 5 are In the electromagnetic sense, self-wave systems with the second transition section 4 forming a dielectric horn as a waveguide transition between these different self-wave systems.

In allen dargestellten Ausführungsbeispielen ist die Wandstärke des als dielektrisches Rohr ausgebildeten Abstrahlabschnitts 5 so gewählt, dass lediglich elektromagnetische Strahlung 6 im hybriden Grundmode HE11 entlang des dielektrischen Rohres geführt ausbreitungsfähig ist, so dass die elektromagnetische Strahlung 6 grundsätzlich modenrein über den den dielektrischen Stab umfassenden ersten Übergangsabschnitt 3 und den als dielektrisches Rohr ausgestalteten Abstrahlabschnitt 5 geleitet wird. Die an den Diskontinuitätsstellen auftretenden höheren Moden werden unmittelbar am Ort der Diskontinuitäten in den Freiraum abgestrahlt, vor allem also im Bereich des ein dielektrisches Horn bildenden zweiten Übergangsabschnitts 4. Das Loslösen des parasitären elektromagnetischen Leckfeldes ist in der Darstellung in Fig. 3 erkennbar, in der die maximale Amplitude der elektrischen Feldverteilung in der E-Ebene bei 9,5 GHz dargestellt ist bei einer Länge des Abstrahlabschnittes 5 von 1500 mm. Diese Rohrlänge ist nur zu Darstellungszwecken so lang gewählt worden (ca. 50 λ), um eine Trennung zwischen geführtem und parasitär abgestrahltem Feld überhaupt erkennen zu können, da sich die Wellenzahlen von geführtem Mode und Freiraumfeld nur sehr wenig unterscheiden.In all the exemplary embodiments illustrated, the wall thickness of the emission section 5 designed as a dielectric tube is selected such that only electromagnetic radiation 6 in the hybrid fundamental mode HE 11 runs along the guided dielectric capable of propagation, so that the electromagnetic radiation 6 is basically pure state passed over the dielectric rod first transition section 3 and designed as a dielectric tube radiating section 5. The higher modes occurring at the discontinuity points are radiated directly into the free space at the location of the discontinuities, ie in particular in the region of the second transition section 4 forming a dielectric horn. The release of the parasitic electromagnetic leakage field is shown in FIG Fig. 3 can be seen, in which the maximum amplitude of the electric field distribution in the E-plane at 9.5 GHz is shown at a length of the radiation section 5 of 1500 mm. This tube length has been chosen so long only for purposes of illustration (about 50 λ), in order to detect a separation between guided and parasitically radiated field at all, since the wavenumbers of guided mode and free space field differ only very little.

Bei den in den Fig. 1 und 2 dargestellten Ausführungsbeispielen beträgt die Wandstärke des dielektrischen Rohres des Abstrahlabschnitts 5 weniger als 5 % des Außendurchmessers des Rohres. Im vorliegenden Fall beträgt der Außendurchmesser des Rohres 43 mm bei einer Wandstärke von 2,0 mm, was bei der Verwendung von Polypropylen (PP, Fig. 1) und Polytetrafluorethylen (PTFE, Fig. 2) und bei einer Anregungsfrequenz von 9,5 GHz zu dem gewünschten selektiven Übertragungsverhalten führt.In the in the Fig. 1 and 2 illustrated embodiments, the wall thickness of the dielectric tube of the Abstrahlabschnitts 5 is less than 5% of the outer diameter of the tube. In the present case, the outer diameter of the tube is 43 mm with a wall thickness of 2.0 mm, which, when using polypropylene (PP, Fig. 1 ) and polytetrafluoroethylene (PTFE, Fig. 2 ) and at an excitation frequency of 9.5 GHz leads to the desired selective transmission behavior.

Das Transmissionsverhalten von dem ersten, den dielektrischen Stab umfassenden Übergangsabschnitt 3 zu dem als dielektrisches Rohr ausgestalteten Abstrahlabschnitt 5 wird in den dargestellten Ausführungsbeispielen gemäß Fig. 1 und 2 dadurch verbessert, dass der das dielektrische Horn umfassende zweite Übergangsabschnitt 4 eine nichtlineare, sich in Abstrahlrichtung 7 zunehmend öffnende Innenkontur 8 aufweist, wobei die Innenkontur 8 durch eine Potenzfunktion mit gebrochenem Exponenten > 1 in Abhängigkeit von der Ortskoordinate in Hauptabstrahlrichtung 7 der Antenne 1 beschrieben wird; vorliegend hat der Exponent den Wert von im Wesentlichen 1,1.The transmission behavior of the first, comprising the dielectric rod transition section 3 to the designed as a dielectric tube radiating section 5 is in the illustrated embodiments according to Fig. 1 and 2 in that the second transition section 4 comprising the dielectric horn has a nonlinear inner contour 8 which increasingly opens in the emission direction 7, the inner contour 8 being described by a power function with fractional exponent> 1 as a function of the spatial coordinate in the main emission direction 7 of the antenna 1 ; in the present case, the exponent has the value of essentially 1.1.

Es hat sich herausgestellt, dass derartig als dielektrisches Horn ausgestaltete zweite Übergangsabschnitte 4 zur Erzielung einer bestimmten Direktivität der dielektrischen Antenne 1 erheblich kürzer ausgebildet werden können, als dielektrische Antennen mit einem dielektrischen Horn als zweitem Übergangsabschnitt, das eine lineare Innenkontur aufweist.It has been found that in such a way as a dielectric horn configured second transition sections 4 to achieve a certain directivity of the dielectric antenna 1 can be formed considerably shorter than dielectric Antennas with a dielectric horn as a second transition section, which has a linear inner contour.

Den Antennen gemäß den Fig. 1 und 2 ist ebenfalls gemein, dass der das dielektrische Horn umfassende zweite Übergangsabschnitt 4 eine lineare, sich in Abstrahlrichtung 7 öffnende Außenkontur 9 aufweist. Es hat sich herausgestellt, dass die Formgebung der Außenkontur 9 nicht in gleichen Maße entscheidend für das Transmissionsverhalten des zweiten Übergangsabschnitts 4 ist, wie die Ausgestaltung der Innenkontur 8; insoweit ist hier die am einfachsten herzustellende Außenkontur 9 gewählt worden.The antennas according to Fig. 1 and 2 is also common that the dielectric horn comprehensive second transition section 4 has a linear, opening in the emission direction 7 outer contour 9. It has been found that the shaping of the outer contour 9 is not decisive to the same extent for the transmission behavior of the second transition section 4 as the configuration of the inner contour 8; In that regard, the easiest to produce outer contour 9 has been chosen here.

Von ganz besonderer Bedeutung für das Transmissionsverhalten der dargestellten dielektrischen Antennen 1 ist jedoch, dass sich die Innenkontur 8 des dielektrischen Horns des zweiten Übergangsabschnitts 4 in einer Innenkontur 10 des den ersten Übergangsabschnitt 3 bildenden dielektrischen Stabs fortsetzt, sich vorliegend nämlich stufenlos in den den ersten Übergangsabschnitt 3 bildenden dielektrischen Stab fortsetzt. In den dargestellten Ausführungsbeispielen wird die Innenkontur 10 des den dielektrischen Stab umfassenden ersten Übergangsabschnitts 3 und die Innenkontur 8 des das dielektrische Horn umfassenden zweiten Übergangsabschnitts 4 durch dieselbe Potenzfunktion beschrieben, wodurch jegliche Unstetigkeiten im Übergangsbereich zwischen dem ersten Übergangsabschnitt 3 und dem zweiten Übergangsabschnitt 4 vermieden werden. Im vorliegenden Fall werden die Innenkonturen 8, 10 durch folgende Gleichung beschrieben: r x = 16 , 5 mm * x / 230 mm 1 / 0 , 9 + 3 mm ,

Figure imgb0001

wobei x die Ortskoordinate in Abstrahlrichtung 7 der Antenne und angebbar in Millimetern ist, und r(x) die Höhe der Innenkonturen 8, 10 über der Achse der unabhängigen Ortskoordinate x bezeichnet. Der Nullpunkt der Ortskoordinate x liegt hier 80 mm innerhalb des Übergangs des ersten Übergangsabschnitts 3 zum zweiten Übergangsabschnitt 4, wobei der als dielektrisches Horn ausgebildete zweite Übergangsabschnitt 4 eine Erstreckung von insgesamt 150 mm in Abstrahlrichtung 7 aufweist. Der sich daran anschließende, als dielektrisches Rohr ausgestaltete Abstrahlabschnitt 5 hat in Abstrahlrichtung 7 der dielektrischen Antenne 1 eine Erstreckung von lediglich 15 mm.Of very particular importance for the transmission behavior of the illustrated dielectric antennas 1, however, is that the inner contour 8 of the dielectric horn of the second transition section 4 continues in an inner contour 10 of the first transition section 3 forming the dielectric rod, namely in this case continuously in the first transition section 3 forming dielectric rod continues. In the illustrated embodiments, the inner contour 10 of the dielectric first connecting portion 3 and the inner contour 8 of the dielectric horn comprehensive second transition portion 4 is described by the same power function, whereby any discontinuities in the transition region between the first transition section 3 and the second transition section 4 are avoided , In the present case, the inner contours 8, 10 are described by the following equation: r x = 16 . 5 mm * x / 230 mm 1 / 0 . 9 + 3 mm .
Figure imgb0001

where x is the spatial coordinate in the emission direction 7 of the antenna and is given in millimeters, and r (x) denotes the height of the inner contours 8, 10 above the axis of the independent spatial coordinate x. The zero point of the spatial coordinate x is here 80 mm within the transition of the first transition section 3 to the second transition section 4, wherein the formed as a dielectric horn second transition section 4 has an extension of 150 mm in total in the emission 7. The adjoining, designed as a dielectric tube radiating section 5 has in the direction of radiation 7 of the dielectric antenna 1 an extension of only 15 mm.

Die nachfolgend aufgeführte Tabelle 1 zeigt das Transmissionsverhalten und charakteristische Strahlungskenngrößen bei Anregung kurzer, als dielektrisches Rohr ausgestalteter Abstrahlabschnitte 5 mit verschiedenen als dielektrisches Horn ausgestalteten Übergangsabschnitten 4 bei Anregung mit 9,5 GHz. Tab. 1: Transmissionsverhalten bei verschiedenen linearen Innenkonturen und einer nichtlinearen Innenkontur einer dielektrischen Antenne bei 9,5 GHz. Konturlänge /mm Transmission in den Nutzmode Dir/dBi H-Ebene E-Ebene linear dB SLS/dB HPBW/° SLS/dB EPBW/° linear 150 0,883 -1,081 18,5 27,5 22,5 39,4 25,1 350 0,936 -0,574 19,7 30,4 19,4 40,5 21,3 550 0,957 -0,382 20,0 30,4 18,3 40,5 19,8 nichtlinear 230 0,935 -0,584 20,3 28,3 19,2 21,1 19,9 Table 1 below shows the transmission behavior and characteristic radiation parameters upon excitation of short emission sections 5 designed as a dielectric tube with different transition sections 4 designed as a dielectric horn when excited at 9.5 GHz. Tab. 1: Transmittance behavior with different linear inner contours and a nonlinear inner contour of a dielectric antenna at 9.5 GHz. Contour length / mm Transmission in the Nutzmode Dir / dBi H-plane E-plane linear dB SLS / dB HPBW / ° SLS / dB EPBW / ° linear 150 0.883 -1.081 18.5 27.5 22.5 39.4 25.1 350 0.936 -0.574 19.7 30.4 19.4 40.5 21.3 550 0.957 -0.382 20.0 30.4 18.3 40.5 19.8 nonlinear 230 0.935 -0.584 20.3 28.3 19.2 21.1 19.9

In Tabelle 1 sind für drei verschieden lange Innenkonturen 8,10 innerhalb des dielektrischen Stabes des ersten Übergangsabschnitts 3 und innerhalb des ein dielektrisches Horn bildenden zweiten Übergangsabschnitts 4 für eine lineare Innenkontur (150 mm, 350 mm und 550 mm) und für eine optimierte nichtlineare Innenkontur (230 mm als Summe eines 80 mm langen ersten Übergangsabschnitts 3 und eines 150 mm langen zweiten Übergangsabschnitts 4) das Transmissionsverhalten und charakteristische Strahlungskenngrößen (Dir. = Direktivität, SLS = Side Lobe Supression; HPBW = Half Power Beamwidth) bei Anregung eines als kurzes Rohr (50 mm) ausgestalteten Abstrahlabschnitts 5 bei einer Anregung von 9,5 GHz dargestellt. Es lässt sich ohne weiteres erkennen, dass bei einer nichtlinearen Innenkontur 8, 10 einer Länge von 230 mm etwa die gleiche Transmission und Direktivität erzielt werden kann wie bei einer linearen Innenkontur, die jedoch erheblich länger ist (350 mm). Bei der nichtlinearen Innenkontur wird eine höhere Direktivität (hier ca: 0,5 dB) gegenüber einem längeren linearen Übergang (350 mm) bei vergleichbarer HE11-Modenreinheit erzielt. Dies ist vorliegend durch gezielten Verzicht auf eine besonders deutliche Nebenkeulenunterdrückung (SLS) von mehr als 20 dB in der E-Ebene möglich. Dies ist akzeptabel, da durch ein noch geringeres Niveau der Unterdrückung kein signifikanter Gewinn der Messgenauigkeit mehr möglich ist.In Table 1 are for three different inner contours 8,10 within the dielectric rod of the first transition section 3 and within the dielectric horn forming second transition section 4 for a linear inner contour (150 mm, 350 mm and 550 mm) and for an optimized non-linear inner contour (230 mm as the sum of an 80 mm long first transition section 3 and a 150 mm long second transition section 4) the transmission behavior and characteristic radiation characteristics (dir = directivity, SLS = half power beamwidth) with excitation of one as a short tube (50 mm) designed Abstrahlabschnitts 5 at a excitation of 9.5 GHz. It can readily be seen that with a nonlinear inner contour 8, 10 of a length of 230 mm, approximately the same transmission and directivity can be achieved as with a linear inner contour, which, however, is considerably longer (350 mm). In the case of the nonlinear inner contour, a higher directivity (here about 0.5 dB) compared to a longer linear transition (350 mm) at comparable HE 11 mode purity achieved. In the present case, this is possible by deliberately avoiding a particularly significant side lobe suppression (SLS) of more than 20 dB in the E plane. This is acceptable, since a lower level of suppression will no longer allow a significant gain in measurement accuracy.

In Zusammenhang mit den Ergebnissen aus Tabelle 1 sind auch die Diagramme in den Fig. 4a und 4b zu verstehen. In Fig. 4a ist die Direktivität in Abhängigkeit von der Länge des als dielektrisches Rohr ausgestalteten zweiten Übergangsabschnitts 4 dargestellt und zwar für die als dielektrisches Horn ausgestalteten zweiten Übergangsabschnitte 4 mit linearer Innenkontur (150 mm, 350 mm, 550 mm) und für die Anregung eines veränderlich langen Abstrahlabschnitts 5 über ein als dielektrisches Horn ausgebildeten zweiten Übergangsabschnitt 4 mit nichtlinearer Innenkontur (230 mm). Eine Erhöhung der HE11-Modenreinheit führt zu einer Verkleinerung der Direktivitätssteigerung über die Rohrlänge hinweg und damit zu einer reduzierten Längenabhängigkeit des Abstrahlungsverhaltens. Ist die Transmission in dem Nutzmode wie im Fall des zweiten Übergangsabschnitts mit linearer Innenkontur (350 mm) und im Fall des zweiten Übergangsabschnitts 4 mit nichtlinearer Innenkontur (230 mm) gleich groß, so verlaufen die Direktivitäts-Kurven nahezu parallel zueinander. Der Verlauf ist hingegen bei einer geringeren Transmission (150 mm) steiler und bei einer größeren Transmission (550 mm) flacher. In Fig. 4b sind dargestellt die Fernfelder der aus Fig. 3 bekannten Anordnung mit einer Rohrlänge des Abstrahlabschnitts 5 von 1500 mm und 750 mm sowie das ideale Modenfeld. Wie Fig. 4b entnommen werden kann, handelt es sich bei dem beschriebenen Effekt um einen parasitären Überlagerungseffekt zweier strahlender Querschnitte, da die Direktivitätssteigerung lediglich aufgrund der konstruktiven Überlagerung des HE11-Modenfeldes mit dem parasitär im Bereich des hornförmigen zweiten Übergangsabschnitt 4 abstrahlenden Leckfeldes entsteht. Da beide Feldanteile nahezu die gleiche Wellenzahl besitzen, wird der gesamte Effekt erst bei größeren Längen des als Rohr ausgebildeten Abstrahlabschnitts 5 sichtbar, also wenn die Direktivität wieder abfällt, wozu nochmals auf die in Fig. 3 dargestellte Feldverteilung verwiesen wird.In connection with the results from Table 1 are also the diagrams in the Fig. 4a and 4b to understand. In Fig. 4a is the directivity as a function of the length of designed as a dielectric tube second transition section 4 shown for the designed as a dielectric horn second transition sections 4 with a linear inner contour (150 mm, 350 mm, 550 mm) and for the excitation of a variable-length radiating section. 5 via a formed as a dielectric horn second transition section 4 with non-linear inner contour (230 mm). An increase of the HE 11 mode purity leads to a reduction of the increase in directivity over the tube length and thus to a reduced length dependence of the radiation behavior. If the transmission in the payload mode is the same as in the case of the second transition section with a linear inner contour (350 mm) and in the case of the second transition section 4 with a nonlinear inner contour (230 mm), the directivity curves are nearly parallel to one another. On the other hand, the gradient is steeper at a lower transmission (150 mm) and flatter at a larger transmission (550 mm). In Fig. 4b are the far fields out of the picture Fig. 3 known arrangement with a tube length of the Abstrahlabschnitts 5 of 1500 mm and 750 mm and the ideal mode field. As Fig. 4b can be taken, it is in the described effect to a parasitic interference effect of two radiating cross-sections, since the increase in directivity arises only due to the constructive superposition of the HE 11 mode field with the parasitic radiating in the region of the horn-shaped second transition section 4 leakage field. Since both field shares have almost the same wavenumber, the entire effect becomes visible only with longer lengths of the radiating section 5 in the form of a tube, that is to say when the directivity drops again, to which again the in Fig. 3 referenced field distribution is referenced.

Um interne Reflexionen in der dielektrischen Antenne 1 zu vermindern, sind verschiedene gestufte Impedanzwandler innerhalb der dielektrischen Antenne 1 ausgebildet, die nach dem Prinzip eines Viertelwellen-Transformators arbeiten. So wird ein erster gestufter Impedanzwandler 11 durch die Innenkontur 10 des den dielektrischen Stab umfassenden ersten Übergangsabschnitts 3 im Übergang zum speiseseitigen Vollstabbereich gebildet, der im vorliegenden Fall als einstufiger Impedanzwandler ausgebildet ist. Einstufige Impedanzwandler führen in rein dielektrischen Übergangsbereichen bereits zu guten Ergebnissen hinsichtlich der Vermeidung von internen Reflexionen. Ferner ist bei den dielektrischen Antennen 1 gemäß den Fig. 1 und 2 vorgesehen, dass der dielektrische Speiseabschnitt 2 als weiterer gestufter Impedanzwandler 12 ausgebildet ist, der ebenfalls nach dem Prinzip eines Viertelwellen-Transformators arbeitet. Dabei weist der gestufte Impedanzwandler 12 eine Innenkontur mit sich in Abstrahlrichtung 7 verjüngendem Querschnitt auf, wobei die kleinste Stufe mit einem Innensechskantprofil als Innenkontur ausgebildet ist, was hinsichtlich der Montage der dielektrischen Antenne 1 von Vorteil ist, aber auch - wie bereits weiter oben ausgeführt - hinsichtlich elektromagnetischer Eigenschaften eine besonders bevorzugte Struktur ist.In order to reduce internal reflections in the dielectric antenna 1, various stepped impedance transformers are formed inside the dielectric antenna 1, operating on the principle of a quarter-wave transformer. Thus, a first stepped impedance converter 11 is formed by the inner contour 10 of the dielectric rod comprising the first transition section 3 in the transition to the feed side full bar area, which is formed in the present case as a single-stage impedance converter. Single-stage impedance converters already lead to good results in purely dielectric transition regions with regard to the avoidance of internal reflections. Further, in the dielectric antennas 1 according to FIGS Fig. 1 and 2 provided that the dielectric feed section 2 is formed as a further stepped impedance converter 12, which also operates on the principle of a quarter-wave transformer. In this case, the stepped impedance converter 12 has an inner contour with a tapering in the emission direction 7 cross-section, wherein the smallest step is formed with a hexagon socket as the inner contour, which is in terms of mounting the dielectric antenna 1 is advantageous, but also - as already stated above - is a particularly preferred structure in terms of electromagnetic properties.

Von besonderer Bedeutung bei dem im dielektrischen Speiseabschnitt 2 vorgesehenen gestuften Impedanzwandler 12 ist, dass der Außendurchmesser des dielektrischen Speiseabschnitts 2 so gewählt ist, dass im Montagezustand der Antenne ein radialer Spalt 13 zwischen dem Speiseabschnitt 2 und einem speisenden Hohlleiter 14 ausgebildet ist, in den der Speiseabschnitt 2 hineinragt, wobei sich vorliegend der radiale Spalt 13 in Abstrahlrichtung 7 im Wesentlichen über die axiale Ausdehnung des im dielektrischen Speiseabschnitt 2 ausgebildeten gestuften Impedanzwandlers 12 erstreckt, was insbesondere in Fig. 5 zu erkennen ist.Of particular importance in the provided in the dielectric feed section 2 stepped impedance converter 12 is that the outer diameter of the dielectric feed section 2 is selected so that in the assembled state of the antenna, a radial gap 13 between the feed section 2 and a feeding waveguide 14 is formed in the In the present case, the radial gap 13 extends in the emission direction 7 substantially over the axial extent of the stepped impedance converter 12 formed in the dielectric feed section 2, which is particularly evident in FIG Fig. 5 can be seen.

Ein dritter gestufter Impedanzwandler 19, der nach dem Prinzip eines Viertelwellen-Transformators arbeitet, ist am als Rohr ausgestalteten Abstrahlabschnitt 2 vorgesehen.A third stepped impedance converter 19, which operates on the principle of a quarter-wave transformer, is provided on the radiating section 2 designed as a tube.

Eine weitere Maßnahme zur Direktivitätssteigerung, die bei den dielektrischen Antennen gemäß den Fig. 1, 2 und 5 umgesetzt ist, besteht darin, dass der dielektrische Stab im ersten Übergangsabschnitt 3 von einem metallischen, sich in Abstrahlrichtung 7 der Antenne 1 öffnenden Hornansatz 15 umgeben ist, wobei sich der metallische Hornansatz 15 weder in den Bereich des im dielektrischen Speiseabschnitt 2 ausgebildeten gestuften Impedanzwandlers 12 noch in den Bereich des gestuften Impedanzwandlers 11 im ersten Übergangsabschnitt 3 erstreckt Die Erfahrung zeigt, dass bereits metallische Homansätzen 15, die den Außendurchmesser des dielektrischen Stabes im ersten Übergangsabschnitt 3 höchstens um den Faktor 2 übersteigen bereits zu einer merklichen Direktivitätssteigerung führen, wie beispielsweise die metallischen Hornansätze 15 in den Fig. 1, 2 und 5, die einen maximalen Außendurchmesser von 40 mm aufweisen gegenüber einem Außendurchmesser des im ersten Übergangsabschnitt 3 ausgebildeten dielektrischen Stabs von 22mm.Another measure to increase the directivity, which in the dielectric antenna according to Fig. 1 . 2 and 5 is implemented, is that the dielectric rod in the first transition section 3 of a metallic, Surrounding in the radiation direction 7 of the antenna 1 horn projection 15 is surrounded, wherein the metallic horn extension 15 extends neither in the region of the formed in the dielectric feed section 2 stepped impedance converter 12 into the region of the stepped impedance converter 11 in the first transition section 3 Experience shows that already Metallic horn sets 15, which exceed the outer diameter of the dielectric rod in the first transition section 3 at most by a factor of 2 already lead to a significant increase in directivity, such as the metallic Hornansätze 15 in the Fig. 1 . 2 and 5 having a maximum outer diameter of 40 mm with respect to an outer diameter of the dielectric rod formed in the first transition portion 3 of 22mm.

Vorteilhaft ist ferner bei den Ausführungsbeispielen gemäß den Fig. 1 und 5, dass der metallische Hornansatz 15 von einer dielektrischen Umhüllung 16 umgeben ist, wobei die dielektrische Umhüllung 16 vorliegend den metallischen Hornansatz 15 mechanisch mit der dielektrischen Antenne 1 verbindet und den metallischen Hornansatz 15 an der dielektrischen Antenne fixiert, Vorliegend ist die dielektrische Umhüllung 16 einstückig mit den anderen dielektrischen Teilen der dielektrischen Antenne 1 ausgebildet, sie wird nämlich in einem Spritzvorgang an die dielektrische Antenne 1 angeformt. Die dielektrischen Umhüllungen 16 gemäß den Ausführungsbeispielen in den Fig. 1 und 5 weisen auch Außengewinde 17 zur Montage der dielektrischen Antenne 1 in einen prozessseitigen Flansch auf, wobei der prozessseitige Flansch hier nicht dargestellt ist. Die Umhüllung 16 in Fig. 1 ist benachbart zum Außengewinde 17 als Mutter ausgestaltet, was die Montage der Antenne 1 insgesamt erleichtert.It is also advantageous in the embodiments according to the Fig. 1 and 5 in that the metallic horn lug 15 is surrounded by a dielectric sheath 16, the dielectric sheath 16 mechanically connecting the metallic horn lug 15 to the dielectric antenna 1 and fixing the metallic horn lug 15 to the dielectric antenna. In the present case, the dielectric sheath 16 is integral with Namely, it is formed on the other dielectric parts of the dielectric antenna 1, namely, it is molded on the dielectric antenna 1 in an injection process. The dielectric sheaths 16 according to the embodiments in FIGS Fig. 1 and 5 also have external thread 17 for mounting the dielectric antenna 1 in a process-side flange, wherein the process-side flange is not shown here. The wrapper 16 in Fig. 1 is configured adjacent to the external thread 17 as a nut, which facilitates the assembly of the antenna 1 as a whole.

Die dielektrische Umhüllung 16 gemäß Fig. 2 ist zusätzlich als vertikal zur Abstrahlrichtung 7 der Antenne 1 erstreckter Fortsatz ausgestaltet, der als Dichtungsplatte zwischen nicht dargestellten Montageflanschen dient; derart ist auf einfache Weise - eine ausreichende Dicke der Dichtungsplatte vorausgesetzt - auch ein Explosions- und/oder Flammschutz erzielbar.The dielectric sheath 16 according to FIG Fig. 2 is additionally configured as extending vertically to the emission direction 7 of the antenna 1 extension, which serves as a sealing plate between mounting flanges, not shown; Such is in a simple manner - assuming a sufficient thickness of the gasket - also an explosion and / or flame protection achievable.

Die dielektrische Umhüllung 16 bringt für alle gezeigten Ausführungsbeispiele, Fig. 1, 2 und 5, mehrere Vorteile mit sich, die praktisch von erheblicher Bedeutung sein können, wie z. B. die Kapselung sämtlicher Metallteile zum Prozess und die Möglichkeit, auf sonst übliche Dichtungselemente innerhalb der Stabgeometrie bzw, des Hohlleiters zu verzichten, da die Dichtungselemente elektromagnetisch beträchtliche Nachteile mit sich bringen können.The dielectric sheath 16 brings for all shown embodiments, Fig. 1 . 2 and 5 , several advantages, which are practically significant Meaning may be such. As the encapsulation of all metal parts to the process and the ability to dispense with otherwise conventional sealing elements within the rod geometry or the waveguide, since the sealing elements can bring electromagnetically considerable disadvantages.

Weitere Stabilität und verbessertes elektromagnetisches Übertragungsverhalten wird dadurch erzielt, dass - wie in den Fig. 1, 2 und 5 dargestellt, dem metallischen Hornansatz 15 in Richtung auf den Speiseabschnitt 2 eine zylindrische Metallhülse 18 angeformt ist, die als Übergang zu einem speisenden, metallischen Hohlleiter 14 dient, bzw, selbst in diesem Abschnitt den speisenden Hohlleiter 14 darstellt. In Fig. 2 ist ferner im Speiseabschnitt 2 der Antenne 1 ein zwischen dem Speiseabschnitt 2 und dem metallischen Hornansatz 15 bzw. der umgebenden Metallhülse 18 ausgebildetes Gewinde angedeutet, mit dem der dielektrische Teil der Antenne in dem metallischen Hornansatz 15 bzw. der umgebenden Metallhülse 18 gesichert ist.Further stability and improved electromagnetic transmission behavior is achieved in that - as in the Fig. 1 . 2 and 5 shown, the metallic horn extension 15 in the direction of the feed section 2, a cylindrical metal sleeve 18 is formed, which serves as a transition to a feeding metallic waveguide 14, or, even in this section, the feeding waveguide 14 represents. In Fig. 2 Furthermore, in the feed section 2 of the antenna 1, a thread formed between the feed section 2 and the metallic horn projection 15 or the surrounding metal sleeve 18 is indicated, with which the dielectric part of the antenna is secured in the metallic horn projection 15 or the surrounding metal sleeve 18.

Claims (6)

  1. Dielectric antenna comprising a dielectric feeding section (2), a first transition section (3) comprising a dielectric rod, another, second transition section (4) forming a dielectric horn and a dielectric emitting section (5), wherein the feeding section (2) can be subjected to electromagnetic radiation (6), electromagnetic radiation (6) can be guided with the first transition section (3) and the second transition section (4), and the electromagnetic radiation can be emitted from the emitting section (5) as airborne waves, wherein the second transition section (4) comprising the dielectric horn has an inner contour opening increasingly in the direction of radiation and this inner contour forms the interface of the dielectric horn to a cavity surrounded by the dielectric horn and wherein the electromagnetic radiation (6) fed into the feeding section (2) is transmitted through the dielectric supply section (2) into the dielectric rod forming said first transition section (3) and from there into the further, second transition section (4) forming a dielectric horn and then is emitted via the emitting section (5) and the second transition section (4) forming a dielectric horn has a linear outer contour opening in the direction of radiation (7)
    characterized in
    that the inner contour (8) of the dielectric horn of the second transition section (4) continues in an inner contour (10) of the dielectric rod forming the first transition section (3), and that the emitting section (5) is designed as a dielectric tube with an outer diameter continuing from the second transition section (4).
  2. Dielectric antenna according to claim 1, characterized in that the wall thickness of the dielectric tube is chosen at a maximum so that only electromagnetic radiation (6) in the hybrid basis mode HE11 guided along the dielectric tube can be propagated, in particular wherein the wall thickness of the dielectric tube amounts at the most to 5% of the outer diameter of the dielectric tube.
  3. Dielectric antenna according to claim 1 or 2, characterized in that the inner contour (8) of the dielectric horn of the second transition section (4) proceeds continuously with an inner contour (10) in the dielectric rod forming the first transition section (3).
  4. Dielectric antenna according to one of claims 1 to 3, characterized in that the dielectric rod in the first transition section (3) is surrounded by a metallic horn hub (15) opening in the direction of emission (7) of the antenna (1), in particular wherein metallic horn hub (15) extends neither into the range of the non-continuous impendance converter (12) formed in the dielectric feeding section (2) nor into the range of the staged impedance converter (11) in the first transition section (3).
  5. Dielectric antenna according to claim 4, characterized in that the maximum outer diameter of the metallic horn hub (15) exceeds the outer diameter of the dielectric rod in the first transition section (3) at the most by a factor of 2.5, preferably by a factor of 2.3 and most preferably by a factor of 2.
  6. Dielectric antenna according to claim 4 or 5, characterized in that a cylindrical metal sleeve (18) is formed on the metallic horn hub (15) in the direction of the feeding section (2), in particular as a transition to a feeding, metallic waveguide.
EP10004964.2A 2009-05-25 2010-05-11 Dielectric antenna Active EP2262059B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13000629.9A EP2592693B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000630.7A EP2592694B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP14186480.1A EP2840653B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000632.3A EP2592695B1 (en) 2009-05-25 2010-05-11 Dielectric antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009022511.0A DE102009022511B4 (en) 2009-05-25 2009-05-25 Dielectric antenna

Related Child Applications (7)

Application Number Title Priority Date Filing Date
EP13000630.7A Division EP2592694B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000632.3A Division EP2592695B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP14186480.1A Division EP2840653B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000629.9A Division EP2592693B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000630.7 Division-Into 2013-02-07
EP13000629.9 Division-Into 2013-02-07
EP13000632.3 Division-Into 2013-02-07

Publications (3)

Publication Number Publication Date
EP2262059A2 EP2262059A2 (en) 2010-12-15
EP2262059A3 EP2262059A3 (en) 2011-03-30
EP2262059B1 true EP2262059B1 (en) 2013-04-17

Family

ID=42646278

Family Applications (5)

Application Number Title Priority Date Filing Date
EP13000632.3A Active EP2592695B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP10004964.2A Active EP2262059B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000629.9A Not-in-force EP2592693B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP14186480.1A Active EP2840653B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000630.7A Active EP2592694B1 (en) 2009-05-25 2010-05-11 Dielectric antenna

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP13000632.3A Active EP2592695B1 (en) 2009-05-25 2010-05-11 Dielectric antenna

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP13000629.9A Not-in-force EP2592693B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP14186480.1A Active EP2840653B1 (en) 2009-05-25 2010-05-11 Dielectric antenna
EP13000630.7A Active EP2592694B1 (en) 2009-05-25 2010-05-11 Dielectric antenna

Country Status (4)

Country Link
US (1) US8354970B2 (en)
EP (5) EP2592695B1 (en)
CN (1) CN101944658B (en)
DE (1) DE102009022511B4 (en)

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012087198A1 (en) * 2010-12-20 2012-06-28 Saab Ab Tapered slot antenna
US8970424B2 (en) * 2012-10-24 2015-03-03 Rosemount Tank Radar Ab Radar level gauge system with reduced antenna reflection
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
DE102013106978A1 (en) * 2013-07-03 2015-01-22 Endress + Hauser Gmbh + Co. Kg Antenna arrangement for a level gauge
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
TWI528637B (en) * 2013-12-26 2016-04-01 啟碁科技股份有限公司 Waterproof part
JP6289277B2 (en) 2014-03-31 2018-03-07 東京計器株式会社 Horn antenna
US9882285B2 (en) 2014-04-24 2018-01-30 Honeywell International Inc. Dielectric hollow antenna
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
CN104569889A (en) * 2014-12-24 2015-04-29 北京无线电计量测试研究所 Concentric and taper TEM (transverse electromagnetic mode) cell and method for designing interior conductor semi-included angle and exterior conductor semi-included angle of transmission section of concentric and taper TEM cell
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
DE102015115395B4 (en) * 2015-09-11 2017-06-14 Krohne Messtechnik Gmbh Antenna with a lens
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
EP3168581B1 (en) * 2015-11-13 2022-01-19 VEGA Grieshaber KG Horn antenna and radar fill level measuring device with a horn antenna
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) * 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10637149B2 (en) * 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
EP3622582B1 (en) * 2017-06-30 2021-10-20 Huawei Technologies Co., Ltd. Antenna feeder assembly of multi-band antenna and multi-band antenna
US10305197B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Multimode antenna system and methods for use therewith
US10205231B1 (en) 2017-09-06 2019-02-12 At&T Intellectual Property I, L.P. Antenna structure with hollow-boresight antenna beam
US10305179B2 (en) 2017-09-06 2019-05-28 At&T Intellectual Property I, L.P. Antenna structure with doped antenna body
US10230426B1 (en) 2017-09-06 2019-03-12 At&T Intellectual Property I, L.P. Antenna structure with circularly polarized antenna beam
US11493622B1 (en) 2018-02-08 2022-11-08 Telephonics Corp. Compact radar with X band long-distance weather monitoring and W band high-resolution obstacle imaging for landing in a degraded visual environment
CN110600868B (en) * 2019-09-12 2020-10-16 哈尔滨工业大学 Ultra-wideband dielectric rod antenna for 18-40GHz frequency band
EP4002590B1 (en) * 2020-11-18 2023-09-13 TMY Technology Inc. Ultra-wideband non-metal horn antenna

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB656200A (en) * 1948-05-28 1951-08-15 Emi Ltd Improvements in or relating to radiating or receiving devices for electromagnetic waves
US2801413A (en) * 1949-03-30 1957-07-30 Bell Telephone Labor Inc Directive dielectric antennas
DE1904130C3 (en) * 1969-01-28 1978-06-15 Siemens Ag, 1000 Berlin Und 8000 Muenchen Dielectric horn antenna
DE2744841C3 (en) 1977-10-05 1980-08-21 Endress U. Hauser Gmbh U. Co, 7867 Maulburg Exponentially expanding horn antenna for a microwave antenna
DE7730798U1 (en) * 1977-10-05 1980-09-04 Endress U. Hauser Gmbh U. Co, 7867 Maulburg MICROWAVE ANTENNA
NO157480C (en) * 1985-02-28 1988-03-30 Sintef HYBRID MODE HORNANTENNE.
JP2765255B2 (en) * 1991-03-28 1998-06-11 三菱電機株式会社 Horn antenna
US5642121A (en) * 1993-03-16 1997-06-24 Innova Corporation High-gain, waveguide-fed antenna having controllable higher order mode phasing
DE9412243U1 (en) * 1994-07-29 1994-09-29 Vega Grieshaber Kg, 77709 Wolfach Antenna device for a level measuring device
US5486839A (en) * 1994-07-29 1996-01-23 Winegard Company Conical corrugated microwave feed horn
DE4432687C2 (en) * 1994-09-14 1998-07-16 Karlsruhe Forschzent Moisture sensor and its use
US6005528A (en) * 1995-03-01 1999-12-21 Raytheon Company Dual band feed with integrated mode transducer
JP2000201013A (en) * 1999-01-06 2000-07-18 Alps Electric Co Ltd Feed horn
JP2001053537A (en) 1999-08-13 2001-02-23 Alps Electric Co Ltd Primary radiator
DE10057441B4 (en) * 2000-11-20 2014-02-13 Vega Grieshaber Kg Horn antenna for a radar device
US6661389B2 (en) 2000-11-20 2003-12-09 Vega Grieshaber Kg Horn antenna for a radar device
JP3893305B2 (en) * 2002-04-09 2007-03-14 アルプス電気株式会社 Primary radiator
JP4084299B2 (en) * 2003-12-26 2008-04-30 シャープ株式会社 Feed horn, radio wave receiving converter and antenna
DE102008015409B4 (en) * 2008-03-20 2015-07-30 KROHNE Meßtechnik GmbH & Co. KG Dielectric horn antenna

Also Published As

Publication number Publication date
EP2592695A3 (en) 2013-07-17
EP2592695A2 (en) 2013-05-15
US8354970B2 (en) 2013-01-15
CN101944658B (en) 2013-12-18
EP2840653A1 (en) 2015-02-25
DE102009022511A1 (en) 2010-12-02
EP2592693A3 (en) 2013-07-17
EP2262059A2 (en) 2010-12-15
US20100295745A1 (en) 2010-11-25
EP2592695B1 (en) 2014-10-29
EP2592694A3 (en) 2013-07-17
EP2840653B1 (en) 2015-10-21
EP2592694A2 (en) 2013-05-15
EP2592693A2 (en) 2013-05-15
DE102009022511B4 (en) 2015-01-08
EP2592694B1 (en) 2014-11-19
CN101944658A (en) 2011-01-12
EP2262059A3 (en) 2011-03-30
EP2592693B1 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
EP2262059B1 (en) Dielectric antenna
EP2830156B1 (en) Waveguide radiator, group antenna radiator and synthetic aperture radar radiator
DE19982430B4 (en) Aperture antenna and method for feeding electric power into an aperture antenna
EP1881551A1 (en) Wave guide manifold
EP3533110B1 (en) Dual-polarized horn radiator
DE10359622A1 (en) Antenna with at least one dipole or a dipole-like radiator arrangement
DE1766436A1 (en) Broad beam horn for parabolic antennas
EP2105991B1 (en) Dielectric horn antenna
EP2100348B1 (en) Waveguide radiator, especially for synthetic aperture radar systems
DE69015460T2 (en) Nested arrangement of horns.
EP2161552B1 (en) Waveguide and horn antenna
DE3688086T2 (en) FUNNEL RADIATOR FOR CIRCULAR POLARIZED WAVES.
EP0933833B1 (en) Waveguide radiator
EP2553757A1 (en) Coaxial conductor structure
WO2018188687A1 (en) Broad-band slot antenna covered on the rear side, and antenna group comprising same
DE1043425B (en) Antenna feeder
DE2551545A1 (en) Cassegrain aerial for very short wavelengths - has horn exciter with circular cross:section and ring: shaped ribs one quarter wavelength deep
DE102009034429A1 (en) Flat antenna e.g. parabolic antenna, for receiving high-definition TV signal, has dielectric tube emitter whose diameter is less than diameter of grooves and bar, so that emitter is arranged within grooves and bar in horn emitter
EP1043797B1 (en) Exciter or feeder for a satellite antenna
DE1616745C (en) Antenna arrangement with at least one group of mutually parallel dipoles strahier
DE1303784B (en) HORN BEAM
DE1947120A1 (en) Antenna for the emission of electromagnetic waves, especially microwaves

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20120119

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 607802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010002908

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20130417

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130728

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

BERE Be: lapsed

Owner name: KROHNE MESSTECHNIK G.M.B.H.

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

26N No opposition filed

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010002908

Country of ref document: DE

Effective date: 20140120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100511

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130511

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 607802

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150511

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130417

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230523

Year of fee payment: 14

Ref country code: IT

Payment date: 20230526

Year of fee payment: 14

Ref country code: FR

Payment date: 20230526

Year of fee payment: 14

Ref country code: CH

Payment date: 20230605

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230720

Year of fee payment: 14