JPH04207702A - Primary radiator for circularly polarized wave - Google Patents

Primary radiator for circularly polarized wave

Info

Publication number
JPH04207702A
JPH04207702A JP33858290A JP33858290A JPH04207702A JP H04207702 A JPH04207702 A JP H04207702A JP 33858290 A JP33858290 A JP 33858290A JP 33858290 A JP33858290 A JP 33858290A JP H04207702 A JPH04207702 A JP H04207702A
Authority
JP
Japan
Prior art keywords
waveguide
probe
circularly polarized
reflecting plate
reflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33858290A
Other languages
Japanese (ja)
Inventor
Nobutaka Inoue
井上 信敬
Chikahiko Nakane
親彦 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP33858290A priority Critical patent/JPH04207702A/en
Publication of JPH04207702A publication Critical patent/JPH04207702A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To realize the integral manufacture of a reflecting plate and a waveguide and to simplify the manufacture by forming the end of an opening part side of the waveguide in the reflecting plate to a mountain shape, so that an electric signal can be fetched in a state that an axial ratio and a characteristic of VSWR, etc., are cleared even if the reflecting plate is thickened. CONSTITUTION:In a primary radiator 1, as for a waveguide 2, that of a circular cross section is used, one end 3 is opened, and on the other hand, the other end 4 is closed by a reflecting wall 5 having a reflecting surface 5a. In the inside of the waveguide 2, a distance extending from a probe 7 provided in a position being near the opening end 3 to the opening end 3 is set so that a radio wave of a circularly polarized wave can exist stably in a space between both of them. A distance (h) extending from the axis center of the probe 7 to the reflecting surface 5a is set to 3/8 of guide wavelength lambdag. A reflecting plate 9 provided in a position of the inner part of the probe 7 is provided in a state that it runs along an axis of the waveguide 2, and also, is inclined at an inclination angle theta against the probe 7, and also, in a state that it is connected electrically and integrally to the reflecting surface 5a. The reflecting plate 9 is manufactured integrally with the waveguide 2. The end 10 of the opening part side of the waveguide 2 in the reflecting plate 9 is formed in a symmetrical, mountain shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は円偏波の電波を受信してそれを電気信号に変
えるようにしである円偏波用一次放射器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a primary radiator for circularly polarized waves that receives circularly polarized radio waves and converts them into electrical signals.

〔従来の技術〕[Conventional technology]

一端が円偏波の電波を導入し得るよう開口し、他端が導
入された電波を反射し得るよう閉塞している導波管を有
し、該導波管の内部においては、直線偏波の電波によっ
て電気信号が励起されるようにしたプローブを設けると
共に、そのプローブよりも奥部の位置には、上記導入さ
れた円偏波の電波を上記プローブの位置において直線偏
波の電波にする為の反射板を導波管の軸線に沿った状態
に設けている円偏波用一次放射器がある(例えば特開平
1−277006参照)。このような円偏波用一次放射
器では導波管に円偏波の電波が入来するとそれを電気信
号に変えてプローブに取り出すことができると共に、そ
の場合、反射板の存在により軸比やVSWR等の特性良
く受信できる。
It has a waveguide that is open at one end to introduce circularly polarized radio waves and closed at the other end to reflect the introduced radio waves. A probe is provided in which an electrical signal is excited by the radio waves, and at a position deeper than the probe, the introduced circularly polarized radio waves are converted into linearly polarized radio waves at the position of the probe. There is a primary radiator for circularly polarized waves in which a reflecting plate is provided along the axis of the waveguide (for example, see Japanese Patent Laid-Open No. 1-277006). In such a primary radiator for circularly polarized waves, when a circularly polarized radio wave enters the waveguide, it can be converted into an electrical signal and taken out to the probe, and in this case, the presence of a reflector allows the axial ratio and Can receive with good characteristics such as VSWR.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし上記従来の円偏波用一次放射器では反射板が薄く
て円偏波用一次放射器の製造の場合導波管との一体製造
が困難な為、例えば反射板を導波管とは別体に製造し、
その別体の反射板を導波管に組み込まねばならず、製造
に手間のかかる問題がある。向上記反射板を厚くして導
波管との一体製造ができるようにすると、上記軸比やV
SWR等の特性が規格値をクリアできなくなってしまう
問題点があった。
However, in the conventional primary radiator for circularly polarized waves mentioned above, the reflector is thin and it is difficult to manufacture the primary radiator for circularly polarized waves integrally with the waveguide. manufactured in the body,
The separate reflecting plate must be incorporated into the waveguide, which poses a problem in that manufacturing is time-consuming. By making the reflector thicker so that it can be manufactured integrally with the waveguide, the axial ratio and V
There was a problem in that characteristics such as SWR could no longer meet standard values.

本願発明は上記従来技術の問題点(技術的課題)を解決
する為になされたもので、反射板における導波管の開口
部側の端を山形の形状にすることにより、反射板を厚く
しても軸比やVSW’R等の特性をクリアした状態での
電気信号の取出ができるようにし、もって、反射板と導
波管との一体製造を可能にできて円偏波用一次放射器の
製造を簡易化できるようにした円偏波用一次放射器を提
供することを目的としている。
The present invention was made in order to solve the problems (technical problems) of the prior art described above, and by making the end of the reflecting plate on the side of the opening of the waveguide into a chevron shape, the reflecting plate can be thickened. This makes it possible to extract electrical signals while clearing characteristics such as axial ratio and VSW'R, and thereby enables integral manufacturing of the reflector and waveguide. The object of the present invention is to provide a primary radiator for circularly polarized waves that can be manufactured easily.

〔課題を解決する為の手段〕[Means to solve problems]

上記目的を達成する為に、本願発明における円偏波用一
次放射器は、一端が円偏波の電波を導入し得るよう開口
し、他端が導入された電波を反射し得るよう閉塞してい
る導波管を有し、該導波管の内部においては、直線偏波
の電波によって電気信号が励起されるようにしたプロー
ブを設けると共に、そのプローブよりも奥部の位置には
、上記導入された円偏波の電波を上記プローブの位置に
おいて直線偏波の電波にする為の反射板を4波管の軸線
に沿った状態に設けている円偏波用一次放射器において
、上記反射板における導波管側の端は山形に形成したも
のである。
In order to achieve the above object, the primary radiator for circularly polarized waves according to the present invention has one end open so that circularly polarized radio waves can be introduced, and the other end closed so that the introduced radio waves can be reflected. Inside the waveguide, a probe is provided in which an electric signal is excited by linearly polarized radio waves, and at a position deeper than the probe, the above-mentioned introduced In the primary radiator for circularly polarized waves, the reflector plate is provided along the axis of the four-wave tube to convert the circularly polarized radio waves into linearly polarized radio waves at the position of the probe. The end on the waveguide side is formed into a chevron shape.

〔作用〕[Effect]

到来する円偏波の電波は導波管の開0端から内部に導入
される。導入された円偏波の電波はプローブの位置を通
り閉塞されている端で反射されプローブに向かう。この
場合反射板によって、上記円偏波の電波は上記プローブ
の位置において直線偏波の電波にされる。該直線偏波の
電波はプローブを励振し、プローブに電気信号を誘起す
る。
Incoming circularly polarized radio waves are introduced into the waveguide from the open end. The introduced circularly polarized radio waves pass through the position of the probe, are reflected at the closed end, and head toward the probe. In this case, the circularly polarized radio waves are converted into linearly polarized radio waves at the position of the probe by the reflector. The linearly polarized radio wave excites the probe and induces an electrical signal in the probe.

〔実施例〕〔Example〕

以下本願の実施例を示す図面について説明する。第1図
乃至第4図に示される一次放射S1において、2は導波
管で断面円形のものが用いてあり、−81a3は開口し
ている一方、他端4には反射壁5を備えておってそれで
もって閉塞されている。
The drawings showing the embodiments of the present application will be described below. In the primary radiation S1 shown in FIGS. 1 to 4, 2 is a waveguide with a circular cross section, -81a3 is open, and the other end 4 is provided with a reflecting wall 5. However, it is also blocked.

5aは反射壁5における反射面を示す。上記導波管2は
金属棒を切削加工したり、ダイキャスト成形したり、金
属板をしぼり加工やプレス加工して形成される。材料と
してはアルミニウム、亜鉛、真鍮等が用いられる。6は
開口端3に連結している円錐ホーンで、アンテナの開口
角に適合した指向性となるように設けられたものである
。尚この円錐ホーン6は用いられない場合もある。7は
導波管2の内部において開口端3に近い位置に設けたプ
ローブで、金属棒をもって形成され、絶縁体8を介して
導波管2に固定されている。開口端3から該プローブ7
までの距離は、両者間の空間に円偏波の電波が安定に存
在できるよう、例えば導入される電波の導波管2内にお
ける波長λgのz程度にされる。管内波長λgは、導波
管2の内面にテーパーがかかっている為、上記一端3と
他端4の夫々の内径f (例えば18.4mm)、 k
 <例えば17,5III11)に対して受信信号(例
えば11.7−12.0GHz)の中心周波数での管内
波長を求め、その平均値をもって上記管内波長Jg(例
えば45.28mm)とするのが良い。プローブ7の軸
心から上記反射面5aまでの距離りは上記管内波長zg
の378にする。また該プローブ7の導波管2内に存在
する部分の寸法gは例えば6Iである。上記プローブ7
の元部は、導波管2の管壁を貫通させて外部に延出させ
、プローブ7に得た信号を次段例えばコンバータや前置
増幅器の入力端に伝達する為の出力端子7aとしである
。上記プローブ7は細幅の金属板や、誘電体基板上のマ
イクロストリップラインでもって形成する場合もある。
5a indicates a reflective surface of the reflective wall 5. The waveguide 2 is formed by cutting a metal rod, die-casting, or squeezing or pressing a metal plate. Aluminum, zinc, brass, etc. are used as the material. Reference numeral 6 denotes a conical horn connected to the open end 3, and is provided to provide directivity that matches the aperture angle of the antenna. Note that this conical horn 6 may not be used. A probe 7 is provided inside the waveguide 2 at a position close to the open end 3, is formed of a metal rod, and is fixed to the waveguide 2 via an insulator 8. The probe 7 from the open end 3
The distance is set to, for example, about z of the wavelength λg of the introduced radio wave in the waveguide 2 so that circularly polarized radio waves can stably exist in the space between them. Since the inner surface of the waveguide 2 is tapered, the inner wavelength λg is determined by the inner diameter f (for example, 18.4 mm) of the one end 3 and the other end 4, k
<For example, 17,5III11), it is preferable to find the inner wavelength at the center frequency of the received signal (for example, 11.7-12.0 GHz) and use the average value as the above-mentioned inner wavelength Jg (for example, 45.28 mm). . The distance from the axis of the probe 7 to the reflecting surface 5a is the tube wavelength zg.
Make it 378. Further, the dimension g of the portion of the probe 7 existing within the waveguide 2 is, for example, 6I. Above probe 7
The base part of the waveguide 2 extends outside through the tube wall of the waveguide 2, and serves as an output terminal 7a for transmitting the signal obtained by the probe 7 to the input end of the next stage, such as a converter or preamplifier. be. The probe 7 may be formed of a narrow metal plate or a microstrip line on a dielectric substrate.

9はプローブ7よりも奥部の位置に備えた反射板で、導
波管2の軸線に沿いがつプローブ7に対し傾き角θで傾
斜する状態で、しかも反射面5aに電気的に一体に連な
る状態で備えである。該反射板9は導波管2と一体に製
造される。別体に形成した後導波管2に取付けることも
無給可能である。該反射1.9における導波管2の開口
部側の端10は、第3図に明示されるごとく左右対称の
山形に形成しである。反射板9の中央部分における導波
管2の軸線方向の寸法aは、受信信号の周波数域の内の
最も低い周波数11.7GHzでの管内波長(47,2
4mm)  の1/4(例えば11.81m+n)にさ
れ、両縁部における導波管2の軸線方向の寸法すは、上
記周波数域の内の最も高い周波数12.0GH2での管
内波長(43,52++n)  の174(例えば10
.88+!+m)にされる。反射板9の基部の厚みC及
び頂部の厚みdは、成形時における成形型内への金属材
料の流入を可能にする為にはある程度の厚みが必要であ
り、また脱型の為に前者よりも後者を小さくする必要が
あり、本例の場合夫々2.4m++w、 1 m−とし
である。傾き角θは原則として45°にするが、円偏波
が楕円成分を持つ場合には45°前後の角度にされる。
Reference numeral 9 denotes a reflecting plate provided at a position deeper than the probe 7, which is inclined at an inclination angle θ with respect to the probe 7 along the axis of the waveguide 2, and is electrically integrated with the reflecting surface 5a. It is a continuous state of preparation. The reflecting plate 9 is manufactured integrally with the waveguide 2. It is also possible to attach it to the waveguide 2 after forming it separately. The end 10 of the waveguide 2 on the opening side at the reflection 1.9 is formed into a symmetrical chevron shape as clearly shown in FIG. The dimension a in the axial direction of the waveguide 2 in the central part of the reflection plate 9 is equal to the guide wavelength (47, 2
4mm) (for example, 11.81m+n), and the axial dimension of the waveguide 2 at both edges is equal to the guide wavelength (43, 52++n) of 174 (e.g. 10
.. 88+! +m). The thickness C of the base part and the thickness d of the top part of the reflector plate 9 are required to have a certain degree of thickness in order to allow the metal material to flow into the mold during molding, and also to be thicker than the former for demolding. It is also necessary to reduce the latter, and in this example, they are 2.4 m++w and 1 m-, respectively. In principle, the tilt angle θ is set to 45°, but when the circularly polarized wave has an elliptical component, the angle is set to around 45°.

プローブ7と該反射板9における山形の頂部との間隔e
は前記波長λgの1/8程度(例えば5.17+*m)
にされる。簡閲において反射板9は左旋の円偏波用を示
す。右旋の円偏波用の場合には想像線9°で示されるよ
うな傾きの状態に配設される。尚第1図に示される14
はキャンプで、誘電損失の小さい材料例えばポリカーボ
ネートが用いられる。15は回路基板で、増幅回路、周
波数変換回路等が備えられ、前記プローブ7の出力i7
aが接続しである。16は蓋で、導電性の良い金属板が
用いられる。
Distance e between the probe 7 and the peak of the chevron on the reflection plate 9
is about 1/8 of the wavelength λg (for example, 5.17+*m)
be made into In the brief review, the reflector 9 is for left-handed circularly polarized waves. In the case of right-handed circularly polarized waves, it is arranged at an inclination as shown by an imaginary line of 9°. 14 shown in FIG.
is a camp, and a material with low dielectric loss, such as polycarbonate, is used. Reference numeral 15 denotes a circuit board, which is equipped with an amplifier circuit, a frequency conversion circuit, etc.
a is connected. A lid 16 is made of a metal plate with good conductivity.

次に上記一次放射器にょる円偏波の電波の受信について
説明する。放送衛星等のマイクロ波の送信点から、右旋
の円偏波の電波が送られてくると、その電波はパラボラ
反射鏡で反射されて左旋の円偏波の電波となった後、そ
の左旋の円偏波の電波が円錐ホーン6に向けて到来する
。その電波はホーン6を通して導波管・2内にその開口
端3から導入される。導入された円偏波の電波はプロー
ブ7の存在位置を経て反射板9の側へ至る。反射板9は
上記円偏波の電波のうち反射板9の面方向と平行な成分
はその端10で反射し、垂直な成分は反射面5aの側へ
の進行を許す。進行が許された上記垂直な成分は反射面
5aで反射され、プローブ7の側へ戻る。これらの作用
の結果、プローブ7の位置においては、上記導入された
円偏波の電波が、プローブ7の方向(プローブ7の長平
方向で、第1.2図において上下方向)と平行な方向に
振動する直線偏波の電波となる。この直線偏波の電波は
プローブ7を励振し、プローブ7には電気信号が生ずる
。このようにしてプローブ7に得られた信号は、その出
力端子7aがら次段に送出される。
Next, reception of circularly polarized radio waves by the primary radiator will be explained. When a right-handed circularly polarized radio wave is sent from a microwave transmission point such as a broadcasting satellite, the radio wave is reflected by a parabolic reflector and becomes a left-handed circularly polarized radio wave. A circularly polarized radio wave arrives toward the conical horn 6. The radio waves are introduced into the waveguide 2 from its open end 3 through the horn 6. The introduced circularly polarized radio wave passes through the position of the probe 7 and reaches the reflection plate 9 side. The reflecting plate 9 reflects the components of the circularly polarized radio waves parallel to the surface direction of the reflecting plate 9 at its end 10, and allows the perpendicular components to proceed toward the reflecting surface 5a. The vertical component that is allowed to proceed is reflected by the reflecting surface 5a and returns to the probe 7 side. As a result of these actions, at the position of the probe 7, the introduced circularly polarized radio waves are directed in a direction parallel to the direction of the probe 7 (the longitudinal direction of the probe 7, the vertical direction in Fig. 1.2). It becomes an oscillating linearly polarized radio wave. This linearly polarized radio wave excites the probe 7, and an electrical signal is generated in the probe 7. The signal thus obtained by the probe 7 is sent to the next stage through its output terminal 7a.

次に第1〜4図の構造で、がっ11.7〜12.0G)
Izの円偏波の電波の受信の為に前述の如き寸法に設計
、製作した一次放射器におけるVSWR及び軸比を測定
したところ、夫々第5図、第6図の結果を得た。反射板
9における前端1oは前述の如く山形にしである為、反
射板9の厚みが前述の如く厚くても、上記受信周波数の
帯域(11,7〜12.0Gl(z)にわたり、VSW
Rは規格値1.3以下を、軸比は規格値1.7dB以下
を夫々充分に満足している。
Next, with the structure shown in Figures 1 to 4, the G is 11.7 to 12.0G)
When the VSWR and axial ratio of the primary radiator designed and manufactured to the above-mentioned dimensions for receiving Iz circularly polarized radio waves were measured, the results shown in FIGS. 5 and 6 were obtained, respectively. Since the front end 1o of the reflector 9 is formed into a chevron shape as described above, even if the reflector 9 is thick as described above, the VSW is
The R satisfies the standard value of 1.3 or less, and the axial ratio satisfies the standard value of 1.7 dB or less.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明にあっては、左旋或いは右旋の円偏
波の電波が導波管2内に入来した場合、プローグ7に電
気信号にして取り出すことができるは勿論のこと、 上記電気信号の取出の場合、上記入来する円偏波の電波
を、導波管2の奥部に設けた反射板9によりプローブ7
の位置において直線偏波の電波に変えるから、上記プロ
ーブ7においては上記電気信号を軸比及びVSWR等の
特性良く取出し得る効果がある。
As described above, in the present invention, when a left-handed or right-handed circularly polarized radio wave enters the waveguide 2, it is of course possible to extract it as an electric signal to the prologue 7. In the case of extracting an electric signal, the incoming circularly polarized radio wave is reflected by the probe 7 by a reflector 9 provided at the back of the waveguide 2.
Since the electric wave is converted into a linearly polarized radio wave at the position, the probe 7 has the effect of being able to extract the electric signal with good characteristics such as axial ratio and VSWR.

しかも上記のように導波管2の奥に反射板9を設けたも
のでも、その反射板9におけるプローブ7側の端は山形
に形成しているから、反射板9の厚みが厚(ても、薄く
ても、そこの厚みには関係なく上記軸比やVSWR等の
特性は規格値をクリアした状態で上記電気信号の取出が
できる特長がある。このように反射板9が厚くても薄く
ても規格値のクリアが可能であるということは、反射板
9を厚く形成して導波管2と一体製造することを可能に
できることであって、一次放射器の製造を極めて簡易化
できる利点がある。
Moreover, even in the case where the reflector 9 is provided at the back of the waveguide 2 as described above, the end of the reflector 9 on the probe 7 side is formed in a chevron shape, so the thickness of the reflector 9 is Even if the reflector plate 9 is thin, it has the advantage that the above-mentioned electric signals can be extracted while the characteristics such as the above-mentioned axial ratio and VSWR clear the standard values regardless of the thickness.In this way, even if the reflector plate 9 is thick, it can be made thin. The fact that it is possible to meet the standard values even if the reflector plate 9 is made thick means that it can be manufactured integrally with the waveguide 2, which has the advantage of greatly simplifying the manufacture of the primary radiator. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本願の実施例を示すもので、第1図は縦断面図、
第2図は正面図、第3図は第2図のIILIII 線断
面図、第4図は第2図のTV−IV線断面図、第5図は
V SWRの測定結果を示すグラフ、第6図は軸比の測
定結果を示すグラフ。 2・ ・導波管、7・・・プローブ、9・・・反射板。
The drawings show an embodiment of the present application, and FIG. 1 is a longitudinal cross-sectional view;
Figure 2 is a front view, Figure 3 is a sectional view taken along the line IILIII in Figure 2, Figure 4 is a sectional view taken along the TV-IV line in Figure 2, Figure 5 is a graph showing the measurement results of VSWR, and Figure 6 is a sectional view taken along the line TV-IV in Figure 2. The figure is a graph showing the measurement results of the axial ratio. 2. Waveguide, 7... Probe, 9... Reflector.

Claims (1)

【特許請求の範囲】[Claims]  一端が円偏波の電波を導入し得るよう開口し、他端が
導入された電波を反射し得るよう閉塞している導波管を
有し、該導波管の内部においては、直線偏波の電波によ
って電気信号が励起されるようにしたプローブを設ける
と共に、そのプローブよりも奥部の位置には、上記導入
された円偏波の電波を上記プローブの位置において直線
偏波の電波にする為の反射板を導波管の軸線に沿った状
態に設けている円偏波用一次放射器において、上記反射
板における導波管側の端は山形に形成してあることを特
徴とする円偏波用一次放射器。
It has a waveguide that is open at one end to introduce circularly polarized radio waves and closed at the other end to reflect the introduced radio waves. A probe is provided in which an electrical signal is excited by the radio waves, and at a position deeper than the probe, the introduced circularly polarized radio waves are converted into linearly polarized radio waves at the position of the probe. In the primary radiator for circularly polarized waves, the circularly polarized wave primary radiator is provided with a reflecting plate along the axis of the waveguide, wherein the end of the reflecting plate on the waveguide side is formed in a chevron shape. Primary radiator for polarization.
JP33858290A 1990-11-30 1990-11-30 Primary radiator for circularly polarized wave Pending JPH04207702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33858290A JPH04207702A (en) 1990-11-30 1990-11-30 Primary radiator for circularly polarized wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33858290A JPH04207702A (en) 1990-11-30 1990-11-30 Primary radiator for circularly polarized wave

Publications (1)

Publication Number Publication Date
JPH04207702A true JPH04207702A (en) 1992-07-29

Family

ID=18319534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33858290A Pending JPH04207702A (en) 1990-11-30 1990-11-30 Primary radiator for circularly polarized wave

Country Status (1)

Country Link
JP (1) JPH04207702A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088282A (en) * 2011-10-18 2013-05-13 Toho Gas Co Ltd Wireless meter-reading meter position detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088282A (en) * 2011-10-18 2013-05-13 Toho Gas Co Ltd Wireless meter-reading meter position detection method

Similar Documents

Publication Publication Date Title
US3555553A (en) Coaxial-line to waveguide transition for horn antenna
US9742069B1 (en) Integrated single-piece antenna feed
USH956H (en) Waveguide fed spiral antenna
CA2379151C (en) Ka/ku dual band feedhorn and orthomode transducer (omt)
JP4090875B2 (en) Improvements to electromagnetic wave transmission / reception sources in multi-reflector antennas
US4742359A (en) Antenna system
EP0263158A1 (en) Wideband horn antenna.
US5675348A (en) Feedome, primary radiator, and antenna for microwave
EP1139489A1 (en) Primary radiator having improved receiving efficiency by reducing side lobes
JPH04328901A (en) Coaxial waveguide converter
GB2398178A (en) Microwave transitions and antennas
JPH10256822A (en) Two-frequency sharing primary radiator
JPH04207702A (en) Primary radiator for circularly polarized wave
KR101887417B1 (en) Horn-Reflector Antenna with Low Sidelobe
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
US5184144A (en) Ogival cross-section combined microwave waveguide for reflector antenna feed and spar support therefor
US4797684A (en) Waveguide-fed microwave system particularly for cavity-backed spiral antennas for the Ka band
JP2546034B2 (en) Small antenna space matching method
JP3668649B2 (en) Primary radiator
JPH11284428A (en) Primary radiator for parabolic antenna feeding
US6567054B2 (en) Primary radiator suitable for miniaturization
JP3362292B2 (en) Primary radiator
JP2001284950A (en) Primary radiator
JP3781943B2 (en) Primary radiator
JP2007074646A (en) Mode converter and microwave device equipped with this