JP3893305B2 - Primary radiator - Google Patents

Primary radiator Download PDF

Info

Publication number
JP3893305B2
JP3893305B2 JP2002106582A JP2002106582A JP3893305B2 JP 3893305 B2 JP3893305 B2 JP 3893305B2 JP 2002106582 A JP2002106582 A JP 2002106582A JP 2002106582 A JP2002106582 A JP 2002106582A JP 3893305 B2 JP3893305 B2 JP 3893305B2
Authority
JP
Japan
Prior art keywords
waveguide
radiating portion
dielectric feeder
primary radiator
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002106582A
Other languages
Japanese (ja)
Other versions
JP2003304116A (en
Inventor
桂一郎 佐藤
祐二 大内
修司 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2002106582A priority Critical patent/JP3893305B2/en
Publication of JP2003304116A publication Critical patent/JP2003304116A/en
Application granted granted Critical
Publication of JP3893305B2 publication Critical patent/JP3893305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衛星放送反射式アンテナ等に備えられる一次放射器に係り、特に、導波管の開口端に誘電体フィーダを保持した一次放射器に関する。
【0002】
【従来の技術】
図5は従来の誘電体フィーダを使用した一次放射器の断面図であり、この一次放射器は、一端が開口され他端を閉塞面1aとした導波管1と、この導波管1の開口端に保持された誘電体フィーダ2と具備している。導波管1の内部には第1プローブ3と第2プローブ4が互いに直交するように設置されており、これらプローブ3,4と閉塞面1aとは管内波長λの約λ/4だけ離れている。誘電体フィーダ2はポリエチレン等の比較的誘電率の高い合成樹脂で成形されており、保持部2aを境にして放射部2bとインピーダンス変換部2cとが一体形成されている。保持部2aの外径は導波管1の内径とほぼ同じであり、この保持部2aを導波管1の開口端内面に圧入することにより、誘電体フィーダ2は導波管1の開口端に固定されている。放射部2bとインピーダンス変換部2cはいずれも円錐形状とされており、放射部2bは導波管1の開口端から外部へ突出し、インピーダンス変換部2cは導波管1の内部へ延びている。
【0003】
このように構成された一次放射器は、衛星放送反射式アンテナの反射鏡の焦点位置に設置されて使用されるが、この場合、衛星から送信された電波は放射部2bから誘電体フィーダ2に収束され、誘電体フィーダ2のインピーダンス変換部2cでインピーダンス整合されて導波管1内に進入する。そして、導波管1に入力した水平偏波と垂直偏波からなる直線偏波のうち、例えば水平偏波は第1プローブ3で、垂直偏波は第2プローブ4でそれぞれ検出された後、図示せぬコンバータ回路でIF周波数信号に周波数変換されて出力される。
【0004】
【発明が解決しようとする課題】
前述の如く構成された従来の一次放射器は、導波管1の開口端に放射部2bを有する誘電体フィーダ2が保持されているので、導波管の開口端をラッパ状に広げて電波を導入するようにした円錐ホーン型の一次放射器に比べると、径方向の寸法を小さくできるという利点や、導波管の形状を単純化できるという利点がある。しかしながら、誘電体フィーダ2は合成樹脂を射出成形することで形成されるため、溶融樹脂の冷却過程で誘電体フィーダ2の内部に不規則な空洞が発生することがあり、その結果、誘電体フィーダ2内を進行する電波が空洞で不所望に反射し、誘電体フィーダ2の特性を劣化させるという問題があった。特に、合成樹脂材料として安価で誘電正接の低いポリエチレンを採用した場合、射出成形後の収縮が大きく空洞の発生も顕著になるため、誘電体フィーダ2の特性が大幅に劣化してしまい、電波の受信効率が低下するという問題があった。
【0005】
本発明は、このような従来技術の実情に鑑みてなされたもので、その目的は、誘電体フィーダの内部に発生する空洞を抑制して性能の安定化が図れる一次放射器を提供することにある。
【0006】
【課題を解決するための手段】
上記した目的を達成するために、本発明の一次放射器では、一端に電波の導入用開口を有する導波管と、この導波管の内壁面から中心軸方向へ突出するプローブと、前記導波管に保持された合成樹脂製の誘電体フィーダとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と該導波管の内部に固定される保持部とを設け、前記放射部の端面に約λ/4の深さを有する複数の環状溝を同心円状に設けると共に、前記環状溝の内底面に約(2n+1)λ/4の深さ(ただしnは自然数、λは電波の自由空間波長)の有底孔を複数設け、かつ、前記各有底孔を前記放射部の原点を中心として直交する2直線上に配列し、これら2直線を前記プローブに対してそれぞれ略45度の角度で交差させた。
【0007】
このように構成された一次放射器においては、合成樹脂で成形した誘電体フィーダの放射部の端面に電波波長の約λ/4の深さを有する複数の環状溝と約(2n+1)λ/4の深さを有する複数の有底孔とが設けてあり、これら各有底孔によって誘電体フィーダの内部の体積(容積)が減じられるため、誘電体フィーダの内部に発生する空洞を抑制することができると共に、各有底孔がプローブの検出に悪影響を及ぼすことを防止でき、しかも、放射部の端面と環状溝の底面で反射した電波の位相がキャンセルされるだけでなく、放射部の端面と有底孔の底面で反射した電波の位相キャンセルされるため、誘電体フィーダの特性を維持して一次放射器の性能を安定化することができる。
【0008】
上記の構成において各有底孔を放射部の中心から等距離の位置に配列すると、各有底孔を電界強度が最も大きい中心から離れた位置に配列できるため、各有底孔に起因する受信効率の低下を確実に防止できる。
【0010】
【発明の実施の形態】
以下、発明の実施の形態について図面を参照して説明すると、図1は本発明の実施形態例に係る一次放射器の断面図、図2は図1のII−II線に沿う断面図、図3は図1のIII−III線矢視図、図4は該一次放射器に備えられる誘電体フィーダの説明図である。
【0011】
これらの図に示すように、本実施形態例に係る一次放射器は、一端が開口され他端を閉塞面10aとした断面方形の導波管10と、この導波管10の開口端に保持された誘電体フィーダ11と具備しており、導波管10の内部には第1プローブ12と第2プローブ13が互いに直交するように設置されている。これらプローブ12,13と閉塞面10aとの距離は管内波長λの約λ/4分だけ離れており、両プローブ12,13は図示せぬコンバータ回路に接続されている。
【0012】
誘電体フィーダ11は誘電材料からなる合成樹脂で成形されており、本実施形態例の場合は、価格の点を考慮して安価で誘電正接の低いポリエチレン(誘電率ε=2.25)が用いられている。この誘電体フィーダ11は、導波管10の内部に挿入される保持部11aと、導波管10の開口端から外部にラッパ状に広がる放射部11bとで構成されており、保持部11aの内部にはインピーダンス変換部として機能する段付き孔14が形成されている。保持部11aは四角柱状に形成されており、その各外表面を導波管10の開口端内面に圧入することにより、誘電体フィーダ11は導波管1の開口端に固定されている。なお、保持部11aの各外表面から放射部11bの周面に向かって凹部15が形成されており、この凹部15によって誘電体フィーダ11の外表面と導波管10の開口端内面との間に間隙16が画成されている(図1参照)。この間隙16の深さは誘電体フィーダ11内を伝播する電波波長λεの約1/4波長に設定されている。
【0013】
一方、放射部11bの端面には複数の環状溝17が同心円状に形成されており、各環状溝17の深さは空気中を伝播する電波の自由空間波長λの約1/4波長に設定されている。さらに、放射部11bの端面には複数の有底孔18が形成されており、これら有底孔18は放射部11bの中心から等距離にある同一の環状溝17の内底面に形成されている。放射部11bの端面からの各有底孔18の深さは自由空間波長λの約(2n+1)/4に設定されており、本実施形態例の場合はn=1であり、各有底孔18の深さは約3λ/4に設定されている。図3に示すように、各有底孔18は放射部11bの中心を原点として直交する2直線P,Q上に配列されており、これら直線P,Qは両プローブ12,13に対してそれぞれ略45度の角度で交差している。
【0014】
次に、このように構成された一次放射器の動作について説明する。
【0015】
衛星から送信された電波は、衛星放送反射式アンテナの反射鏡で集められて一次放射器に至り、放射部11bから誘電体フィーダ11の内部に進入して収束される。その際、放射部11bの端面には約λ/4波長の深さを有する環状溝17と約3λ/4波長の深さを有する有底孔18とが形成されているため、放射部11bの端面と環状溝17の底面で反射した電波の位相がキャンセルされると共に、放射部11bの端面と有底孔18の底面で反射した電波の位相もキャンセルされる。これにより、放射部11bに向かう電波の反射成分がほとんどなくなり、電波を効率良く誘電体フィーダ11に収束させることができる。
【0016】
放射部11bの端面から進入した電波は誘電体フィーダ11内を伝播して保持部11aに至り、保持部11a内の段付き孔14でインピーダンス整合されて導波管10の内部に進入する。そして、導波管10に入力した水平偏波と垂直偏波からなる直線偏波のうち、例えば水平偏波を第1プローブ12に結合させ、垂直偏波を第2プローブ13に結合させ、これらプローブ12,13からの受信信号を図示せぬコンバータ回路でIF周波数信号に周波数変換することにより、衛星から送信された電波を受信することができる。その際、誘電体フィーダ11の外表面と導波管10の開口端内面との間に約λε/4波長の深さを有する間隙16が画成されているため、間隙16の開放端と底面との間を流れる互いに逆向きの表面電流の位相が逆転してキャンセルされる。その結果、放射パターンのサイドローブが大幅に低減されてメインローブのゲインが高まり、この点からも衛星からの電波を効率良く受信できる。
【0017】
上記実施形態例にあっては、合成樹脂で射出成形された誘電体フィーダ11の放射部11bの端面に複数の有底孔18を形成したので、各有底孔18によって誘電体フィーダ11の内部の体積(容積)が減じられ、特に、射出成形後の収縮が大きいポリエチレンを合成樹脂材料として用いたにも拘わらず、誘電体フィーダ11の内部に発生する空洞を抑制することができる。また、各有底孔18の放射部11bの端面からの深さが空気中を伝播する電波の自由空間波長λの約3/4波長に設定されているので、放射部11bの端面と有底孔18の底面で反射した電波の位相がキャンセルされ、しかも、各有底孔18は両プローブ12,13に対してそれぞれ略45度の角度で交差する直交2直線P,Q上に配列されているので、各有底孔18を設けることに起因する特性の劣化を防止でき、一次放射器の性能を安定化することができる。
【0018】
なお、上記実施形態例では、衛星から送信された直線偏波を受信する一次放射器について説明したが、本発明は円偏波受信用の一次放射器にも適用可能であり、この場合は、誘電体フィーダに円偏波を直線偏波に変換する位相変換部を一体成形すれば良い。
【0019】
また、上記実施形態例では、断面形状が方形の導波管を用いた場合について説明したが、断面円形等の他形状の導波管を用いても良いことはいうまでもない。
【0020】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0021】
合成樹脂で成形した誘電体フィーダに導波管の開口端から突出する放射部と該導波管の内部に固定される保持部とを設け、放射部の端面に約λ/4の深さを有する複数の環状溝を同心円状に設けると共に、環状溝の内底面に約(2n+1)λ/4の深さ(ただしnは自然数、λは電波の自由空間波長)の有底孔を複数設け、かつ、各有底孔を放射部の原点を中心として直交する2直線上に配列し、これら2直線をプローブに対してそれぞれ略45度の角度で交差させると、各有底孔によって誘電体フィーダの内部の体積(容積)が減じられるため、誘電体フィーダの内部に発生する空洞を抑制することができると共に、各有底孔がプローブの検出に悪影響を及ぼすことを防止でき、しかも、放射部の端面と環状溝の底面で反射した電波の位相がキャンセルされるだけでなく、放射部の端面と有底孔の底面で反射した電波の位相キャンセルされるため、誘電体フィーダの特性を維持して一次放射器の性能を安定化することができる。
【図面の簡単な説明】
【図1】本発明の実施形態例に係る一次放射器の断面図である。
【図2】図1のII−II線に沿う断面図である。
【図3】図1のIII−III線矢視図である。
【図4】該一次放射器に備えられる誘電体フィーダの説明図である。
【図5】従来例に係る一次放射器の断面図である。
【符号の説明】
10 導波管
10a 閉塞面
11 誘電体フィーダ
11a 保持部
11b 放射部
12 第1プローブ
13 第2プローブ
14 段付き孔
17 環状溝
18 有底孔
P,Q 直線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a primary radiator provided in a satellite broadcast reflection antenna or the like, and more particularly to a primary radiator having a dielectric feeder held at an open end of a waveguide.
[0002]
[Prior art]
FIG. 5 is a cross-sectional view of a primary radiator using a conventional dielectric feeder. The primary radiator includes a waveguide 1 having an opening at one end and a closed surface 1a at the other end, and the waveguide 1 A dielectric feeder 2 held at the open end is provided. Inside the waveguide 1 is installed such that the first probe 3 and the second probe 4 are orthogonal to each other, by about lambda 1/4 of the guide wavelength lambda 1 these probes 3, 4 and the closed surface 1a is seperated. The dielectric feeder 2 is formed of a synthetic resin having a relatively high dielectric constant such as polyethylene, and the radiating portion 2b and the impedance converting portion 2c are integrally formed with the holding portion 2a as a boundary. The outer diameter of the holding portion 2 a is substantially the same as the inner diameter of the waveguide 1. By pressing the holding portion 2 a into the inner surface of the opening end of the waveguide 1, the dielectric feeder 2 can open the opening end of the waveguide 1. It is fixed to. The radiating portion 2 b and the impedance converting portion 2 c are both conical, the radiating portion 2 b protrudes from the open end of the waveguide 1, and the impedance converting portion 2 c extends to the inside of the waveguide 1.
[0003]
The primary radiator configured as described above is used by being installed at the focal position of the reflector of the satellite broadcast reflection antenna. In this case, the radio wave transmitted from the satellite is transmitted from the radiating unit 2b to the dielectric feeder 2. After being converged, the impedance is matched by the impedance converter 2 c of the dielectric feeder 2 and enters the waveguide 1. Then, among the linearly polarized waves composed of the horizontally polarized waves and the vertically polarized waves inputted to the waveguide 1, for example, the horizontally polarized waves are detected by the first probe 3 and the vertically polarized waves are detected by the second probe 4. The signal is converted into an IF frequency signal by a converter circuit (not shown) and output.
[0004]
[Problems to be solved by the invention]
In the conventional primary radiator configured as described above, since the dielectric feeder 2 having the radiating portion 2b is held at the opening end of the waveguide 1, the opening end of the waveguide is widened in a trumpet shape. Compared with the conical horn type primary radiator in which the horn is introduced, there are advantages that the radial dimension can be reduced and that the shape of the waveguide can be simplified. However, since the dielectric feeder 2 is formed by injection molding a synthetic resin, irregular cavities may be generated inside the dielectric feeder 2 during the cooling process of the molten resin, and as a result, the dielectric feeder. There is a problem in that the radio wave traveling in 2 is undesirably reflected in the cavity and the characteristics of the dielectric feeder 2 are deteriorated. In particular, when polyethylene, which is inexpensive and has a low dielectric loss tangent, is used as the synthetic resin material, the shrinkage after injection molding is large and the generation of cavities becomes significant. There was a problem that the reception efficiency was lowered.
[0005]
The present invention has been made in view of the actual situation of the prior art, and an object of the present invention is to provide a primary radiator capable of suppressing the cavities generated inside the dielectric feeder and stabilizing the performance. is there.
[0006]
[Means for Solving the Problems]
In order to achieve the above-described object, in the primary radiator of the present invention, a waveguide having an opening for introducing a radio wave at one end, a probe projecting from the inner wall surface of the waveguide toward the central axis, and the waveguide A dielectric feeder made of synthetic resin held by the wave tube, and the dielectric feeder is provided with a radiating portion protruding from the opening end of the waveguide and a holding portion fixed inside the waveguide A plurality of annular grooves having a depth of about λ / 4 are provided concentrically on the end face of the radiating portion, and a depth of about (2n + 1) λ / 4 is provided on the inner bottom surface of the annular groove (where n is a natural number, λ is a plurality of bottomed holes with a free-space wavelength of radio waves) , and each of the bottomed holes is arranged on two straight lines orthogonal to the origin of the radiating portion, and these two straight lines are arranged with respect to the probe. Each crossed at an angle of approximately 45 degrees.
[0007]
In the primary radiator configured as described above, a plurality of annular grooves having a depth of about λ / 4 of the radio wave wavelength and about (2n + 1) λ / 4 are formed on the end face of the radiating portion of the dielectric feeder formed of synthetic resin. A plurality of bottomed holes having a depth of 2 mm, and the volume (volume) of the inside of the dielectric feeder is reduced by each of the bottomed holes, so that a cavity generated inside the dielectric feeder is suppressed. can be Rutotomoni, each bottomed hole can be prevented from adversely affecting the detection of the probe, moreover, not only the reflected wave of the phase is canceled at the bottom end face and the annular groove of the radiating portion, the radiating portion because radio wave phase that is reflected by the bottom surface of the end face and the bottomed hole is also canceled, it is possible to stabilize the performance of the primary radiator to maintain the characteristics of the dielectric feeder.
[0008]
In the above configuration, if each bottomed hole is arranged at a position equidistant from the center of the radiating portion, each bottomed hole can be arranged at a position away from the center where the electric field strength is the largest, and therefore, the bottomed hole is caused by A decrease in reception efficiency can be reliably prevented.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
1 is a sectional view of a primary radiator according to an embodiment of the present invention. FIG. 2 is a sectional view taken along line II-II in FIG. 3 is a view taken along the line III-III in FIG. 1, and FIG. 4 is an explanatory view of a dielectric feeder provided in the primary radiator.
[0011]
As shown in these figures, the primary radiator according to the present embodiment is held at the open end of the waveguide 10 having a rectangular cross section with one end opened and the other end closed surface 10a. The first probe 12 and the second probe 13 are installed inside the waveguide 10 so as to be orthogonal to each other. Distance of these probes 12, 13 and the closing surface 10a is spaced by approximately lambda 1/4 min guide wavelength lambda 1, both probes 12 and 13 are connected to a not shown converter circuit.
[0012]
The dielectric feeder 11 is formed of a synthetic resin made of a dielectric material. In the case of this embodiment, polyethylene (dielectric constant ε = 2.25) that is inexpensive and has a low dielectric loss tangent is used in consideration of cost. It has been. The dielectric feeder 11 includes a holding portion 11a inserted into the waveguide 10 and a radiating portion 11b extending outward from the opening end of the waveguide 10 in a trumpet shape. A stepped hole 14 that functions as an impedance converter is formed inside. The holding portion 11 a is formed in a quadrangular prism shape, and the dielectric feeder 11 is fixed to the opening end of the waveguide 1 by press-fitting each outer surface thereof to the inner surface of the opening end of the waveguide 10. A concave portion 15 is formed from each outer surface of the holding portion 11 a toward the peripheral surface of the radiating portion 11 b, and the concave portion 15 provides a gap between the outer surface of the dielectric feeder 11 and the inner surface of the open end of the waveguide 10. A gap 16 is defined (see FIG. 1). The depth of the gap 16 is set to about ¼ wavelength of the radio wave wavelength λε propagating in the dielectric feeder 11.
[0013]
On the other hand, a plurality of annular grooves 17 are formed concentrically on the end face of the radiating portion 11b, and the depth of each annular groove 17 is set to about ¼ wavelength of the free space wavelength λ of the radio wave propagating in the air. Has been. Further, a plurality of bottomed holes 18 are formed on the end face of the radiating portion 11b, and these bottomed holes 18 are formed on the inner bottom surface of the same annular groove 17 that is equidistant from the center of the radiating portion 11b. . The depth of each bottomed hole 18 from the end face of the radiating portion 11b is set to about (2n + 1) / 4 of the free space wavelength λ. In this embodiment, n = 1, and each bottomed hole The depth of 18 is set to about 3λ / 4. As shown in FIG. 3, the bottomed holes 18 are arranged on two straight lines P and Q orthogonal to each other with the center of the radiating portion 11 b as the origin, and these straight lines P and Q are respectively connected to the probes 12 and 13. It intersects at an angle of approximately 45 degrees.
[0014]
Next, the operation of the primary radiator configured as described above will be described.
[0015]
The radio waves transmitted from the satellite are collected by the reflecting mirror of the satellite broadcast reflection antenna, reach the primary radiator, enter the inside of the dielectric feeder 11 from the radiating portion 11b, and are converged. At this time, since the annular groove 17 having a depth of about λ / 4 wavelength and the bottomed hole 18 having a depth of about 3λ / 4 wavelength are formed on the end face of the radiating portion 11b, The phase of the radio wave reflected by the end surface and the bottom surface of the annular groove 17 is canceled, and the phase of the radio wave reflected by the end surface of the radiating portion 11b and the bottom surface of the bottomed hole 18 is also canceled. Thereby, there is almost no reflection component of the radio wave toward the radiating portion 11b, and the radio wave can be efficiently converged on the dielectric feeder 11.
[0016]
The radio wave entering from the end face of the radiating portion 11b propagates through the dielectric feeder 11 to reach the holding portion 11a, and is impedance matched at the stepped hole 14 in the holding portion 11a and enters the inside of the waveguide 10. Of the linearly polarized waves composed of the horizontally polarized waves and the vertically polarized waves inputted to the waveguide 10, for example, horizontally polarized waves are coupled to the first probe 12, and vertically polarized waves are coupled to the second probe 13, and these By converting the received signals from the probes 12 and 13 into IF frequency signals by a converter circuit (not shown), radio waves transmitted from the satellite can be received. At this time, a gap 16 having a depth of about λε / 4 wavelength is defined between the outer surface of the dielectric feeder 11 and the inner surface of the open end of the waveguide 10. The phases of the surface currents flowing in the opposite directions are reversed and canceled. As a result, the side lobes of the radiation pattern are significantly reduced, and the gain of the main lobe is increased. From this point also, radio waves from the satellite can be received efficiently.
[0017]
In the above embodiment example, since the plurality of bottomed holes 18 are formed in the end face of the radiating portion 11b of the dielectric feeder 11 that is injection-molded with a synthetic resin, the inside of the dielectric feeder 11 is formed by each bottomed hole 18. In particular, it is possible to suppress cavities generated in the dielectric feeder 11 even though polyethylene having a large shrinkage after injection molding is used as a synthetic resin material. Further, since the depth of each bottomed hole 18 from the end face of the radiating portion 11b is set to about ¾ wavelength of the free space wavelength λ of the radio wave propagating in the air, the end face of the radiating portion 11b and the bottomed end The phase of the radio wave reflected from the bottom surface of the hole 18 is canceled, and the bottomed holes 18 are arranged on two orthogonal straight lines P and Q that intersect the probes 12 and 13 at an angle of approximately 45 degrees. Therefore, it is possible to prevent the deterioration of characteristics due to the provision of the bottomed holes 18 and to stabilize the performance of the primary radiator.
[0018]
In the above embodiment, the primary radiator that receives linearly polarized waves transmitted from a satellite has been described.However, the present invention can also be applied to a primary radiator for receiving circularly polarized waves. A phase converter that converts circularly polarized light into linearly polarized light may be integrally formed in the dielectric feeder.
[0019]
In the above-described embodiment, the case where a waveguide having a square cross section is used has been described. However, it is needless to say that a waveguide having another shape such as a circular cross section may be used.
[0020]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0021]
A dielectric feeder formed of a synthetic resin is provided with a radiating portion protruding from the open end of the waveguide and a holding portion fixed inside the waveguide, and a depth of about λ / 4 is formed on the end surface of the radiating portion. a plurality of annular grooves having provided with concentrically about the inner bottom surface of the annular groove (2n + 1) λ / 4 in depth (n is a natural number, lambda is the free space wavelength of the radio waves) provide a plurality of bottomed holes in, And each bottomed hole is arranged on two straight lines orthogonal to the origin of the radiating portion, and when these two straight lines intersect each other at an angle of about 45 degrees with respect to the probe, each bottomed hole causes the dielectric feeder to for internal volume (volume) is reduced, it is possible to prevent the Rutotomoni can suppress cavity generated inside the dielectric feeder, the respective bottomed holes adversely affect the detection of the probe, moreover, radiation The phase of the radio wave reflected from the end face of the section and the bottom face of the annular groove Not only Yanseru, since the radio wave phase that is reflected by the bottom surface of the end face of the radiating portion and the bottomed hole is also canceled, it is possible to stabilize the performance of the primary radiator to maintain the characteristics of the dielectric feeder .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a primary radiator according to an example embodiment of the present invention.
2 is a cross-sectional view taken along line II-II in FIG.
FIG. 3 is a view taken along the line III-III in FIG. 1;
FIG. 4 is an explanatory diagram of a dielectric feeder provided in the primary radiator.
FIG. 5 is a cross-sectional view of a primary radiator according to a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Waveguide 10a Blocking surface 11 Dielectric feeder 11a Holding part 11b Radiation part 12 First probe 13 Second probe 14 Stepped hole 17 Annular groove 18 Bottomed holes P, Q Straight line

Claims (2)

一端に電波の導入用開口を有する導波管と、この導波管の内壁面から中心軸方向へ突出するプローブと、前記導波管に保持された合成樹脂製の誘電体フィーダとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と該導波管の内部に固定される保持部とを設け、前記放射部の端面に約λ/4の深さを有する複数の環状溝を同心円状に設けると共に、前記環状溝の内底面に約(2n+1)λ/4の深さ(ただしnは自然数、λは電波の自由空間波長)の有底孔を複数設け、かつ、前記各有底孔を前記放射部の原点を中心として直交する2直線上に配列し、これら2直線を前記プローブに対してそれぞれ略45度の角度で交差させたことを特徴とする一次放射器。A waveguide having an opening for introducing a radio wave at one end, a probe protruding in the direction of the central axis from the inner wall surface of the waveguide, and a dielectric feeder made of synthetic resin held in the waveguide, The dielectric feeder is provided with a radiating portion protruding from the open end of the waveguide and a holding portion fixed inside the waveguide, and a plurality of depths of about λ / 4 are formed on the end surface of the radiating portion. And a plurality of bottomed holes having a depth of about (2n + 1) λ / 4 (where n is a natural number and λ is a free space wavelength of radio waves) on the inner bottom surface of the annular groove , and Each of the bottomed holes is arranged on two straight lines orthogonal to the origin of the radiating portion, and these two straight lines intersect with the probe at an angle of approximately 45 degrees, respectively. vessel. 請求項1の記載において、前記各有底孔を前記放射部の中心から等距離の位置に配列したことを特徴とする一次放射器。2. The primary radiator according to claim 1, wherein each of the bottomed holes is arranged at a position equidistant from the center of the radiating portion.
JP2002106582A 2002-04-09 2002-04-09 Primary radiator Expired - Fee Related JP3893305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002106582A JP3893305B2 (en) 2002-04-09 2002-04-09 Primary radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002106582A JP3893305B2 (en) 2002-04-09 2002-04-09 Primary radiator

Publications (2)

Publication Number Publication Date
JP2003304116A JP2003304116A (en) 2003-10-24
JP3893305B2 true JP3893305B2 (en) 2007-03-14

Family

ID=29390862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002106582A Expired - Fee Related JP3893305B2 (en) 2002-04-09 2002-04-09 Primary radiator

Country Status (1)

Country Link
JP (1) JP3893305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4084299B2 (en) 2003-12-26 2008-04-30 シャープ株式会社 Feed horn, radio wave receiving converter and antenna
DE102009022511B4 (en) * 2009-05-25 2015-01-08 KROHNE Meßtechnik GmbH & Co. KG Dielectric antenna
US10714827B2 (en) * 2017-02-02 2020-07-14 The Boeing Company Spherical dielectric lens side-lobe suppression implemented through reducing spherical aberration

Also Published As

Publication number Publication date
JP2003304116A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
JP3692273B2 (en) Primary radiator
JP2001053537A (en) Primary radiator
US6501432B2 (en) Primary radiator capable of achieving both low reflection and low loss
US6717553B2 (en) Primary radiator having excellent assembly workability
JP3893305B2 (en) Primary radiator
KR20010095156A (en) Primary radiator to enhance receiving efficiency by reducing side lobe
KR0143376B1 (en) Circular-to-linear polarized wave transducer integrated with a horn
JP3668649B2 (en) Primary radiator
JPH10256822A (en) Two-frequency sharing primary radiator
JP2006166301A (en) Feed horn, converter for electric wave reception and antenna
JP2001284950A (en) Primary radiator
US6445356B1 (en) Primary radiator having reduced side lobe
JP3995224B2 (en) Method for manufacturing circularly polarized wave receiving converter
JP3781943B2 (en) Primary radiator
JP3805948B2 (en) Primary radiator
JP4507349B2 (en) Circular / linear polarization converter
JP2004254180A (en) Primary radiator
JP2002232216A (en) Converter for satellite broadcasting reception
JP2002252519A (en) Primary radiator
JP2001085933A (en) Primary radiator
JP4053928B2 (en) Circular-rectangular waveguide converter, demultiplexer for orthogonal polarization separation, primary radiator, feeder and antenna
KR101874741B1 (en) Feed horn assembly of small parabolic antenna for multimode monopulse using tm01 mode coupler
JP2001068921A (en) Primary radiator
JP3362292B2 (en) Primary radiator
JP2001102853A (en) Primary radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees