JP3362292B2 - Primary radiator - Google Patents

Primary radiator

Info

Publication number
JP3362292B2
JP3362292B2 JP30344593A JP30344593A JP3362292B2 JP 3362292 B2 JP3362292 B2 JP 3362292B2 JP 30344593 A JP30344593 A JP 30344593A JP 30344593 A JP30344593 A JP 30344593A JP 3362292 B2 JP3362292 B2 JP 3362292B2
Authority
JP
Japan
Prior art keywords
matching
waveguide
phase difference
difference plate
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30344593A
Other languages
Japanese (ja)
Other versions
JPH07131232A (en
Inventor
親彦 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP30344593A priority Critical patent/JP3362292B2/en
Publication of JPH07131232A publication Critical patent/JPH07131232A/en
Application granted granted Critical
Publication of JP3362292B2 publication Critical patent/JP3362292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Aerials With Secondary Devices (AREA)
  • Waveguide Aerials (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はパラボラアンテナにおい
て、パラボラ反射鏡で反射され収束されてきた円偏波の
電波を受け入れ、それを直線偏波に変換し、更に同軸モ
ードの信号にする為に用いられる一次放射器に関する。 【0002】 【従来の技術】従来の一次放射器は例えば図5に示され
るように構成されている。即ち、パラボラ反射鏡により
反射され収束してきた円偏波の電波を受け入れる為に、
パラボラ反射鏡の開口角に対応する開口径と、受け入れ
る電波の波長の1/4の長さを有している電磁ホーン11
fと、上記電磁ホーン11fと同軸導波管変換器22fとのイ
ンピーダンス整合を行う為の整合用導波管17fと、導波
管モードの電波を同軸モードの信号に変換する為の同軸
導波管変換器22fとを順に連設し、上記整合用導波管17f
内には、円偏波の電波を直線偏波の電波に変換する為の
位相差板30fを備えさせている。 【0003】このような一次放射器では、電磁ホーン11
fが、上記のような大きさを持っているので、パラボラ
反射鏡により反射され収束されてきた円偏波の電波をス
ムーズに受け入れることが出来、受け入れた電波は整合
用導波管17fを通すことにより整合性良く、しかも整合
用導波管17fを通す過程で位相差板30fにより直線偏波の
電波に変換して同軸導波管変換器22fに送ることが出
来、従って同軸導波管変換器22fでは効率よく同軸モー
ドの信号を得ることが出来る。 【0004】 【発明が解決しようとする課題】しかし上記の一次放射
器では整合用導波管内に位相差板30fを備えさせている
為、整合用導波管17fの長さは、電磁ホーン11fと同軸導
波管変換器22fとのインピーダンス整合に必要な長さだ
けでなく、位相差板30fを収容するに足る長さL2fを必要
とする。このことは、一次放射器全体6fの長さを、上記
整合用導波管17fにおいて上記位相差板30fを収容するに
必要な長さの分だけ長くする問題点がある。一次放射器
6fがそのように長いと、パラボラアンテナにおいては該
一次放射器の支持構造を複雑化する(構造的に強度の高
いものを必要とする)問題点があった。又上記のように
一次放射器が大きいと、パラボラアンテナの使用中にお
ける風当たりが強くなって、強風時には該一次放射器を
支えるアームに揺れを生じ、しばしば一次放射器が反射
鏡の焦点からずれて受信画像が乱れる問題点があった。 【0005】本願発明は上記従来技術の問題点(技術的
課題)を解決する為になされたもので、電気的には良性
能を保持したままで外形形状を小型化した一次放射器を
提供することを目的としている。 【0006】 【課題を解決するための手段】本願発明における一次放
射器は、パラボラ反射鏡により反射され収束されてきた
円偏波の電波を受け入れる為に、パラボラ反射鏡の開口
角に対応する開口径と、受け入れる電波の波長の1/4
の長さを有している電磁ホーンと、上記電磁ホーンと同
軸導波管変換器とのインピーダンス整合を行う為の整合
用導波管と、導波管モードの電波を同軸モードの信号に
変換する為の同軸導波管変換器とを順に連設し、上記整
合用導波管には円偏波の電波を直線偏波の電波に変換す
る為の位相差板を装着している一次放射器において、上
記位相差板は、電磁ホーン内に位置させてインピーダン
ス整合を行う為の第1整合部と、整合用導波管17内に位
置させてインピーダンス整合を行う為の第2整合部と、
上記第1整合部と第2整合部との間に位置させて、円偏
波を直線偏波に変換する為の円直変換部とから構成され
ており、上記整合用導波管に対する上記位相差板の装着
は、整合用導波管内に上記第2整合部が位置し、電磁ホ
ーン内に上記第1整合部が整合用導波管から突出した状
態になるように位置を定め、上記位相差板における整合
用導波管内に位置する部分の両側を整合用導波管の内面
に接着剤で固定して上記位相差板を支持するようにした
ものである。 【0007】 【作用】パラボラ反射鏡により反射され収束してきた円
偏波の電波は、電磁ホーンに受け入れられる。受け入れ
られた電波は整合用導波管を通ることにより整合良く同
軸導波管変換器に送られる。その過程において、上記受
け入れられた円偏波の電波は、位相差板によって円偏波
が直線偏波に変換される。同軸導波管変換器に至った直
線偏波の電波は該同軸導波管変換器において同軸モード
の信号に変換される。 【0008】 【実施例】以下本願の実施例を示す図面について説明す
る。パラボラアンテナの使用状態を示す図1について説
明する。図1における1〜9は周知の構成を示すもの
で、1は支柱、2はパラボラアンテナ、3はパラボラア
ンテナ2を支柱1に仰角及び方位角の調整を自在に取付
ける為の取付具、4はパラボラアンテナ2におけるパラ
ボラ反射鏡、5は一次放射器6を反射鏡4の焦点位置に
支持すると共に、一次放射器6にコンバータ7が付随す
る場合それをも支持する為の支持アームである。8は一
次放射器6の開口部への雨水の浸入を防止するためにそ
の開口部を覆うキャップ例えば樹脂キャップの存在を示
し、9は一次放射器6及びコンバータ7の防水の為にそ
れらの外面を覆うカバー例えば樹脂製カバーの存在を示
す。 【0009】上記一次放射器6は、上記反射鏡で反射さ
れてその焦点位置に向け収束してくる円偏波の電波を受
け入れてそれを同軸モードの信号にする為のもので、以
下その詳細を示す図2から図4について説明する。11は
上記円偏波の電波を受け入れる為の電磁ホーンで、上記
パラボラ反射鏡4の鏡面での励振分布を均一に受信する
為に、上記パラボラ反射鏡4の開口角αに対応する開口
径D1を有していると共に、自由空間と導波管(次に述べ
る整合用導波管)とのインピーダンス整合を良好に行う
為に、内部の受入空間13に受け入れる電波の波長(受入
空間13での波長λg')の1/4の長さL1を有している。
上記開口径D1は、例えば放送衛星の12GHzの電波の
受信を行う一次放射器の場合、28.6mmであり、長
さL1は9.4mmである。該電磁ホーン11の内周面12は
上記インピーダンス整合を良好に行う為に滑らかなテー
パ面となっている。14は電磁ホーン11の開口端を示し、
後述の位相差板による円−直線偏波変換を効率よく行い
得るようにする為に、その中心位置に上記パラボラ反射
鏡4の焦点Fが来るようにしてある。15はパラボラアン
テナの指向性を改善する為のコルゲートチョークを示
す。該コルゲートチョーク15は2本以上であっても良
い。 【0010】次に17は上記電磁ホーン11と後述する同軸
導波管変換器22とのインピーダンス整合を行う為の整合
用導波管で、電磁ホーン11から入来する電波を円滑に次
段に導く為にその電波の周波数に対応した内径D2と、上
記インピーダンス整合を良好に行う為に、上記波長λg'
と該整合用導波管17内部の整合用空間19での波長λgと
の平均値の1/4の長さL2とを有している。上記内径D2
は例えば前記電波の受信用の場合17.475mmであ
り、長さL2は10.4mmである。20,20は内周面18の
一部に位相差板の装着の為に設けた装着溝を示す。次に
22は導波管モードの電波を同軸モードの信号に変換する
為の同軸導波管変換器を示す。23は該変換器22における
導波管で、上記変換の為に、後端が短絡面24で閉ざされ
ていると共に、上記内径D2と同じ寸法の内径D3と、内部
の変換用空間25での電波の波長λgの1/2の長さL3と
を有している。上記内径D3は内径D2よりもやや小さくて
導波管23にテーパがついていても良い。長さL3は例えば
前記電波の受信用の場合22.9mmである。26は同軸
モードの信号を取り出すためのプローブで、上記短絡面
24迄の距離L4が上記波長λgの1/4となる位置に設け
てある。該プローブ26における導波管23外の端は信号伝
達の為に前記コンバータ7における入力端に接続してい
る。該プローブ26は信号を円滑に伝達するために導電性
の良い金属材料例えば真鍮で形成すると良い。27はプロ
ーブ26を保持する為の部材で、プローブ26を導波管23に
対して絶縁状態で保持する為に絶縁材料製である。又こ
の部材27はプローブ26と共に同軸線路として動作する為
に、該一次放射器で取り扱う周波数において損失の少な
い材質のもの例えばフッ素樹脂製のものを用いると良
い。上記電磁ホーン11、整合用導波管17及び変換器22に
おける導波管23は、相互の位置関係を安定させる為に一
体に形成すると良い。又それらは、各々の内部の空間で
の電波の伝搬を良好ならしめる為に導電性の良好な材料
で形成すると良い。これらの材質及び形成方法の一例は
亜鉛ダイカストである。 【0011】次に30は円偏波の電波を直線偏波の電波に
変換する為の位相差板を示す。31は該位相差板30におい
て上記電磁ホーン11と位相差板30とのインピーダンス整
合を行う為の第1整合部を示し、上記整合作用を行う為
にその長さL11は、位相差板30の比誘電率をεrで表す
と、上記波長λg'の1/4に、1/√(εr)を乗じた
長さにしてある。例えば比誘電率εrが10の場合にお
いて、前記電波の受信用の場合3mmである。32は円偏
波を直線偏波に変換する為の円直変換部を示し、上記円
−直線偏波変換の為にその長さL12は、上記波長λg'の
1/4に、1/{√(εr)−1}を乗じた長さにして
ある。例えば前記の比誘電率で且つ前記の電波の受信用
の場合4.3mmである。33は位相差板30と整合用導波
管17とのインピーダンス整合を行う為の第2整合部を示
し、上記第1整合部31と円直変換部32とを合わせた部分
の長さよりも短く形成する為、上記波長λgの1/4
に、1/√(εr)を乗じた長さに形成してある。例え
ば前記の比誘電率で且つ前記の電波の受信用の場合3.
6mmである。上記のような位相差板30は、図3に明示
されるようにその長さの2分の1未満の部分を上記整合
用導波管17内に残して、2分の1余で且つ上記電磁ホー
ン11の長さの範囲内の部分を上記電磁ホーン11内に位置
させている。例えば本例では、第1整合部31と円直変換
部32とを合わせた部分の長さを電磁ホーン11の長さL1よ
りも短く形成してそれを電磁ホーン11内に位置させるこ
とにより、図3から明らかなように上記第1整合部31は
整合用導波管17から突出した状態で電磁ホーン13内に位
置する。第2整合部33は整合用導波管17内に位置させ
る。また図3に示される上記位相差板30における整合用
導波管17内に位置する部分の両側は、そこに固定する為
に、図示の如く両側端部を上記装着溝20に嵌合させ、固
定手段例えば接着剤で固定してある。円直変換部32と第
2整合部33との境界部を、本例よりも電磁ホーン11内の
側に寄せても或いは整合用導波管17内の側に寄せても良
い。第1整合部31及び第2整合部33はテーパー状或いは
切込を持った形状であっても良い。上記位相差板30は電
磁ホーン11及び整合用導波管17に対する上記のような関
係での配置を可能にする為に、高誘電率材料例えば比誘
電率εrが6以上である材料で形成する。一例は、ポリ
フェニレンオキサイド樹脂にセラミックを混合した材料
で形成され、その比誘電率は10.45である。その他
の材料としては、セラミック板や、セラミック或いはア
ルミナなどの粉を混入させた樹脂板を用いることが出来
る。位相差板30の厚みは、一次放射器の電気的性能の一
つである軸比を小さく例えば1dB以下とする為に薄く
例えば1.5mm以下にすると良く、その為にも上記の
ように比誘電率の大きい材料を用いると良い。ポリフェ
ニレンオキサイド樹脂にセラミックを混合した材料製の
場合、例えば0.78mmである。尚図2に示される位
相差板30とプローブ26のなす角度θは、変換された直線
偏波の電波をプローブ26に効率よく同軸モードで取り出
す為に例えば45゜にしてある。 【0012】上記構成のものにあっては、図1に符号41
で示されるように電波の送信源例えば放送衛星から到来
する円偏波の電波は、パラボラ反射鏡4で反射され、そ
の焦点Fに向け収束されてくる。収束されてきた電波は
電磁ホーン11の受入空間13に入り、そこを通って導波管
モードで整合用空間19に至る。上記円偏波の電波が受入
空間13から整合用空間19に至る過程においてその電波は
位相差板30によって直線偏波の電波に変換される。この
場合、第1整合部31の箇所を経て円直変換部32に至り更
に第2整合部33を経て整合用空間19に至るため、上記偏
波の変換は円滑であり、又インピーダンス整合も良好で
ある。直線偏波となった電波は整合用空間19から変換用
空間25へ至り、そこで周知の如く導波管モードから同軸
モードへの変換が行われ、同軸モードの信号がプローブ
26に取り出される。その信号は前記コンバータ7に至
り、そこで周波数変換されて出力端子7aから送出され
る。上記のように受信を行う場合、位相差板30の比誘電
率が高いのでその厚みを薄くすることが出来る。このこ
とにより上記円−直線偏波変換が効率よく行われる。こ
の為、軸比が改善され、逆方向の円偏波の電波例えば衛
星放送では韓国の衛星放送波からの妨害を受け難くする
ことが出来る。更に上記のように位相差板30を短く(L
11〜L13を加えた長さ)、薄くできると、導波管に占め
る誘電体(位相差板30)の割合が少なくなり、誘電体に
よる電波の通過損失を少なくできる。この為、パラボラ
アンテナに用いた場合、アンテナ効率、アンテナ雑音を
少なくすることが出来る。又位相差板30が薄いので位相
差板30による反射波が抑圧され、VSWRが良好とな
る。 【0013】 【発明の効果】以上のように本願発明にあっては、パラ
ボラ反射鏡4により反射され収束されてきた円偏波の電
波が到来する場合、電磁ホーン11はパラボラ反射鏡4の
開口角αに対応する開口径D1と、受け入れる電波の波長
λg'の1/4の長さとを有している為、上記円偏波の電
波をスムーズに受け入れることが出来、受け入れた電波
は整合用導波管17を通すことにより整合性良く、しかも
第1整合部31と円直変換部32と第2整合部33とから成る
位相差板30により円滑に直線偏波の電波に変換して同軸
導波管変換器22に送ることが出来、従って同軸導波管変
換器22では効率よく同軸モードの信号を得ることが出来
る効果がある。 【0014】しかも本願発明の一次放射器6にあって
は、上記位相差板30は、電磁ホーン11内に位置させてイ
ンピーダンス整合を行う為の第1整合部31と、整合用導
波管17内に位置させてインピーダンス整合を行う為の第
2整合部33と、上記第1整合部31と第2整合部33との間
に位置させて、円偏波を直線偏波に変換する為の円直変
換部32とから構成され、上記整合用導波管17に対する上
記位相差板30の装着は、整合用導波管17内に上記第2整
合部33が位置し、電磁ホーン13内に上記第1整合部31が
整合用導波管17から突出した状態になるように位置を定
め、上記位相差板30における整合用導波管17内に位置す
る部分の両側を整合用導波管の内面に接着剤で固定した
構成であるから、上記第2整合部33は、上記位相差板30
におけるほんの一部で、短小になり、整合用導波管17が
短くても、充分にそこへ納めることができ、整合用導波
管17は電磁ホーン11と同軸導波管変換器22との整合作用
に要求されるだけの短寸にすることの出来る特長があ
り、一次放射器6を短寸化させる上に効果がある。 【0015】その上、上記位相差板30における整合用導
波管17内に位置する部分の両側を整合用導波管の内面に
接着剤で固定する作業の場合、その接着すべき部分は、
上記第1整合部31が整合用導波管17から突出しており、
上記位相差板30における整合用導波管17内に位置する
残りの部分は、極めて短小で僅かになる。従って、そこ
の接着に用いられる接着剤の量は極めて僅かで足りる特
長がある。また、接着すべき部分は、図3、4から明ら
かなように整合用導波管17の先端開口部の側にあり、し
かもその開口部はラッパ状に広がっている電磁ホーン11
に連なっているので、作業着の指先は接着部に接近する
位置まで近付けて作業することの出来る特長がある。こ
のことは、少量の接着剤を用いて均等正確に接着するこ
とを可能とし、接着の信頼性を増す効果があるその上
に、誘電体である接着剤が少量で、かつ、均等にできる
ことにより、誘電率が均等となり、そこでの通過損失も
少なく、交差偏波特性に対する悪影響も減少せしめる効
果がある。さらに電波の通過損失については、整合用導
波管17に占める誘電体(位相差板30)の割合が少なく、
誘電体による電波の通過損失を少なくできる効果も伴
う。 【0016】上記整合用導波管17に対する上記位相差板
30の装着は、電磁ホーン13内に上記第1整合部31が整合
用導波管17から突出した状態になるように位置を定め、
上記位相差板30における整合用導波管17内に位置する残
りの部分の両側を整合用導波管の内面に接着剤で固定す
る構成であるから、一次放射器6の開口部に装着される
キャップの有無に関係なく、固定作業を行うことができ
る特長がある。このことは上記開口部に装着されるキャ
ップの厚みは、最近、電波の通過損失を少なくする為に
極めて薄く、膜状に形成されるが、本件発明にあって
は、キャップの装着に先立って上記位相差板30の固着
作業が行えるので、上記のキャップを傷つけることのな
い効果がある。さらに上記位相差板30における整合用導
波管17内に位置する残りの部分の両側を整合用導波管の
内面に接着剤で固定して支持するように構成することに
より、上記位相差板30は、激しい風雨により上記開口部
に装着されるキャップが激しく震動した場合でも、その
振動の影響を受けることなく安定した状態で維持できる
特長がある。このことは上記位相差板30を薄く形成する
ことができ(機械的に弱体化しても)、誘電体の量が減
少して電波の通過損失が少なくなる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a parabolic antenna, which receives a circularly polarized radio wave reflected and converged by a parabolic reflector and converts it into a linearly polarized wave. And a primary radiator used to convert the signal into a coaxial mode. 2. Description of the Related Art A conventional primary radiator is constructed, for example, as shown in FIG. That is, in order to accept the circularly polarized radio wave reflected and converged by the parabolic reflector,
An electromagnetic horn 11 having an aperture diameter corresponding to the aperture angle of the parabolic reflector and a length of 1/4 of the wavelength of the radio wave to be received.
f, a matching waveguide 17f for performing impedance matching between the electromagnetic horn 11f and the coaxial waveguide converter 22f, and a coaxial waveguide for converting a radio wave of the waveguide mode into a signal of the coaxial mode. The tube converter 22f is sequentially connected, and the matching waveguide 17f is connected.
Inside, a phase difference plate 30f for converting a circularly polarized radio wave into a linearly polarized radio wave is provided. In such a primary radiator, an electromagnetic horn 11
Since f has the above-described size, the circularly polarized radio wave reflected and converged by the parabolic reflector can be smoothly received, and the received radio wave passes through the matching waveguide 17f. This makes it possible to convert the signal into linearly polarized radio waves by the phase difference plate 30f and to send it to the coaxial waveguide converter 22f while passing through the matching waveguide 17f. The device 22f can efficiently obtain a coaxial mode signal. However, in the above-mentioned primary radiator, since the phase difference plate 30f is provided in the matching waveguide, the length of the matching waveguide 17f is reduced by the electromagnetic horn 11f. In addition to the length required for impedance matching with the coaxial waveguide converter 22f and the coaxial waveguide converter 22f, a length L2f sufficient to accommodate the phase difference plate 30f is required. This has a problem that the length of the entire primary radiator 6f is increased by the length necessary to accommodate the phase difference plate 30f in the matching waveguide 17f. Primary radiator
If 6f is so long, there is a problem in the parabolic antenna that the structure for supporting the primary radiator is complicated (it requires a structurally strong one). In addition, if the primary radiator is large as described above, the wind hit during use of the parabolic antenna becomes strong, and the arm supporting the primary radiator shakes in a strong wind, and the primary radiator often deviates from the focal point of the reflector. There was a problem that the received image was disturbed. The present invention has been made to solve the above-mentioned problems (technical problems) of the prior art, and provides a primary radiator having a small external shape while maintaining good electrical performance. It is intended to be. The primary radiator according to the present invention has an aperture corresponding to the opening angle of the parabolic reflector in order to receive the circularly polarized radio wave reflected and converged by the parabolic reflector. Caliber and 1/4 of the wavelength of the radio wave to be accepted
An electromagnetic horn having a length, a matching waveguide for performing impedance matching between the electromagnetic horn and the coaxial waveguide converter, and converting a waveguide mode radio wave into a coaxial mode signal. Primary radiation with a phase difference plate for converting a circularly polarized wave into a linearly polarized wave in the matching waveguide. In the device, the phase difference plate is provided with a first matching portion for performing impedance matching by being positioned in the electromagnetic horn, and a second matching portion for performing impedance matching by being positioned in the matching waveguide 17. ,
A circular-to-linear converter for converting a circularly polarized wave into a linearly polarized wave, which is located between the first matching portion and the second matching portion. When the phase difference plate is mounted, the position is determined such that the second matching portion is located in the matching waveguide, and the first matching portion is protruded from the matching waveguide in the electromagnetic horn. Both sides of a portion of the phase difference plate located in the matching waveguide are fixed to an inner surface of the matching waveguide with an adhesive to support the phase difference plate. The circularly polarized radio wave reflected and converged by the parabolic reflector is received by the electromagnetic horn. The received radio wave is transmitted to the coaxial waveguide converter with good matching by passing through the matching waveguide. In the process, the received circularly polarized radio waves are converted from circularly polarized waves into linearly polarized waves by the phase difference plate. The linearly polarized radio wave reaching the coaxial waveguide converter is converted into a coaxial mode signal in the coaxial waveguide converter. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 showing the usage state of the parabolic antenna will be described. 1 to 9 show a well-known configuration, 1 is a column, 2 is a parabolic antenna, 3 is a mounting tool for mounting the parabolic antenna 2 to the column 1 so that the elevation and azimuth angles can be freely adjusted. Parabolic reflectors 5 and 5 in the parabolic antenna 2 are supporting arms for supporting the primary radiator 6 at the focal position of the reflector 4 and for supporting the primary radiator 6 when the converter 7 is attached. 8 indicates the presence of a cap, such as a resin cap, covering the opening of the primary radiator 6 to prevent rainwater from entering the opening, and 9 indicates the outer surface of the primary radiator 6 and the converter 7 for waterproofing. Cover, for example, a resin cover. The primary radiator 6 is for receiving a circularly polarized radio wave reflected by the reflecting mirror and converging toward its focal position and converting it into a coaxial mode signal. 2 to FIG. Numeral 11 denotes an electromagnetic horn for receiving the circularly polarized radio wave, and an aperture diameter D1 corresponding to the aperture angle α of the parabolic reflector 4 for uniformly receiving the excitation distribution on the mirror surface of the parabolic reflector 4. In addition, in order to perform good impedance matching between the free space and the waveguide (the matching waveguide described below), the wavelength of the radio wave to be received in the internal receiving space 13 (in the receiving space 13). It has a length L1 that is 1 / of the wavelength λg ′).
The aperture diameter D1 is 28.6 mm and the length L1 is 9.4 mm in the case of a primary radiator for receiving a 12 GHz radio wave of a broadcasting satellite, for example. The inner peripheral surface 12 of the electromagnetic horn 11 has a smooth tapered surface in order to perform the above impedance matching well. 14 indicates an open end of the electromagnetic horn 11,
The focal point F of the parabolic reflecting mirror 4 is set at the center of the parabolic reflector 4 in order to efficiently perform circular-linear polarization conversion by a phase difference plate described later. Reference numeral 15 denotes a corrugated choke for improving the directivity of a parabolic antenna. The number of the corrugated chokes 15 may be two or more. Reference numeral 17 denotes a matching waveguide for performing impedance matching between the electromagnetic horn 11 and a coaxial waveguide converter 22, which will be described later, and smoothly transmits a radio wave coming from the electromagnetic horn 11 to the next stage. The inner diameter D2 corresponding to the frequency of the radio wave for guiding, and the wavelength λg ′ for better impedance matching.
And a length L2 of 1 / of the average value of the wavelength λg in the matching space 19 inside the matching waveguide 17. Above inner diameter D2
Is, for example, 17.475 mm for the reception of the radio wave, and the length L2 is 10.4 mm. Reference numerals 20, 20 denote mounting grooves provided on a part of the inner peripheral surface 18 for mounting a retardation plate. next
Reference numeral 22 denotes a coaxial waveguide converter for converting a waveguide mode radio wave into a coaxial mode signal. Reference numeral 23 denotes a waveguide in the converter 22.For the above conversion, the rear end is closed by a short-circuit surface 24, an inner diameter D3 having the same size as the inner diameter D2, and an inner conversion space 25. It has a length L3 that is half the wavelength λg of the radio wave. The inside diameter D3 may be slightly smaller than the inside diameter D2, and the waveguide 23 may be tapered. The length L3 is, for example, 22.9 mm in the case of receiving the radio wave. 26 is a probe for extracting coaxial mode signals.
It is provided at a position where the distance L4 up to 24 is 1/4 of the wavelength λg. An end of the probe 26 outside the waveguide 23 is connected to an input end of the converter 7 for signal transmission. The probe 26 is preferably formed of a metal material having good conductivity, for example, brass in order to smoothly transmit a signal. Reference numeral 27 denotes a member for holding the probe 26, which is made of an insulating material to hold the probe 26 in an insulated state with respect to the waveguide 23. In order to operate as a coaxial line together with the probe 26, the member 27 is preferably made of a material having a small loss at the frequency handled by the primary radiator, for example, a member made of fluororesin. The electromagnetic horn 11, the matching waveguide 17, and the waveguide 23 in the converter 22 are preferably formed integrally to stabilize the mutual positional relationship. They are preferably formed of a material having good conductivity in order to improve the propagation of radio waves in the internal space. One example of these materials and forming methods is zinc die casting. Reference numeral 30 denotes a phase plate for converting circularly polarized radio waves into linearly polarized radio waves. Reference numeral 31 denotes a first matching portion for performing impedance matching between the electromagnetic horn 11 and the phase difference plate 30 in the phase difference plate 30, and a length L11 of the first matching portion for performing the matching operation is equal to that of the phase difference plate 30. When the relative dielectric constant is represented by εr, the length is obtained by multiplying 4 of the wavelength λg ′ by 1 / √ (εr). For example, when the relative permittivity εr is 10, it is 3 mm for receiving the radio wave. Numeral 32 denotes a circular-to-linear converter for converting circularly polarized waves into linearly polarized waves. The length L12 for the above-mentioned circular-to-linearly polarized wave conversion is reduced to 1/4 of the wavelength λg ', 1 / 、 The length is multiplied by {(εr) -1}. For example, the relative permittivity is 4.3 mm in the case of receiving the radio wave. Reference numeral 33 denotes a second matching portion for performing impedance matching between the phase difference plate 30 and the matching waveguide 17, which is shorter than the length of the combined portion of the first matching portion 31 and the circular-to-linear converter 32. 1/4 of the wavelength λg to form
Is multiplied by 1 / √ (εr). 2. For example, in the case of the above-mentioned relative permittivity and the above-mentioned radio wave reception
6 mm. The phase difference plate 30 as described above has a portion less than half of its length in the matching waveguide 17 as clearly shown in FIG. A portion within the length of the electromagnetic horn 11 is located in the electromagnetic horn 11. For example, in this example, by forming the length of the combined portion of the first matching portion 31 and the circular-linear conversion portion 32 shorter than the length L1 of the electromagnetic horn 11 and positioning it in the electromagnetic horn 11, As is clear from FIG. 3, the first matching portion 31 is located in the electromagnetic horn 13 so as to protrude from the matching waveguide 17. The second matching section 33 is located in the matching waveguide 17. Further, both sides of a portion of the phase difference plate 30 shown in FIG. 3 which is located in the matching waveguide 17 are fitted into the mounting grooves 20 as shown in the drawing in order to fix the both sides. It is fixed by a fixing means, for example, an adhesive. The boundary between the circular direct conversion unit 32 and the second matching unit 33 may be closer to the side inside the electromagnetic horn 11 or closer to the side inside the matching waveguide 17 than in this example. The first matching portion 31 and the second matching portion 33 may have a tapered shape or a shape having a cut. The phase difference plate 30 is formed of a material having a high dielectric constant, for example, a material having a relative dielectric constant εr of 6 or more, in order to enable the electromagnetic horn 11 and the matching waveguide 17 to be arranged in the above relationship. . One example is formed of a material obtained by mixing a ceramic with a polyphenylene oxide resin, and has a relative dielectric constant of 10.45. As other materials, a ceramic plate or a resin plate mixed with a powder of ceramic or alumina can be used. The thickness of the phase difference plate 30 is preferably set to a small value, for example, 1.5 mm or less in order to reduce the axial ratio, which is one of the electrical performances of the primary radiator, to, for example, 1 dB or less. It is preferable to use a material having a large dielectric constant. In the case of a material obtained by mixing a ceramic with a polyphenylene oxide resin, the thickness is, for example, 0.78 mm. The angle θ between the phase difference plate 30 and the probe 26 shown in FIG. 2 is set to, for example, 45 ° in order to efficiently extract the converted linearly polarized radio wave to the probe 26 in the coaxial mode. In the above configuration, reference numeral 41 in FIG.
As shown by a circle, a circularly polarized radio wave arriving from a transmission source of a radio wave, for example, a broadcasting satellite is reflected by the parabolic reflector 4 and converged toward its focal point F. The converged radio wave enters the receiving space 13 of the electromagnetic horn 11, and passes therethrough to the matching space 19 in the waveguide mode. In the process in which the circularly polarized radio wave reaches the matching space 19 from the receiving space 13, the radio wave is converted by the phase difference plate 30 into a linearly polarized radio wave. In this case, since the light reaches the circular-to-linear converter 32 via the first matching part 31 and further reaches the matching space 19 via the second matching part 33, the polarization conversion is smooth and the impedance matching is good. It is. The linearly polarized radio wave travels from the matching space 19 to the conversion space 25, where the conversion from the waveguide mode to the coaxial mode is performed as is well known, and the coaxial mode signal is probed.
It is taken out to 26. The signal reaches the converter 7, where it is frequency-converted and transmitted from an output terminal 7a. In the case of performing reception as described above, since the relative dielectric constant of the phase difference plate 30 is high, its thickness can be reduced. Thus, the circular-linear polarization conversion is performed efficiently. For this reason, the axial ratio is improved, and in the case of a circularly polarized radio wave in the opposite direction, for example, satellite broadcasting, it is possible to reduce the possibility of interference from Korean satellite broadcasting waves. Further, as described above, the phase difference plate 30 is shortened (L
If the thickness can be reduced by adding 11 to L13), the ratio of the dielectric (the phase difference plate 30) in the waveguide is reduced, and the transmission loss of the radio wave by the dielectric can be reduced. Therefore, when used for a parabolic antenna, antenna efficiency and antenna noise can be reduced. Further, since the phase difference plate 30 is thin, the reflected wave by the phase difference plate 30 is suppressed, and the VSWR is improved. As described above, according to the present invention, when a circularly polarized radio wave reflected and converged by the parabolic reflector 4 arrives, the electromagnetic horn 11 causes the aperture of the parabolic reflector 4 to open. Since it has an aperture diameter D1 corresponding to the angle α and a length of 1/4 of the wavelength λg 'of the received radio wave, the above-mentioned circularly polarized radio wave can be smoothly received, and the received radio wave is used for matching. By passing through the waveguide 17, good matching is obtained, and the wave plate is smoothly converted into a linearly polarized wave by the phase difference plate 30 composed of the first matching portion 31, the circular-to-linear conversion portion 32, and the second matching portion 33, and is coaxial. The signal can be sent to the waveguide converter 22, and the coaxial waveguide converter 22 has an effect that a signal in the coaxial mode can be efficiently obtained. Further, in the primary radiator 6 of the present invention, the phase difference plate 30 is located in the electromagnetic horn 11 to perform impedance matching, and the matching waveguide 17 is provided. And a second matching section 33 for performing impedance matching by being located inside the first matching section 31 and the second matching section 33 for converting circularly polarized waves into linearly polarized waves. The phase difference plate 30 is mounted on the matching waveguide 17 when the second matching portion 33 is located in the matching waveguide 17 and the electromagnetic horn 13 is located in the electromagnetic horn 13. The first matching portion 31 is positioned so as to protrude from the matching waveguide 17, and both sides of a portion of the phase difference plate 30 located inside the matching waveguide 17 are aligned with the matching waveguide 17. Is fixed to the inner surface of the base plate with an adhesive, the second matching section 33 is
In only a small part, the length of the matching waveguide 17 becomes short, and even if the matching waveguide 17 is short, it can be sufficiently accommodated therein, and the matching waveguide 17 is connected between the electromagnetic horn 11 and the coaxial waveguide converter 22. It has the feature that it can be as short as required for the matching action, and is effective in shortening the primary radiator 6. In addition, in the case of fixing both sides of the portion of the phase difference plate 30 located in the matching waveguide 17 to the inner surface of the matching waveguide with an adhesive, the portions to be bonded are:
The first matching portion 31 projects from the matching waveguide 17,
The remaining portion of the phase difference plate 30 located in the matching waveguide 17 is extremely short and small. Therefore, there is an advantage that the amount of the adhesive used for bonding there is extremely small. 3 and 4, the portion to be bonded is on the side of the opening of the tip end of the matching waveguide 17, and the opening is formed by the electromagnetic horn 11 which is spread like a trumpet.
, The fingertip of the work clothes has a feature that the work can be performed as close as possible to a position close to the adhesive portion. This enables uniform and accurate bonding using a small amount of adhesive, and has the effect of increasing the reliability of bonding.In addition, the amount of the dielectric adhesive is small and can be evenly distributed. And the dielectric constant becomes uniform, the passage loss therethrough is small, and the adverse effect on the cross polarization characteristics is reduced. As for the transmission loss of radio waves, the ratio of the dielectric (phase plate 30) in the matching waveguide 17 is small.
There is also an effect that the transmission loss of radio waves by the dielectric can be reduced. The phase difference plate for the matching waveguide 17
Attachment of 30 determines the position so that the first matching portion 31 protrudes from the matching waveguide 17 in the electromagnetic horn 13,
Since both sides of the remaining portion of the retardation plate 30 located in the matching waveguide 17 are fixed to the inner surface of the matching waveguide with an adhesive, the phase difference plate 30 is attached to the opening of the primary radiator 6. There is a feature that the fixing work can be performed regardless of the presence or absence of the cap. This means that the thickness of the cap attached to the opening has recently been extremely thin and formed in the form of a film in order to reduce transmission loss of radio waves, but in the present invention, prior to the attachment of the cap, Since the fixing work of the retardation plate 30 can be performed, there is an effect that the cap is not damaged. Further, by configuring both sides of the remaining portion of the phase difference plate 30 located in the matching waveguide 17 on the inner surface of the matching waveguide with an adhesive to support the phase difference plate, 30 is characterized in that even if the cap attached to the opening vibrates violently due to severe wind and rain, it can be maintained in a stable state without being affected by the vibration. This allows the retardation plate 30 to be formed thin (even if it is mechanically weakened), and the amount of dielectric material is reduced, so that the transmission loss of radio waves is reduced.

【図面の簡単な説明】 【図1】パラボラアンテナの側面図。 【図2】一次放射器の正面図。 【図3】一次放射器の図2におけるIII−III線位置の断
面図。 【図4】一次放射器の図2におけるIV−IV線位置の断面
図。 【図5】従来の一次放射器の一部破断斜視図。 【符号の説明】 4 パラボラ反射鏡 6 一次放射器 11 電磁ホーン 17 整合用導波管 22 同軸導波管変換器 30 位相差板 31 第1整合部 32 円直変換部 33 第2整合部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view of a parabolic antenna. FIG. 2 is a front view of a primary radiator. FIG. 3 is a sectional view of the primary radiator taken along the line III-III in FIG. 2; FIG. 4 is a sectional view of the primary radiator taken along the line IV-IV in FIG. 2; FIG. 5 is a partially cutaway perspective view of a conventional primary radiator. [Description of Signs] 4 Parabolic reflector 6 Primary radiator 11 Electromagnetic horn 17 Waveguide for matching 22 Coaxial waveguide converter 30 Phase difference plate 31 First matching part 32 Circular-to-linear conversion part 33 Second matching part

Claims (1)

(57)【特許請求の範囲】 【請求項1】 パラボラ反射鏡により反射され収束され
てきた円偏波の電波を受け入れる為に、パラボラ反射鏡
の開口角に対応する開口径と、受け入れる電波の波長の
1/4の長さを有している電磁ホーンと、上記電磁ホー
ンと同軸導波管変換器とのインピーダンス整合を行う為
の整合用導波管と、導波管モードの電波を同軸モードの
信号に変換する為の同軸導波管変換器とを順に連設し、
上記整合用導波管には円偏波の電波を直線偏波の電波に
変換する為の位相差板を装着している一次放射器におい
て、 上記位相差板は、 電磁ホーン内に位置させてインピーダンス整合を行う為
の第1整合部と、 整合用導波管17内に位置させてインピーダンス整合を行
う為の第2整合部と、 上記第1整合部と第2整合部との間に位置させて、円偏
波を直線偏波に変換する為の円直変換部とから構成され
ており、 上記整合用導波管に対する上記位相差板の装着は、整合
用導波管内に上記第2整合部が位置し、電磁ホーン内に
上記第1整合部が整合用導波管から突出した状態になる
ように位置を定め、上記位相差板における整合用導波管
内に位置する部分の両側を整合用導波管の内面に接着剤
で固定して上記位相差板を支持するようにしたことを特
徴とする一次放射器。
(57) [Claims 1] In order to receive a circularly polarized radio wave reflected and converged by a parabolic reflector, an aperture diameter corresponding to the opening angle of the parabolic reflector and the received radio wave An electromagnetic horn having a length of 1/4 of the wavelength, a matching waveguide for performing impedance matching between the electromagnetic horn and the coaxial waveguide converter, and a coaxial waveguide mode radio wave. A coaxial waveguide converter for converting to a mode signal is connected in series,
In the primary radiator, which has a phase difference plate for converting a circularly polarized wave into a linearly polarized wave in the matching waveguide, the phase difference plate is located in an electromagnetic horn. A first matching section for performing impedance matching, a second matching section for performing impedance matching by being positioned in the matching waveguide 17, and a position between the first matching section and the second matching section. And a circular-to-linear converter for converting a circularly polarized wave into a linearly polarized wave. The mounting of the phase difference plate on the matching waveguide is performed by inserting the second wave into the matching waveguide. A matching portion is located, and the first matching portion is positioned in the electromagnetic horn so as to protrude from the matching waveguide, and both sides of a portion of the phase difference plate located in the matching waveguide are determined. It is characterized in that the above-mentioned retardation plate is supported by being fixed to the inner surface of the matching waveguide with an adhesive. The primary radiator to be marked.
JP30344593A 1993-11-08 1993-11-08 Primary radiator Expired - Fee Related JP3362292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30344593A JP3362292B2 (en) 1993-11-08 1993-11-08 Primary radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30344593A JP3362292B2 (en) 1993-11-08 1993-11-08 Primary radiator

Publications (2)

Publication Number Publication Date
JPH07131232A JPH07131232A (en) 1995-05-19
JP3362292B2 true JP3362292B2 (en) 2003-01-07

Family

ID=17921084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30344593A Expired - Fee Related JP3362292B2 (en) 1993-11-08 1993-11-08 Primary radiator

Country Status (1)

Country Link
JP (1) JP3362292B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567247B2 (en) * 2001-07-31 2010-10-20 マスプロ電工株式会社 Primary radiator of offset parabolic antenna

Also Published As

Publication number Publication date
JPH07131232A (en) 1995-05-19

Similar Documents

Publication Publication Date Title
US6697027B2 (en) High gain, low side lobe dual reflector microwave antenna
JP3867713B2 (en) Radio wave lens antenna device
US4168504A (en) Multimode dual frequency antenna feed horn
JP2001217644A (en) Primary radiator
US4896163A (en) Microwave receiving device
US5675348A (en) Feedome, primary radiator, and antenna for microwave
US6094175A (en) Omni directional antenna
JP3813581B2 (en) Antenna device
JPH10256822A (en) Two-frequency sharing primary radiator
JP3362292B2 (en) Primary radiator
US4755828A (en) Polarized signal receiver waveguides and probe
JPS61161003A (en) Circularly polarized wave primary radiator
JPH05283902A (en) Circular polarized wave generator and circular polarized wave receiving antenna
KR102112202B1 (en) Polarization conversion integrated horn antenna and manufacturing method the same
JP2001284950A (en) Primary radiator
JPS6017923Y2 (en) Portable millimeter wave band wireless device
JP2699462B2 (en) Satellite broadcast receiving converter
JP3660534B2 (en) Primary radiator
JPH1127037A (en) Multi-beam antenna
JPH04207702A (en) Primary radiator for circularly polarized wave
JPS6017243B2 (en) Primary radiator
JP4800986B2 (en) Primary radiator for 2 satellite reception
JPH01277006A (en) Primary radiator for circularly polarized wave
JPH0682976B2 (en) Parabolic antenna device for circular polarization
JPH0533844B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081025

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111025

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees