JP4178265B2 - Waveguide horn antenna, antenna device, and radar device - Google Patents

Waveguide horn antenna, antenna device, and radar device Download PDF

Info

Publication number
JP4178265B2
JP4178265B2 JP2007500427A JP2007500427A JP4178265B2 JP 4178265 B2 JP4178265 B2 JP 4178265B2 JP 2007500427 A JP2007500427 A JP 2007500427A JP 2007500427 A JP2007500427 A JP 2007500427A JP 4178265 B2 JP4178265 B2 JP 4178265B2
Authority
JP
Japan
Prior art keywords
waveguide
antenna
horn antenna
horn
logarithmic spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007500427A
Other languages
Japanese (ja)
Other versions
JPWO2006080130A1 (en
Inventor
智浩 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2006080130A1 publication Critical patent/JPWO2006080130A1/en
Application granted granted Critical
Publication of JP4178265B2 publication Critical patent/JP4178265B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns

Description

この発明は、ミリ波等の高周波信号の放射、受信を行う導波管ホーンアンテナ、およびこれを備えたアンテナ装置やレーダ装置に関するものである。   The present invention relates to a waveguide horn antenna that emits and receives high-frequency signals such as millimeter waves, and an antenna device and a radar device including the waveguide horn antenna.

ミリ波帯を用いたレーダ装置等においては、マイクロストリップ線路等の平面回路よりも導波管の方が、伝送損失が少ないことを利用して、平面回路型のアンテナよりも導波管アンテナが多く用いられている。このような導波管アンテナでは、給電部から開口部に向けて導波管の断面積が広くなるように、導波管の形状をテーパ状にした部分を開口部側に設けることで、開口部から放射される電磁波を平面波状にする構造が利用されている(例えば、特許文献1参照。)。   In a radar apparatus using a millimeter wave band, a waveguide antenna has a smaller transmission loss than a planar circuit such as a microstrip line. Many are used. In such a waveguide antenna, an opening is provided by providing a tapered portion on the opening side so that the cross-sectional area of the waveguide increases from the feeding portion toward the opening. The structure which makes the electromagnetic wave radiated | emitted from a part the plane wave form is utilized (for example, refer patent document 1).

図10は、特許文献1に示すような従来の導波管ホーンアンテナの概略構造を示す外観斜視図である。
図10に示すように、従来の導波管ホーンアンテナは略円柱形状の導体部材90に給電導波管93、接続導波管91、およびホーン型導波管92が形成された構造からなる。
FIG. 10 is an external perspective view showing a schematic structure of a conventional waveguide horn antenna as shown in Patent Document 1. FIG.
As shown in FIG. 10, the conventional waveguide horn antenna has a structure in which a feeding waveguide 93, a connection waveguide 91, and a horn-type waveguide 92 are formed on a substantially cylindrical conductor member 90.

給電導波管93は導体部材90の中心軸に所定径の円筒形状で形成されており、接続導波管91は給電導波管93の短絡端から所定距離の位置に給電導波管93の電磁波伝搬方向に垂直な方向に直線状に延びる角筒状に形成されている。ホーン型導波管92は接続導波管91と同じ軸方向に延び且つテーパ状に形成されており、接続導波管91側の端部から開口面にかけて徐々に導波管の断面積が広くなる形状で形成されている。   The feed waveguide 93 is formed in a cylindrical shape with a predetermined diameter on the central axis of the conductor member 90, and the connection waveguide 91 is located at a predetermined distance from the short-circuited end of the feed waveguide 93. It is formed in a rectangular tube shape extending linearly in a direction perpendicular to the electromagnetic wave propagation direction. The horn-type waveguide 92 extends in the same axial direction as the connection waveguide 91 and is formed in a taper shape, and the cross-sectional area of the waveguide gradually increases from the end on the connection waveguide 91 side to the opening surface. It is formed in the shape.

このような構成のホーンアンテナにおいては、開口部から放射される電磁波をより均一な平面波状にするためには、テーパ状の導波管の長さを長くしなければならず、アンテナおよびこれを備えたレーダ装置の形状が大きくなってしまう。   In the horn antenna having such a configuration, in order to make the electromagnetic wave radiated from the opening into a more uniform plane wave, the length of the tapered waveguide must be increased. The shape of the radar device provided becomes large.

そこで、導波管の長さを長く保ち、且つ外形寸法を小型にする導波管ホーンアンテナとして、導波管を約180°折り返して形成したものがある(例えば、特許文献2参照。)。
特開平4−301902号公報 特開2001−284912公報
Thus, there is a waveguide horn antenna that keeps the length of the waveguide long and has a small external dimension, and is formed by folding the waveguide about 180 ° (see, for example, Patent Document 2).
JP-A-4-301902 JP 2001-284912 A

しかしながら、前述のように特許文献1の導波管ホーンアンテナでは所望のアンテナ特性が得られる外形形状とするには装置を小型化することができない場合がある。一方、特許文献2の導波管ホーンアンテナでは、導波管を180°折り返す形状であるので、この折り返し部にて反射損失が増加して伝送特性が劣化し、所望の出力を得ることが難しいという問題が生じた。   However, as described above, the waveguide horn antenna of Patent Document 1 may not be able to reduce the size of the device in order to obtain an outer shape that provides desired antenna characteristics. On the other hand, since the waveguide horn antenna of Patent Document 2 has a shape in which the waveguide is folded back by 180 °, reflection loss increases at the folded portion, transmission characteristics deteriorate, and it is difficult to obtain a desired output. The problem that occurred.

したがって、本発明の目的は、放射特性および伝送特性に優れた小型の導波管ホーンアンテナを提供すること、および、この導波管ホーンアンテナを用いたアンテナ装置およびレーダ装置を提供することにある。   Therefore, an object of the present invention is to provide a small-sized waveguide horn antenna excellent in radiation characteristics and transmission characteristics, and to provide an antenna device and a radar device using the waveguide horn antenna. .

この発明は、所定方向に延びる給電導波管と、該給電導波管の信号伝搬方向に対して垂直な方向を放射方向とし、給電導波管との接続面の面積に対して信号が放射される開口面の面積が広く形成されている放射用導波管と、を備えた導波管ホーンアンテナにおいて、放射用導波管を、接続面側の端部から開口面側の端部に亘り、放射用導波管が延びる方向に垂直な断面積が徐々に広くなり且つ非直線形状に延びる形状で形成することを特徴としている。 In the present invention, a feed waveguide extending in a predetermined direction and a direction perpendicular to the signal propagation direction of the feed waveguide is a radiation direction, and a signal is radiated with respect to the area of the connection surface with the feed waveguide. And a radiating waveguide having a wide opening surface area, the radiating waveguide from the end on the connection surface side to the end on the opening surface side. In addition, the cross-sectional area perpendicular to the extending direction of the radiating waveguide gradually increases and is formed in a shape extending in a non-linear shape .

この構成では、給電導波管に入力された信号(電磁波)は、該給電導波管を通じて放射用導波管に伝搬される。放射用導波管に伝搬された信号は、非直線状に延び、且つ給電導波管側の端面の面積よりも開口面の面積が広い形状で形成された導波管内を伝搬して、開口面から放射される。この際、放射用導波管が給電導波管側の端面に対して開口面が広い形状であることから、給電導波管から放射用導波管に入力された時点で平面波状であった信号が開口面では球面波状になる。そして、放射用導波管が非直線形状に延びる形状であることから、直線状に導波管を形成するよりも導波管の信号伝搬経路の長さが長くなる。これにより、放射用導波管の給電導波管側端面から開口面まで直線距離が同じであれば、直線状に導波管を形成する場合よりも、球面波状の信号がより一層平面波状になり、放射特性が向上する。一方、同じ放射特性を得ようとするならば、直線状に導波管を形成する場合よりも、給電導波管側端面から開口面までの距離が短くなり、導波管ホーンアンテナが小型化される。   In this configuration, a signal (electromagnetic wave) input to the feed waveguide is propagated to the radiation waveguide through the feed waveguide. The signal propagated to the radiating waveguide propagates through the waveguide formed in a shape that extends in a non-linear manner and has an opening area wider than the area of the end face on the feeding waveguide side. Radiated from the surface. At this time, the radiating waveguide has a wide opening shape with respect to the end surface on the feeding waveguide side, so that it was a plane wave when it was input from the feeding waveguide to the radiating waveguide. The signal has a spherical wave shape on the aperture surface. Since the radiating waveguide extends in a non-linear shape, the length of the signal propagation path of the waveguide becomes longer than when the waveguide is linearly formed. As a result, if the linear distance from the feed waveguide side end face of the radiating waveguide to the opening face is the same, the spherical wave signal is made more planar wave than when the waveguide is formed linearly. Thus, the radiation characteristics are improved. On the other hand, if the same radiation characteristics are to be obtained, the distance from the feed waveguide side end surface to the opening surface is shorter than when the waveguide is formed in a straight line, and the waveguide horn antenna is downsized. Is done.

この構成では、放射用導波管を、給電導波管側の断面積が非直線状に広がっていく部分と、開口面側の従来のホーンアンテナのように直線状に広がっていく部分とから形成するのではなく、導波管全体を非直線状に広がっていく形状で形成することで、2つの部分の接続部がなくなり、この接続部の不連続による伝送損失が減少するとともに導波管形状の設計が容易になる。   In this configuration, the radiating waveguide is divided into a portion where the cross-sectional area on the feeding waveguide side extends non-linearly and a portion where the cross-sectional area on the opening surface side extends linearly like a conventional horn antenna. Rather than forming, the entire waveguide is formed in a shape that spreads in a non-linear manner, so that there is no connection between the two portions, transmission loss due to discontinuity of this connection is reduced, and the waveguide Shape design becomes easy.

また、この発明の導波管ホーンアンテナは、放射用導波管を、給電導波管の延びる方向に平行な該給電導波管の中心軸を螺旋の中心とする対数螺旋形状で形成することを特徴としている。   In the waveguide horn antenna of the present invention, the radiating waveguide is formed in a logarithmic spiral shape with the central axis of the feeding waveguide parallel to the extending direction of the feeding waveguide as the center of the spiral. It is characterized by.

この構成では、前述の非直線形状の具体例として、放射用導波管を対数螺旋形状で形成することで、非直線状に延び、且つ、給電導波管側端面から開口面にかけて断面積が徐々に広がっていく導波管ホーンアンテナが比較的容易に形成される。   In this configuration, as a specific example of the above-described non-linear shape, the radiation waveguide is formed in a logarithmic spiral shape, so that it extends non-linearly and has a cross-sectional area from the end surface on the feeding waveguide side to the opening surface. A gradually expanding waveguide horn antenna can be formed relatively easily.

また、この発明の導波管ホーンアンテナは、E面分割する面で当接される2枚の導体部材から放射用導波管を形成することを特徴としている。   The waveguide horn antenna according to the present invention is characterized in that a radiation waveguide is formed from two conductor members that are brought into contact with each other on a plane to be divided into E planes.

この構成では、2枚の導体部材に所定深さで、側壁が非直線状に延びる溝を形成する。この際、2枚の導体部材にそれぞれ形成される溝は、これら溝側を向かい合わせて2枚の導体部材を当接させて設置する場合に、溝の位置が一致するように形成される。さらに、2枚の導体部材に形成される溝の側面の高さは同じであり、2枚の導体部材を当接させて形成される導波管の側面の高さは、溝の底面の幅に相当する導波管の底面の幅、すなわち側面間の長さよりも長くなるように溝が形成される。このような構成とすることで、溝(導波管)の底面に平行な面がE面となり、2つの導体部材の当接面がE面分割面となる。そして、E面分割面で接合させる導体部材により導波管が形成されることで、伝搬中の電磁波の漏洩が少なくなる。   In this configuration, a groove extending in a non-linear manner with a predetermined depth is formed in the two conductor members. At this time, the grooves formed in the two conductor members are formed so that the positions of the grooves coincide when the two conductor members are placed in contact with each other with the groove sides facing each other. Further, the height of the side surface of the groove formed in the two conductor members is the same, and the height of the side surface of the waveguide formed by contacting the two conductor members is the width of the bottom surface of the groove. The groove is formed so as to be longer than the width of the bottom surface of the waveguide, that is, the length between the side surfaces. By setting it as such a structure, the surface parallel to the bottom face of a groove | channel (waveguide) becomes an E surface, and the contact surface of two conductor members becomes an E surface division surface. And since the waveguide is formed by the conductor member to be joined at the E plane dividing surface, the leakage of the electromagnetic wave being propagated is reduced.

また、この発明のアンテナ装置は、前述の導波管ホーンアンテナと、該導波管ホーンアンテナの給電導波管に接続し、該給電導波管への信号または該給電導波管からの信号を伝搬し、装置に対して固定された固定導波管と、該固定導波管に対して導波管ホーンアンテナを給電導波管の中心軸を中心として回転させる回転手段と、を備えたことを特徴としている。   Further, the antenna device of the present invention is connected to the above-described waveguide horn antenna and a feeding waveguide of the waveguide horn antenna, and a signal to the feeding waveguide or a signal from the feeding waveguide And a rotating means for rotating the waveguide horn antenna about the central axis of the feeding waveguide with respect to the fixed waveguide. It is characterized by that.

この構成では、前述の導波管ホーンアンテナが、回転手段により回転しながら固定導波管から入力された電磁波を外部に放射するとともに、外部から受信した電磁波(反射波)を固定導波管に伝搬する。このため、導波管ホーンアンテナの放射方向に平行な全周囲方向に対して電磁波の放射、受信が行われる。   In this configuration, the above-described waveguide horn antenna radiates the electromagnetic wave input from the fixed waveguide while being rotated by the rotating means, and also receives the electromagnetic wave (reflected wave) received from the outside to the fixed waveguide. Propagate. For this reason, radiation and reception of electromagnetic waves are performed in the entire circumferential direction parallel to the radiation direction of the waveguide horn antenna.

また、この発明のレーダ装置は、前述のアンテナ装置を備え、該アンテナ装置から放射する信号と該アンテナ装置で受け取る信号とに基づいて探知を行うことを特徴としている。   A radar apparatus according to the present invention includes the above-described antenna apparatus, and performs detection based on a signal radiated from the antenna apparatus and a signal received by the antenna apparatus.

この構成では、前述のアンテナ装置により全周囲方向の電磁波が放射、受信されるので、自身が放射した電磁波と受信した反射波とから物標までの距離および大きさが検知される。   In this configuration, since the electromagnetic wave in all directions is radiated and received by the antenna device described above, the distance and magnitude from the electromagnetic wave radiated by itself and the received reflected wave to the target are detected.

この発明によれば、開口面に向けて断面積の広がる導波管を非直線状、具体的に対数螺旋形状に形成することで、導波管を直線状に形成するよりも、同じ外形形状であればより放射特性を改善し、同程度の放射特性であればより小型化した導波管ホーンアンテナを構成することができる。さらには、従来の直線状の導波管よりも放射特性に優れ、且つ小形の導波管ホーンアンテナを構成することができる。そして、この導波管を全体に亘り1種類の非線形形状、具体的に対数螺旋形状とすることで、導波管伝送中の伝送損失を抑制し、導波管の設計を容易にすることができる。すなわち、放射特性に優れた小形の導波管ホーンアンテナを単純な構造で構成することができる。   According to the present invention, by forming the waveguide whose cross-sectional area is widened toward the opening surface in a non-linear shape, specifically in a logarithmic spiral shape, the same outer shape is formed rather than forming the waveguide in a linear shape. If so, the radiation characteristics can be further improved, and if the radiation characteristics are comparable, a more compact waveguide horn antenna can be configured. Furthermore, it is possible to construct a small-sized waveguide horn antenna that is superior in radiation characteristics than the conventional linear waveguide. And by making this waveguide into one kind of non-linear shape, specifically logarithmic spiral shape throughout, it is possible to suppress transmission loss during waveguide transmission and facilitate the design of the waveguide. it can. That is, a small waveguide horn antenna having excellent radiation characteristics can be configured with a simple structure.

また、この発明によれば、2個の導体部材を重ね合わせるだけで導波管ホーンアンテナを形成することができ、且つE面分割面で重ね合わせることで伝送損失が抑制される。すなわち、簡素な構造で放射特性に優れる導波管ホーンアンテナを容易に製造することができる。   In addition, according to the present invention, a waveguide horn antenna can be formed simply by superimposing two conductor members, and transmission loss is suppressed by superimposing them on the E plane dividing surface. That is, a waveguide horn antenna having a simple structure and excellent radiation characteristics can be easily manufactured.

また、この発明によれば、前述の導波管ホーンアンテナを用いることで、放射特性に優れた小型のアンテナ装置を構成することができる。   Moreover, according to this invention, the small-sized antenna apparatus excellent in the radiation | emission characteristic can be comprised by using the above-mentioned waveguide horn antenna.

また、この発明によれば、前記導波管ホーンアンテナを備えたアンテナ装置を用いることで、探知性能に優れるレーダ装置を小型に構成することができる。   Further, according to the present invention, by using the antenna device including the waveguide horn antenna, a radar device having excellent detection performance can be configured in a small size.

本発明の第1の実施形態に係る導波管ホーンアンテナについて図1〜図4を参照して説明する。
図1(a)は本実施形態の導波管ホーンアンテナの概略構成を示す外観斜視図であり、図1(b)は導波管として機能する部分の構成を示す斜視図である。
図1に示すように、本実施形態の導波管ホーンアンテナは、導体部材2に形成された放射用導波管1と給電導波管3とを備える。放射用導波管1は、対数螺旋状導波管11とホーン型導波管12とからなり、ホーン型導波管12の一方端が導体部材2から外部に開口し、対数螺旋状導波管11の一方端が給電導波管3に接続する。ここで、以下の説明の便宜上、ホーン型導波管12の開口する端部の面を開口面101とし、対数螺旋状導波管11の給電導波管3への接続面を給電側接続面103とし、ホーン型導波管12と対数螺旋状導波管11との接続面を中間接続面102とする。
A waveguide horn antenna according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1A is an external perspective view showing a schematic configuration of the waveguide horn antenna of the present embodiment, and FIG. 1B is a perspective view showing a configuration of a portion functioning as a waveguide.
As shown in FIG. 1, the waveguide horn antenna of the present embodiment includes a radiation waveguide 1 and a feed waveguide 3 formed on a conductor member 2. The radiating waveguide 1 includes a logarithmic spiral waveguide 11 and a horn-type waveguide 12, and one end of the horn-type waveguide 12 opens to the outside from the conductor member 2. One end of the tube 11 is connected to the feed waveguide 3. Here, for convenience of the following description, the opening end surface of the horn-shaped waveguide 12 is defined as the opening surface 101, and the connection surface of the logarithmic spiral waveguide 11 to the power supply waveguide 3 is defined as the power supply side connection surface. 103, and the connection surface between the horn-type waveguide 12 and the logarithmic spiral waveguide 11 is an intermediate connection surface 102.

給電導波管3は導体部材2に形成された円筒形の導波管であり、円筒形の軸方向に沿って直線的に延びる形状で形成されている。この給電導波管3の短絡端(図1における給電導波管3の上端)から所定距離離れた位置には、対数螺旋形状に延びる角筒状の対数螺旋状導波管11の一方端が接続されている。この接続部の形状は、円筒形状の給電導波管3と各筒状の対数螺旋状導波管11とが結合する形状で形成されており、円筒形状の給電導波管3を伝搬するTMモードと四角筒状の対数螺旋状導波管を伝搬するTEモードとが相互に変換される。さらに、接続位置は、給電導波管3と対数螺旋状導波管11との間で円筒形状の給電導波管3を伝搬するTMモードと角筒状の対数螺旋状導波管11を伝搬するTEモードとを低損失で変換する位置に設定されている。   The feed waveguide 3 is a cylindrical waveguide formed on the conductor member 2 and is formed in a shape extending linearly along the axial direction of the cylinder. At a position away from the short-circuited end of the power supply waveguide 3 (the upper end of the power supply waveguide 3 in FIG. 1) by a predetermined distance, one end of a square cylindrical logarithmic spiral waveguide 11 extending in a logarithmic spiral shape is located. It is connected. The shape of this connecting portion is formed in a shape in which the cylindrical power supply waveguide 3 and each cylindrical logarithmic spiral waveguide 11 are coupled, and the TM propagating through the cylindrical power supply waveguide 3 is formed. The mode and the TE mode propagating through the square cylindrical logarithmic spiral waveguide are mutually converted. Furthermore, the connection position is propagated between the TM mode propagating through the cylindrical power supply waveguide 3 and the square cylindrical logarithmic spiral waveguide 11 between the power supply waveguide 3 and the logarithmic spiral waveguide 11. The TE mode to be converted is set to a position for converting with low loss.

放射用導波管1の対数螺旋状導波管11は、延びる方向に垂直な断面が方形状であり、給電導波管3に接続する給電側接続面103からホーン型導波管12に接続する中間接続面102まで給電導波管3の中心軸に垂直な平面において、この中心軸を螺旋の中心として略270°で湾曲する形状で形成されている。ここで、対数螺旋状導波管11の電磁波入射方向は給電側接続面103に垂直な方向であり、この方向は給電導波管3の中心軸方向すなわち信号伝搬方向に垂直な方向である。また、対数螺旋状導波管11の電磁波出射方向は中間接続面102に垂直な方向であり、この方向も給電導波管3の信号伝搬方向に垂直な方向である。   The logarithmic spiral waveguide 11 of the radiating waveguide 1 has a rectangular cross section perpendicular to the extending direction, and is connected to the horn-type waveguide 12 from the feeding-side connection surface 103 connected to the feeding waveguide 3. In a plane perpendicular to the central axis of the feed waveguide 3 up to the intermediate connection surface 102, the central connection surface 102 is formed in a shape that is curved at approximately 270 ° with the central axis as the center of the spiral. Here, the electromagnetic wave incident direction of the logarithmic spiral waveguide 11 is a direction perpendicular to the feeding-side connection surface 103, and this direction is a central axis direction of the feeding waveguide 3, that is, a direction perpendicular to the signal propagation direction. The electromagnetic wave emission direction of the logarithmic spiral waveguide 11 is a direction perpendicular to the intermediate connection surface 102, and this direction is also a direction perpendicular to the signal propagation direction of the feed waveguide 3.

具体的に、対数螺旋状導波管11は、例えば、給電導波管3の中心軸に垂直な平面に対しては、次に示す対数螺旋の方程式に従って延びる形状で形成されている。   Specifically, the logarithmic spiral waveguide 11 is formed, for example, in a shape extending according to the following logarithmic spiral equation with respect to a plane perpendicular to the central axis of the feed waveguide 3.

ここで、対数螺旋の方程式はr=R×exp(cotα×θ)で与えられ、(r,θ)は極座標を示し、給電導波管3の中心軸の点をこの極座標系の原点とする。また、R,αは定数であり、これらR,αの値を所定に設定することにより、螺旋形状を決定する。この際、給電導波管3の中心軸に垂直な平面に投影して見た、対数螺旋状導波管11の巻く内側の線(対数螺旋状導波管11の巻く内側の側面)と、対数螺旋状導波管11の巻く外側の線(対数螺旋状導波管11の巻く外側の側面)とで、前記定数R,αを適当に設定することにより、徐々にこの線間が広がる形状に対数螺旋状導波管11が形成される。すなわち、このような設定を行うことで、対数螺旋導波管11における内側の側面と外側の側面との間隔は、給電側接続面103から中間接続面102にかけて徐々に広がる形状に形成される。   Here, the equation of the logarithmic spiral is given by r = R × exp (cot α × θ), (r, θ) indicates polar coordinates, and the point of the central axis of the feed waveguide 3 is the origin of this polar coordinate system. . R and α are constants, and the spiral shape is determined by setting the values of R and α to predetermined values. At this time, an inner line wound around the logarithmic spiral waveguide 11 (an inner side surface around which the logarithmic spiral waveguide 11 is wound) projected onto a plane perpendicular to the central axis of the feed waveguide 3, and By appropriately setting the constants R and α on the outer line wound by the logarithmic spiral waveguide 11 (the outer side surface wound by the logarithmic spiral waveguide 11), the space between the lines gradually widens. A logarithmic spiral waveguide 11 is formed. That is, by performing such setting, the interval between the inner side surface and the outer side surface in the logarithmic spiral waveguide 11 is formed in a shape that gradually increases from the power supply side connection surface 103 to the intermediate connection surface 102.

また、対数螺旋導波管11は、給電導波管3の中心軸に平行な方向には、接続位置から給電導波管3の短絡端方向に延びる形状で形成されている。ここで、対数螺旋状導波管11の底面(図における対数螺旋状導波管11の下側の面)と、これに対向する対数螺旋状導波管103の天面(図における対数螺旋状導波管11の上側の面)とでは、前記中心軸に平行な方向の延びる量が異なり、底面と天面との間隔は、給電側接続面103から中間接続面102にかけて徐々に広がる形状に形成されている。   The logarithmic spiral waveguide 11 is formed in a shape extending in the direction parallel to the central axis of the feed waveguide 3 from the connection position toward the short-circuit end of the feed waveguide 3. Here, the bottom surface of the logarithmic spiral waveguide 11 (the lower surface of the logarithmic spiral waveguide 11 in the figure) and the top surface of the logarithmic spiral waveguide 103 (the logarithmic spiral shape in the figure). (The upper surface of the waveguide 11) differs in the amount of extension in the direction parallel to the central axis, and the distance between the bottom surface and the top surface gradually increases from the power supply side connection surface 103 to the intermediate connection surface 102. Is formed.

このような形状で形成されることで、対数螺旋状導波管11は、給電側接続面103側の端部から中間接続面102側の端部にかけて、導波管の延びる方向に垂直な断面積が徐々に広くなる形状で、且つ導波管が湾曲ながら延びる形状となる。   By being formed in such a shape, the logarithmic spiral waveguide 11 is cut perpendicular to the extending direction of the waveguide from the end on the power supply side connection surface 103 side to the end on the intermediate connection surface 102 side. The shape is such that the area gradually increases and the waveguide extends while being curved.

ホーン型導波管12は、中間接続面102から開口面101にかけて各壁面が直線状で徐々に広がりながら延びるテーパ状に形成されており、開口面101の面積は中間接続面102の面積よりも広く形成されている。また、開口面101に垂直な方向は中間接続面102に垂直な方向と同じであり、開口面101の電磁波放射方向は給電導波管3の信号伝搬方向に垂直な方向となる。   The horn-type waveguide 12 is formed in a tapered shape in which each wall surface is linear and gradually extends from the intermediate connection surface 102 to the opening surface 101, and the area of the opening surface 101 is larger than the area of the intermediate connection surface 102. Widely formed. The direction perpendicular to the opening surface 101 is the same as the direction perpendicular to the intermediate connection surface 102, and the electromagnetic wave radiation direction of the opening surface 101 is perpendicular to the signal propagation direction of the feed waveguide 3.

このような構成とすることで、給電導波管3との給電側接続面103から開口面101までの距離が従来の直線状に延びる放射用導波管よりも長くなり、且つ、延びる方向に垂直な断面積が徐々に広くなるので、対数螺旋状導波管11とホーン型導波管12とを伝搬される間に、電磁波が、従来の構造より一層、平面波に近い状態で放射される。これにより、放射される電磁波のビーム幅を狭くすることができ、アンテナ利得を高くすることができる。さらには、小型でありながらも、従来のように導波管を180°折り曲げる等の伝送路の急激な方向変化が存在せず、緩やかにカーブをしながら延びる形状であるので、反射損失、伝送損失を大幅に抑制することができる。   With such a configuration, the distance from the feeding-side connecting surface 103 to the opening waveguide 101 with the feeding waveguide 3 is longer than that of the conventional radiation waveguide extending linearly, and in the extending direction. Since the vertical cross-sectional area gradually increases, electromagnetic waves are radiated in a state closer to a plane wave than in the conventional structure while propagating through the logarithmic spiral waveguide 11 and the horn waveguide 12. . Thereby, the beam width of the radiated electromagnetic wave can be narrowed, and the antenna gain can be increased. Furthermore, although it is small in size, there is no sudden change in the direction of the transmission line, such as bending the waveguide 180 ° as in the conventional case, and it is a shape that extends while gently curving. Loss can be greatly suppressed.

例えば、導体部材2の円柱部の半径が15mmであり、図1のような270°カーブ形状の対数螺旋状導波管11を用いる場合で、巻きの内側の側壁に対する対数螺旋の方程式のパラメータをR=6,α=−88°とし、巻の外側の側壁に対する対数螺旋の方程式のパラメータをR=7.27,α=88°とする。さらに、給電側接続面103の高さ(h3)が2.54mmで、幅(w3)が1.27mmであるのに対して、中間接続面102の高さ(h2)を6.0mmとし、幅(w2)を3.5mmとし、且つ開口面101の高さ(h1)を15mmとし、幅(w1)を12mmとする。さらには、ホーン型導波管12の長さを21.635mmとする。このような条件でホーンアンテナを形成すると、図2に示すような指向性が得られる。   For example, when the radius of the cylindrical portion of the conductor member 2 is 15 mm and the logarithmic spiral waveguide 11 having a 270 ° curve shape as shown in FIG. 1 is used, the parameters of the logarithmic spiral equation for the inner side wall of the winding are set as follows. Let R = 6, α = −88 °, and let the parameters of the logarithmic spiral equation for the outer sidewall of the winding be R = 7.27, α = 88 °. Furthermore, while the height (h3) of the power supply side connection surface 103 is 2.54 mm and the width (w3) is 1.27 mm, the height (h2) of the intermediate connection surface 102 is 6.0 mm, The width (w2) is 3.5 mm, the height (h1) of the opening surface 101 is 15 mm, and the width (w1) is 12 mm. Further, the length of the horn type waveguide 12 is set to 21.635 mm. When the horn antenna is formed under such conditions, directivity as shown in FIG. 2 is obtained.

図2は本実施形態の構造のホーンアンテナと従来例の構造のホーンアンテナとの指向性を示す図であり、(a)が垂直方向指向性を示し、(b)が水平方向指向性を示す。この結果に示すように、本実施形態の構成とすることで、垂直方向指向性、水平方向指向性ともに従来例よりも改善される。この実験結果における具体的な数値としては、本実施形態の構造のホーンアンテナでは、垂直ビーム幅が16.5°(従来例(図10の構造)では21.3°)、水平ビーム幅が18.4°(従来例では18.7°)、アンテナ利得が19.5dBi(従来例では17.4dBi)となり、従来よりも各特性が改善されたことが分かる。   FIG. 2 is a diagram showing the directivity of the horn antenna having the structure of the present embodiment and the horn antenna having the structure of the conventional example, where (a) shows the vertical directivity and (b) shows the horizontal directivity. . As shown in this result, by adopting the configuration of the present embodiment, both the vertical directivity and the horizontal directivity are improved as compared with the conventional example. As specific numerical values in this experimental result, the horn antenna having the structure of the present embodiment has a vertical beam width of 16.5 ° (21.3 ° in the conventional example (structure of FIG. 10)) and a horizontal beam width of 18 °. .4 ° (18.7 ° in the conventional example) and antenna gain of 19.5 dBi (17.4 dBi in the conventional example), it can be seen that each characteristic is improved as compared with the conventional case.

次に、本実施形態の導波管ホーンアンテナの形成方法について図3を参照して説明する。
図3は図1に示した導波管ホーンアンテナを部品毎に分離した分解斜視図である。
図3に示すように、導波管ホーンアンテナは上導体部材21と下導体部材22とからなる。上導体部材21には、側面に開口するホーン用溝121から中心方向に順に対数螺旋溝111,給電用円筒孔31がつながって形成されている。ホーン用溝121は、上導体部材21の側面に開口してこの開口部から上導体部材21の略中心方向に徐々に深さが浅くなり且つ幅が狭くなる形状で形成されている。対数螺旋溝111は、ホーン型導波管用溝121につながりホーン型導波管用溝121に繋がる端部からこれに対向する端部にかけて徐々に深さが浅くなり且つ幅が狭くなる形状で形成されている。給電用円筒孔31は、上導体部材21の底面(図3における下側の面)の略中心に形成され、対数螺旋溝111につながり所定深さで所定径に形成されている。ここで対数螺旋溝111の側壁は、前述の対数螺旋の方程式に準じた形状で形成されており、それぞれの側壁に対して与えられる定数R,αは異なる。
Next, a method for forming the waveguide horn antenna of this embodiment will be described with reference to FIG.
FIG. 3 is an exploded perspective view in which the waveguide horn antenna shown in FIG. 1 is separated for each component.
As shown in FIG. 3, the waveguide horn antenna includes an upper conductor member 21 and a lower conductor member 22. The upper conductor member 21 is formed with a logarithmic spiral groove 111 and a power feeding cylindrical hole 31 connected in order from the horn groove 121 opened on the side surface in the center direction. The horn groove 121 is formed in a shape that opens on the side surface of the upper conductor member 21 and gradually decreases in depth from the opening toward the substantially central direction of the upper conductor member 21 and narrows in width. The logarithmic spiral groove 111 is connected to the horn-type waveguide groove 121 and is formed in such a shape that the depth gradually decreases from the end connected to the horn-type waveguide groove 121 to the end facing the horn-type waveguide groove 121. ing. The power feeding cylindrical hole 31 is formed substantially at the center of the bottom surface (the lower surface in FIG. 3) of the upper conductor member 21, and is connected to the logarithmic spiral groove 111 and formed at a predetermined depth and a predetermined diameter. Here, the side wall of the logarithmic spiral groove 111 is formed in a shape according to the above-described logarithmic spiral equation, and the constants R and α given to the respective side walls are different.

下導体部材22には、上導体部材21に対向する形状で、側面に開口するホーン用溝122から中心方向に順に対数螺旋溝112,給電用円筒孔32がつながって形成されている。ホーン用溝122は、下導体部材22の側面に開口してこの開口部から下導体部材22の略中心方向に徐々に深さが浅くなり且つ幅が狭くなる形状で形成されている。対数螺旋溝112は、ホーン型導波管用溝122につながりホーン型導波管用溝122に繋がる端部からこれに対向する端部にかけて徐々に深さが浅くなり且つ幅が狭くなる形状で形成されている。給電用円筒孔32は、上導体部材22の底面(図3における上側の面)の略中心に形成され、対数螺旋溝112につながり所定深さで所定内径に形成されている。ここで対数螺旋溝112の側壁は、前述の対数螺旋の方程式に準じた形状で形成されており、それぞれの側壁に対して与えられる定数R,αは異なる。   The lower conductor member 22 has a shape facing the upper conductor member 21 and is formed by connecting a logarithmic spiral groove 112 and a power feeding cylindrical hole 32 in this order from a horn groove 122 opened on a side surface in the center direction. The horn groove 122 is formed in a shape that opens on the side surface of the lower conductor member 22 and gradually becomes shallower and narrower from the opening toward the substantially central direction of the lower conductor member 22. The logarithmic spiral groove 112 is connected to the horn-type waveguide groove 122 and is formed in such a shape that the depth gradually decreases from the end connected to the horn-type waveguide groove 122 to the end facing the horn-type waveguide groove 122. ing. The power feeding cylindrical hole 32 is formed substantially at the center of the bottom surface (upper surface in FIG. 3) of the upper conductor member 22, and is connected to the logarithmic spiral groove 112 and formed at a predetermined depth and a predetermined inner diameter. Here, the side wall of the logarithmic spiral groove 112 is formed in a shape according to the above-described logarithmic spiral equation, and the constants R and α given to the respective side walls are different.

このような構成とすることで、上導体部材21と下導体部材22とをそれぞれの溝が形成された面同士で当接させると、ホーン用溝121とホーン用溝122とにより図1に示すホーン型導波管12が形成され、対数螺旋溝111と対数螺旋溝112とにより図1に示す対数螺旋状導波管11が形成され、給電用円筒孔31と給電用円筒孔32とにより図1に示す給電導波管3が形成される。なお、これらの溝付きの導体部材は、導体部材の切削加工、ダイカスト加工により形成したり、予め樹脂、セラミック、ガラスにより形状を成形した後に導電性材料をメッキしたり、鍛造プレスにより形成したものである。   By adopting such a configuration, when the upper conductor member 21 and the lower conductor member 22 are brought into contact with each other on the surfaces on which the respective grooves are formed, the horn groove 121 and the horn groove 122 are shown in FIG. A horn-type waveguide 12 is formed, the logarithmic spiral groove 111 and the logarithmic spiral groove 112 form the logarithmic spiral waveguide 11 shown in FIG. 1 is formed. These grooved conductor members are formed by cutting or die-casting the conductor member, or by forming a shape in advance with resin, ceramic or glass and then plating with a conductive material, or by forging press. It is.

ここで、対数螺旋状導波管11の高さが幅よりも長くなる形状とする。すなわち、対数螺旋溝111と対数螺旋溝112との深さの計が対数螺旋溝111,112の幅よりも長くなる形状とする。これにより、上導体部材21と下導体部材22との当接面がホーン型導波管12および対数螺旋状導波管11のE面分割面となる。この結果、導体部材2を上導体部材21、下導体部材22の2つに分割して形成し、これらを当接させる構造を用いても、導波管を伝送される電磁波の伝送損失を大幅に抑制することができる。これにより、伝送損失の少なくアンテナ放射特性に優れる導波管ホーンアンテナを形成することができる。   Here, the height of the logarithmic spiral waveguide 11 is set to be longer than the width. That is, the total depth of the logarithmic spiral groove 111 and the logarithmic spiral groove 112 is set to be longer than the width of the logarithmic spiral grooves 111 and 112. As a result, the contact surface between the upper conductor member 21 and the lower conductor member 22 becomes the E plane dividing surface of the horn-type waveguide 12 and the logarithmic spiral waveguide 11. As a result, the transmission loss of the electromagnetic wave transmitted through the waveguide is greatly increased even when the conductor member 2 is divided into two parts, the upper conductor member 21 and the lower conductor member 22, and these are in contact with each other. Can be suppressed. As a result, a waveguide horn antenna with little transmission loss and excellent antenna radiation characteristics can be formed.

また、給電導波管3を中心にして、この円周面を回り込む形状で対数螺旋状導波管11が形成されるので、導波管長を長く取りながらも外形形状を小さくすることができる。   In addition, since the logarithmic spiral waveguide 11 is formed around the circumferential surface with the feeding waveguide 3 as the center, the outer shape can be reduced while the waveguide length is increased.

以上のような構成とすることで、放射特性および伝送特性に優れた小型のホーンアンテナを形成することができる。   By setting it as the above structures, the small horn antenna excellent in the radiation | emission characteristic and the transmission characteristic can be formed.

なお、前述の説明では、放射用導波管1を対数螺旋状導波管11とホーン型導波管12とで形成した例を説明したが、放射用導波管1の全体を対数螺旋状に形成しても良い。この場合には、放射用導波管を平面視した壁面の形状は、例えば、図4のようになる。   In the above description, the example in which the radiating waveguide 1 is formed of the logarithmic spiral waveguide 11 and the horn-type waveguide 12 has been described. However, the entire radiating waveguide 1 is logarithmically spiraled. You may form in. In this case, the shape of the wall surface in plan view of the radiation waveguide is, for example, as shown in FIG.

図4は放射用導波管の全体を対数螺旋状に形成した場合の壁面の軌道を示す図であり、201は放射用導波管の内側壁面を示し、202は放射用導波管の外側壁面を示す。
図4に示すように、放射用導波管の全体を対数螺旋状にしても、前述の構成と同様の効果を奏することができる。さらには、前述の構成のように対数螺旋状に延びる部分と直線状に延びる部分とが存在する場合には、これらの間で伝送損失が発生しないように設計する必要が生じるが、全体が対数螺旋状であれば、この接続部における伝送損失を抑制することができるとともに、この部分に関する設計を行う必要がなくなり、容易に形状を設計することができる。
FIG. 4 is a diagram showing the trajectory of the wall surface when the entire radiation waveguide is formed in a logarithmic spiral, 201 indicates the inner wall surface of the radiation waveguide, and 202 indicates the outside of the radiation waveguide. Shows the wall.
As shown in FIG. 4, even if the whole radiation waveguide is made into a logarithmic spiral, the same effects as those of the above-described configuration can be obtained. Furthermore, when there are a logarithmic spiral extending portion and a linearly extending portion as in the above-described configuration, it is necessary to design so that no transmission loss occurs between them. If it is a spiral shape, it is possible to suppress transmission loss at this connection portion, and it is not necessary to design this portion, and the shape can be easily designed.

また、前述のように図1の構成では、270°湾曲する対数螺旋状導波管を用い、図4では360°湾曲する対数螺旋状導波管を用いた例を説明したが、これらの角度は、必要とする導波管ホーンアンテナの仕様に応じて適宜設定すればよい。   Further, as described above, in the configuration of FIG. 1, the example using the logarithmic spiral waveguide curved at 270 ° and the example using the logarithmic spiral waveguide curved at 360 ° are explained in FIG. May be set as appropriate according to the specifications of the required waveguide horn antenna.

次に、第2の実施形態に係る導波管ホーンアンテナについて図を参照して説明する。
図5(a)は本実施形態の導波管ホーンアンテナの概略構造を示す外観斜視図であり、図5(b)は従来の同様の導波管ホーンアンテナの構成を示す外観斜視図である。
本実施形態の導波管ホーンアンテナは、従来のH面セクトラルホーンに対数螺旋状導波管を接続したものである。
図5(a)に示すように、本実施形態の導波管ホーンアンテナは、所定厚みの導体板41にホーン型導波管43と対数螺旋状導波管42とが形成された構造であり、ホーン型導波管43と対数螺旋状導波管42との厚みdは同じである。
Next, a waveguide horn antenna according to a second embodiment will be described with reference to the drawings.
FIG. 5A is an external perspective view showing a schematic structure of the waveguide horn antenna of the present embodiment, and FIG. 5B is an external perspective view showing a configuration of a conventional waveguide horn antenna. .
The waveguide horn antenna of this embodiment is obtained by connecting a logarithmic spiral waveguide to a conventional H-plane spectral horn.
As shown in FIG. 5A, the waveguide horn antenna of this embodiment has a structure in which a horn-type waveguide 43 and a logarithmic spiral waveguide 42 are formed on a conductor plate 41 having a predetermined thickness. The horn-type waveguide 43 and the logarithmic spiral waveguide 42 have the same thickness d.

ホーン型導波管43は導体板41の一面から開口し、内部に直線状に延びる形状で、且つ徐々に幅が狭くなるテーパ形状で形成されており、開口面44の幅w44に対して、対数螺旋状導波管42との接続面の幅w46は狭く形成されている。   The horn-type waveguide 43 is opened from one surface of the conductor plate 41, has a linearly extending shape inside, and is formed in a tapered shape with a gradually narrowing width, and with respect to the width w44 of the opening surface 44, The width w46 of the connection surface with the logarithmic spiral waveguide 42 is narrow.

対数螺旋状導波管42はホーン型導波管43に接続し、第1の実施形態に示した対数螺旋の方程式に準じて側壁が非直線状に延びて形成されており、導体板41における、前記開口面44に平行で、ホーン型導波管43と対数螺旋状導波管42との接続面と略同じ平面上に形成された面に開口している。そして、両側面を形成するための対数螺旋の方程式の定数をそれぞれ異なる所定値に設定することで、開口面45の幅w45が接続面の幅w46よりも狭くなるように、接続面から開口面45にかけて徐々に幅が狭くなる形状に形成されている。この対数螺旋状導波管42の開口面45は図示しない給電導波管に接続している。   The logarithmic spiral waveguide 42 is connected to the horn-type waveguide 43 and has a side wall extending non-linearly according to the logarithmic spiral equation shown in the first embodiment. The opening is made in a plane that is parallel to the opening surface 44 and is formed on substantially the same plane as the connection surface between the horn waveguide 43 and the logarithmic spiral waveguide 42. Then, by setting the constants of the logarithmic spiral equation for forming both side surfaces to different predetermined values, the width w45 of the opening surface 45 becomes narrower than the width w46 of the connection surface, so that It is formed in a shape that gradually decreases in width toward 45. The opening surface 45 of the logarithmic spiral waveguide 42 is connected to a feed waveguide (not shown).

一方、従来のH面セクトラルホーンは、所定厚みの導体板81にホーン型導波管83と直線状導波管82とが形成された構造であり、ホーン型導波管83と直線状導波管82との厚みdは同じである。   On the other hand, the conventional H-plane spectral horn has a structure in which a horn-type waveguide 83 and a linear waveguide 82 are formed on a conductor plate 81 having a predetermined thickness, and the horn-type waveguide 83 and the linear waveguide are formed. The thickness d of the tube 82 is the same.

ホーン型導波管83は導体板81の一面から開口し、内部に直線状に延びる形状で、且つ徐々に幅が狭くなく形状で形成されており、開口面84の幅w84に対して、直線状導波管82との接続面の幅w86は狭く形成されている。   The horn-type waveguide 83 is opened from one surface of the conductor plate 81, has a shape extending linearly inside, and is gradually formed with a shape that is not narrow, and is linear with respect to the width w 84 of the opening surface 84. The width w86 of the connection surface with the waveguide 82 is narrow.

直線状導波管82はホーン型導波管83と延びる方向の中心軸が一致しており、幅を変えることなく、ホーン型導波管83の開口面84を有する導体板81の側面に対向する側面から開口する形状に形成されている。このため、開口面85の幅w85は接続面の幅w86と同じである。そしてこの開口面85で直線状導波管82は、図示しない給電導波管に接続している。   The straight waveguide 82 coincides with the side surface of the conductor plate 81 having the opening surface 84 of the horn-type waveguide 83 without changing the width, with the central axis in the extending direction coincident with that of the horn-type waveguide 83. It is formed in a shape that opens from the side surface. For this reason, the width w85 of the opening surface 85 is the same as the width w86 of the connection surface. The straight waveguide 82 is connected to a feed waveguide (not shown) at the opening surface 85.

図5(a)、(b)を比較して分かるように、本実施形態の構成を用いることで、導体板におけるホーン型導波管の延びる方向に平行な長さが同じであっても、給電導波管からホーン型導波管の開口面までの実質的な導波管長を長くすることができる。これにより、図6に示すように、供給された電磁波がより平面波状に近い状態で保たれるため、ビーム幅が狭くなりアンテナの放射特性が向上する。例えば、巻く内側の側壁のパラメータをR=6,α=−86°とし、巻く外側の側壁のパラメータをR=8.54,α=86°とし、180°回転させる構造であり、開口面45の寸法を2.54mm×1.27mmとし、接続面46の寸法を5.8mm×1.27mmとし、開口面44の寸法を12mm×1.27mmとし、ホーン型導波管の長さを15mmとした場合、水平ビーム幅は17.6°(従来例(図5(b)の構造)では26.0°)となり、アンテナ利得は13.1dBi(従来例では11.5dBi)となる。
また、図6(a)は本実施形態(図5(a)の構造)の導波管ホーンアンテナの電界強度分布を示し、図6(b)は従来(図5(b)の構造)の導波管ホーンアンテナの電界強度分布を示す。また、図7は、本実施形態の構造の導波管ホーンアンテナおよび従来の導波管ホーンアンテナの指向性と反射特性とを示した図である。このように、本実施形態の構造を用いることで、指向性およびアンテナの放射特性を向上させることができる。
As can be seen by comparing FIGS. 5 (a) and 5 (b), by using the configuration of this embodiment, even if the length parallel to the direction in which the horn-type waveguide extends in the conductor plate is the same, The substantial waveguide length from the feeding waveguide to the opening surface of the horn-type waveguide can be increased. As a result, as shown in FIG. 6, the supplied electromagnetic wave is maintained in a state closer to a plane wave, so that the beam width is narrowed and the radiation characteristics of the antenna are improved. For example, the parameters of the inner side wall to be wound are R = 6, α = −86 °, the parameters of the outer side wall to be wound are R = 8.54, α = 86 °, and the opening surface 45 is rotated. The dimensions of the connection surface 46 are 5.8 mm × 1.27 mm, the opening surface 44 is 12 mm × 1.27 mm, and the length of the horn-type waveguide is 15 mm. In this case, the horizontal beam width is 17.6 ° (26.0 ° in the conventional example (structure of FIG. 5B)), and the antenna gain is 13.1 dBi (11.5 dBi in the conventional example).
FIG. 6A shows the electric field intensity distribution of the waveguide horn antenna of the present embodiment (structure of FIG. 5A), and FIG. 6B shows the conventional structure (structure of FIG. 5B). The electric field strength distribution of a waveguide horn antenna is shown. FIG. 7 is a diagram showing the directivity and reflection characteristics of the waveguide horn antenna having the structure of this embodiment and the conventional waveguide horn antenna. Thus, by using the structure of the present embodiment, the directivity and the radiation characteristics of the antenna can be improved.

また、本実施形態の構造では、導体板におけるホーン型導波管の延びる方向の略中央で給電導波管に接続するので、給電導波管の形状を考慮しても、この方向の全体寸法に変化を及ぼすことがなく、小型の導波管ホーンアンテナを構成することができる。   In the structure of the present embodiment, the conductor plate is connected to the power supply waveguide at approximately the center in the direction in which the horn-shaped waveguide extends. Therefore, even if the shape of the power supply waveguide is taken into consideration, the overall dimensions in this direction Thus, a small-sized waveguide horn antenna can be configured.

なお、前述の各実施形態の導波管ホーンアンテナに対して、次に示す対数螺旋の方程式を用いてもよい。   The following logarithmic spiral equation may be used for the waveguide horn antenna of each of the embodiments described above.

Figure 0004178265
Figure 0004178265

この場合のr,θも極座標を示し、R,an,Nを適宜設定することにより、所望の対数螺旋を得ることができる。 R in this case, theta also shows a polar, R, a n, by properly setting the N, it is possible to obtain a desired logarithmic spiral.

次に、第3の実施形態に係るアンテナ装置について図8を参照して説明する。
図8は、図1に示す導波管ホーンアンテナを用いたアンテナ装置の概略構成を示す図である。
図8に示すアンテナ装置は、導波管ホーンアンテナ51、固定部材52、チョーク53を備える。導波管ホーンアンテナ51は、一部が対数螺旋状導波管からなる放射用導波管1と給電用導波管3とが形成された導体部材2からなる。固定部材52は、導波管ホーンアンテナ1の給電用導波管3に接続し、断面形状が同じ固定給電導波管54を備える。チョーク53は、固定部材52に対して導波管ホーンアンテナ1を回転可能に支持し、給電導波管3と固定給電導波管54とを接続する接続導波管55を備える。そして、図示しない回転動力源により導波管ホーンアンテナ51は固定部材52に対して回転する。このように回転しながら導波管ホーンアンテナ51に固定部材52から電磁波を供給して、導波管ホーンアンテナ51の放射開口部50から外部に放射することで、アンテナの放射方向に平行なアンテナ装置の全周方向に電磁波を放射することができる。
Next, an antenna device according to a third embodiment will be described with reference to FIG.
FIG. 8 is a diagram showing a schematic configuration of an antenna apparatus using the waveguide horn antenna shown in FIG.
The antenna device shown in FIG. 8 includes a waveguide horn antenna 51, a fixing member 52, and a choke 53. The waveguide horn antenna 51 is composed of a conductor member 2 on which a radiation waveguide 1 and a power supply waveguide 3 are partially formed of a logarithmic spiral waveguide. The fixed member 52 is connected to the feeding waveguide 3 of the waveguide horn antenna 1 and includes a fixed feeding waveguide 54 having the same cross-sectional shape. The choke 53 includes a connection waveguide 55 that rotatably supports the waveguide horn antenna 1 with respect to the fixed member 52 and connects the feed waveguide 3 and the fixed feed waveguide 54. The waveguide horn antenna 51 is rotated with respect to the fixed member 52 by a rotational power source (not shown). An antenna parallel to the radiation direction of the antenna is supplied by supplying electromagnetic waves from the fixing member 52 to the waveguide horn antenna 51 while rotating in this way and radiating the electromagnetic waves from the radiation opening 50 of the waveguide horn antenna 51 to the outside. Electromagnetic waves can be radiated in the entire circumferential direction of the apparatus.

このようなアンテナ装置に、前述の第1の実施形態の導波管ホーンアンテナを用いることで、アンテナ装置を小型化することができるとともに、全周に対して優れた放射特性で電磁波を放射することができる。   By using the waveguide horn antenna of the first embodiment described above for such an antenna device, the antenna device can be miniaturized and radiate electromagnetic waves with excellent radiation characteristics over the entire circumference. be able to.

次に、第4の実施形態に係るレーダ装置について図9を参照して説明する。
図9は本実施形態のレーダ装置の概略構成を示すブロック図である。
本実施形態のレーダ装置は、アンテナ装置60、電圧制御発振器61、方向性結合器62、サーキュレータ63、ミキサ64、LNA65を備える。そして、このアンテナ装置60に前述の導波管ホーンアンテナを備えたアンテナ装置を用いる。
Next, a radar apparatus according to a fourth embodiment will be described with reference to FIG.
FIG. 9 is a block diagram showing a schematic configuration of the radar apparatus of the present embodiment.
The radar apparatus according to the present embodiment includes an antenna apparatus 60, a voltage control oscillator 61, a directional coupler 62, a circulator 63, a mixer 64, and an LNA 65. And the antenna apparatus provided with the above-mentioned waveguide horn antenna is used for this antenna apparatus 60. FIG.

このような構成のレーダ装置では次のような動作により探知を行う。電圧制御発振器61は発振信号を生成して方向性結合器62、サーキュレータ63を介して、アンテナ装置60に出力する。アンテナ装置60は、発振信号を送信信号として外部の所定探知領域に放射(送信)する。また、方向性結合器62は、入力された発振信号を電力分配してローカル信号を発生し、ミキサ64に出力する。一方、アンテナ装置60は、受信信号を、サーキュレータ63を介してミキサ64に出力する。ミキサ64は、サーキュレータ63から入力された受信信号を方向性結合器62から入力されたローカル信号によりダウンコンバートして中間周波信号IFを生成してLNA65に出力し、LNA65は中間周波信号IFを増幅して探知信号として出力する。   In the radar apparatus having such a configuration, detection is performed by the following operation. The voltage controlled oscillator 61 generates an oscillation signal and outputs it to the antenna device 60 via the directional coupler 62 and the circulator 63. The antenna device 60 radiates (transmits) an oscillation signal as a transmission signal to a predetermined external detection area. Further, the directional coupler 62 distributes power of the input oscillation signal to generate a local signal and outputs it to the mixer 64. On the other hand, the antenna device 60 outputs the received signal to the mixer 64 via the circulator 63. The mixer 64 down-converts the received signal input from the circulator 63 with the local signal input from the directional coupler 62 to generate an intermediate frequency signal IF and outputs it to the LNA 65. The LNA 65 amplifies the intermediate frequency signal IF. And output as a detection signal.

このような構成のレーダ装置において、前述の導波管ホーンアンテナを備えたアンテナ装置を用いることで、送信信号の指向性等の放射特性が優れ、レーダ探知特性が向上する。さらには、導波管ホーンアンテナが小型化されているので、優れたレーダ探知特性を有する小型のレーダ装置を構成することができる。   In the radar apparatus having such a configuration, by using the antenna apparatus including the above-described waveguide horn antenna, radiation characteristics such as directivity of a transmission signal are excellent, and radar detection characteristics are improved. Furthermore, since the waveguide horn antenna is downsized, a small radar device having excellent radar detection characteristics can be configured.

第1の実施形態のホーンアンテナの概略構成を示す外観斜視図および導波管として機能する部分の構成を示す斜視図である。It is the external appearance perspective view which shows schematic structure of the horn antenna of 1st Embodiment, and the perspective view which shows the structure of the part which functions as a waveguide. 第1の実施形態の構造のホーンアンテナと従来例の構造のホーンアンテナとの指向性を示す図である。It is a figure which shows the directivity of the horn antenna of the structure of 1st Embodiment, and the horn antenna of the structure of a prior art example. 図1に示したホーンアンテナを部品毎に分離した分解斜視図である。It is the disassembled perspective view which isolate | separated the horn antenna shown in FIG. 1 for every component. 放射用導波管の全体を対数螺旋状に形成した場合の壁面の軌道を示す図である。It is a figure which shows the track | orbit of a wall surface at the time of forming the whole radiation waveguide in logarithmic spiral form. 第2の実施形態のホーンアンテナの概略構造を示す外観斜視図および従来の同様のホーンアンテナの構成を示す外観斜視図である。It is the external appearance perspective view which shows schematic structure of the horn antenna of 2nd Embodiment, and the external appearance perspective view which shows the structure of the conventional same horn antenna. 図5(a)の構造のホーンアンテナの電界強度分布、および、図5(b)の構造のホーンアンテナの電界強度分布を示す図である。It is a figure which shows the electric field strength distribution of the horn antenna of the structure of Fig.5 (a), and the electric field strength distribution of the horn antenna of the structure of FIG.5 (b). 第2の実施形態の構造のホーンアンテナおよび従来のホーンアンテナの指向性と反射特性とを示した図である。It is the figure which showed the directivity and reflection characteristic of the horn antenna of the structure of 2nd Embodiment, and the conventional horn antenna. 図1に示すホーンアンテナを用いたアンテナ装置の概略構成を示す図である。It is a figure which shows schematic structure of the antenna apparatus using the horn antenna shown in FIG. 第4の実施形態のレーダ装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the radar apparatus of 4th Embodiment. 従来のホーンアンテナの概略構造を示す外観斜視図である。It is an external appearance perspective view which shows schematic structure of the conventional horn antenna.

符号の説明Explanation of symbols

1−放射用導波管
11−対数螺旋状導波管
12−ホーン型導波管
2−導体部材
3−給電導波管
21−上導体部材
22−下導体部材
121,122−ホーン用溝
111,112−対数螺旋溝
201−内側壁面
202−外側壁面
31,32−給電用円筒孔
40−放射用導波管
41−導体板
42−対数螺旋状導波管
43−ホーン型導波管
51−導波管ホーンアンテナ
52−固定部材
53−チョーク
54−固定給電導波管
55−接続導波管
60−アンテナ装置
61−電圧制御発振器
62−方向性結合器
63−サーキュレータ
64−ミキサ
65−LNA
1-radiation waveguide 11-logarithmic spiral waveguide 12-horn type waveguide 2-conductor member 3-feeding waveguide 21-upper conductor member 22-lower conductor member 121,122-horn groove 111 112-logarithmic spiral groove 201-inner wall surface 202-outer wall surface 31,32-feeding cylindrical hole 40-radiation waveguide 41-conductor plate 42-logarithmic spiral waveguide 43-horn type waveguide 51- Waveguide horn antenna 52-Fixed member 53-Choke 54-Fixed feed waveguide 55-Connection waveguide 60-Antenna device 61-Voltage controlled oscillator 62-Directional coupler 63-Circulator 64-Mixer 65-LNA

Claims (5)

所定方向に延びる給電導波管と、
該給電導波管の信号伝搬方向に対して垂直な方向を放射方向とし、前記給電導波管との接続面の面積に対して信号が放射される開口面の面積が広く形成されている放射用導波管と、を備えた導波管ホーンアンテナにおいて、
前記放射用導波管は、前記接続面側の端部から前記開口面側の端部に亘り、前記放射用導波管が延びる方向に垂直な断面積が徐々に広くなり且つ非直線形状に延びる形状で形成されていることを特徴とする導波管ホーンアンテナ。
A feeding waveguide extending in a predetermined direction;
Radiation in which the direction perpendicular to the signal propagation direction of the feed waveguide is the radiation direction, and the area of the opening surface where the signal is radiated is larger than the area of the connection surface with the feed waveguide And a waveguide horn antenna comprising:
The radiation waveguide has a non-linear shape with a gradually increasing cross-sectional area perpendicular to the direction in which the radiation waveguide extends from the end on the connection surface side to the end on the opening surface side. A waveguide horn antenna characterized by being formed in an extending shape .
前記放射用導波管は、前記給電導波管の延びる方向に平行な該給電導波管の中心軸を螺旋の中心とする対数螺旋形状で形成されている請求項1に記載の導波管ホーンアンテナ。2. The waveguide according to claim 1 , wherein the radiation waveguide is formed in a logarithmic spiral shape with the center axis of the feed waveguide parallel to the extending direction of the feed waveguide as a spiral center. Horn antenna. 前記放射用導波管は、該放射用導波管をE面分割する面で当接される2枚の導体部材から形成される請求項1または請求項2に記載の導波管ホーンアンテナ。3. The waveguide horn antenna according to claim 1 , wherein the radiation waveguide is formed of two conductor members that are in contact with each other at a plane dividing the E waveguide. 請求項1〜請求項3のいずれかに記載の導波管ホーンアンテナと、
該導波管ホーンアンテナの前記給電導波管に接続し、該給電導波管への信号または該給電導波管からの信号を伝搬し、装置に対して固定された固定導波管と、
該固定導波管に対して前記導波管ホーンアンテナを、前記給電導波管の中心軸を中心として回転させる回転手段と、を備えたことを特徴とするアンテナ装置。
The waveguide horn antenna according to any one of claims 1 to 3 ,
A fixed waveguide connected to the feed waveguide of the waveguide horn antenna, propagating a signal to the feed waveguide or a signal from the feed waveguide, and fixed to the device;
Rotating means for rotating the waveguide horn antenna about the central axis of the feeding waveguide with respect to the fixed waveguide.
請求項4に記載のアンテナ装置を備え、
該アンテナ装置から放射する信号と、該アンテナ装置で受け取る信号とに基づいて探知を行うレーダ装置。
An antenna device according to claim 4 ,
A radar device that performs detection based on a signal radiated from the antenna device and a signal received by the antenna device.
JP2007500427A 2005-01-31 2005-11-18 Waveguide horn antenna, antenna device, and radar device Expired - Fee Related JP4178265B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005023154 2005-01-31
JP2005023154 2005-01-31
PCT/JP2005/021205 WO2006080130A1 (en) 2005-01-31 2005-11-18 Waveguide horn antenna, antenna device, and radar device

Publications (2)

Publication Number Publication Date
JPWO2006080130A1 JPWO2006080130A1 (en) 2008-06-19
JP4178265B2 true JP4178265B2 (en) 2008-11-12

Family

ID=36740164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007500427A Expired - Fee Related JP4178265B2 (en) 2005-01-31 2005-11-18 Waveguide horn antenna, antenna device, and radar device

Country Status (2)

Country Link
JP (1) JP4178265B2 (en)
WO (1) WO2006080130A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531909A (en) * 2013-10-16 2014-01-22 北京理工大学 Terahertz frequency-scanning H-plane sectoral horn antenna and preparation method thereof under bulk silicon MEMS (micro-electromechanical system) process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008046054A1 (en) * 2008-09-08 2010-03-18 Krohne Meßtechnik GmbH & Co KG Wave transition and horn antenna
JP5986791B2 (en) * 2012-04-24 2016-09-06 株式会社日立国際電気 Antenna device
DE102020208254A1 (en) 2020-07-01 2022-01-05 Vega Grieshaber Kg Horn antenna for a radar module

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433104B1 (en) * 1971-07-08 1979-10-18
JPS5515366Y2 (en) * 1974-06-27 1980-04-09
JPS5548564Y2 (en) * 1974-10-14 1980-11-13
JPS5223743A (en) * 1975-08-14 1977-02-22 Hiroshi Kobayashi Spiral waveguide
JPH0619202Y2 (en) * 1987-09-25 1994-05-18 アンリツ株式会社 Rotating axis structure of antenna
JPH10303612A (en) * 1997-04-25 1998-11-13 Kyocera Corp Patch antenna
JP2001305214A (en) * 2000-04-26 2001-10-31 Toshihide Kitazawa Object detection device
FR2831716A1 (en) * 2001-10-30 2003-05-02 Thomson Licensing Sa BENDING GUIDE ELEMENT AND TRANSMISSION DEVICE COMPRISING SAID ELEMENT
JP3855898B2 (en) * 2002-09-20 2006-12-13 株式会社村田製作所 Antenna device and transmitting / receiving device
JP3846585B2 (en) * 2002-11-18 2006-11-15 三菱電機株式会社 Waveguide bend, waveguide plate and high frequency device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103531909A (en) * 2013-10-16 2014-01-22 北京理工大学 Terahertz frequency-scanning H-plane sectoral horn antenna and preparation method thereof under bulk silicon MEMS (micro-electromechanical system) process

Also Published As

Publication number Publication date
WO2006080130A1 (en) 2006-08-03
JPWO2006080130A1 (en) 2008-06-19

Similar Documents

Publication Publication Date Title
JP4822262B2 (en) Circular waveguide antenna and circular waveguide array antenna
US10218076B1 (en) Hexagonal waveguide based circularly polarized horn antennas
JP5616103B2 (en) Antenna device and radar device
JP6642862B2 (en) Reflector antenna including dual band splash plate support
US10714834B2 (en) Broadband quad-ridge horn antennas
JP2001320228A (en) Dielectric leakage wave antenna
JP2015144426A (en) Matching and pattern control for dual band concentric antenna feed
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
US20170018850A1 (en) Horn antenna apparatus
US8847838B2 (en) Broadband antenna feed array
JP4756061B2 (en) Planar antenna
KR101887417B1 (en) Horn-Reflector Antenna with Low Sidelobe
JP5622881B2 (en) Leaky coaxial cable
JP2006013798A (en) Circularly polarized loop antenna
JP2009055414A (en) Planar antenna
JP2008113314A (en) Slot antenna device
JP7066570B2 (en) Probe holding device and antenna pattern measuring device using it
CN103066392A (en) Millimeter wave band multi-mode corrugated horn
JP2020115619A (en) Waveguide/transmission line converter, waveguide slot antenna and waveguide slot array antenna
JP2007104156A (en) Converter and antenna element equipped with converter
KR102522733B1 (en) Helical corrugation horn antenna
KR102102424B1 (en) Horn Antenna Device Providing Circular Polarization Signal
KR102152187B1 (en) Horn Antenna Device for Transforming into Circular Polarization
JP2003101338A (en) Dielectric leak wave antenna
JP6913586B2 (en) Antenna device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees