JP3668649B2 - Primary radiator - Google Patents

Primary radiator Download PDF

Info

Publication number
JP3668649B2
JP3668649B2 JP24380599A JP24380599A JP3668649B2 JP 3668649 B2 JP3668649 B2 JP 3668649B2 JP 24380599 A JP24380599 A JP 24380599A JP 24380599 A JP24380599 A JP 24380599A JP 3668649 B2 JP3668649 B2 JP 3668649B2
Authority
JP
Japan
Prior art keywords
waveguide
primary radiator
phase shift
degree phase
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24380599A
Other languages
Japanese (ja)
Other versions
JP2001068922A (en
Inventor
元珠 竇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP24380599A priority Critical patent/JP3668649B2/en
Publication of JP2001068922A publication Critical patent/JP2001068922A/en
Application granted granted Critical
Publication of JP3668649B2 publication Critical patent/JP3668649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguide Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、衛星放送反射式アンテナ等に備えられる一次放射器に係り、特に、円偏波を直線偏波に変換するのに好適な一次放射器に関する。
【0002】
【従来の技術】
図7はこの種の一次放射器の従来例を示すものであり、同図(a)は左側面図、同図(b)は断面図である。この一次放射器は、一端にホーン部1aを有し他端を閉塞面1bとした導波管1と、導波管1の内部に設置された90度移相板2と、導波管1の壁面から内部に挿入された第1および第2プローブ3,4とを具備しており、これらプローブ3,4と閉塞面1aとの距離は管内波長の約1/4波長分だけ離れている。ホーン部1aは円錐状に開口しており、このホーン部1aを含め導波管1は亜鉛ダイキャスト等で一体成形されている。90度移相板2は所定の厚さを有する誘電体板からなり、この90度移相板2はホーン部1aの開口端から挿入され、導波管1の内壁に圧入等により固定されている。両プローブ3,4は互いに直交しており、90度移相板2は第1および第2プローブ3,4に対して略45度傾いた状態で設置されている。
【0003】
このように構成された一次放射器において、衛星から送信された左旋円偏波および右旋円偏波は、ホーン部1aから導波管1の内部に導かれ、90度移相板2により直線偏波に変換される。図7に示す例では、左旋円偏波が垂直偏波に変換され、右旋円偏波が水平偏波に変換されるため、左旋円偏波は導波管1内に垂直に設置されている第1プローブ3により受信され、右旋円偏波は導波管1内に水平に設置されている第2プローブ4により受信され、その受信信号は図示せぬコンバータ回路でIF周波数信号に周波数変換されて出力される。
【0004】
【発明が解決しようとする課題】
ところで、前述の如く構成された従来の一次放射器においては、導波管1の先端から突出するホーン部1aには所望の開口径と長さが必要であり、しかも、このホーン部1aに続く導波管1の内部に90度移相板2を固定する必要があるため、一次放射器が導波管1の軸線方向に長くなるという問題があった。特に、導波管1の内部に固定される90度移相板2については、円偏波を直線偏波に変換するために十分な長さを必要とするため、導波管1の全長が90度移相板2の設置スペースによって大きくなり、このことが一次放射器の小型化を妨げる大きな要因となっていた。また、90度移相板2はホーン部1aから挿入されて導波管1の内部に固定されるが、この90度移相板2を両プローブ3,4に対して略45度傾いた状態で精度良く固定するのは困難であり、組立作業性が悪いという問題もあった。
【0005】
【課題を解決するための手段】
本発明は、導波管の開口端に放射部を有する誘電体フィーダを保持すると共に、この誘電体フィーダの放射部とは反対側の部位にプローブに対して約45度の角度で交叉して導波管の径方向へ延びる90度移相部を形成し、この90度移相部を幅方向に段差を持たせた段付き溝または段付き突起にて構成することとする。このように構成すると、誘電体フィーダがホーン部と90度移相板としての両機能を有するため、一次放射器の全長を大幅に短くすることができると共に、段付き溝または段付き突起からなる90度移相部によって直交する偏波に対してインピーダンス整合することができ、しかも、90度移相部をプローブに対して精度良く位置合わせすることができる。
【0006】
【発明の実施の形態】
本発明の一次放射器では、一端に電波の導入用の開口を有する導波管と、この導波管の開口端に保持された誘電材料からなる誘電体フィーダと、前記導波管内に挿入されたプローブとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と前記導波管の内面に固定される保持部とを設けると共に、この保持部の端面に前記プローブと約45度の角度で交叉して前記導波管の径方向へ延びる90度移相部を形成し、前記90度移相部が溝幅の異なる複数の凹溝を前記導波管の管軸方向へ連続させた段付き溝からなり、前記各凹溝がそれぞれ電波の約1/4波長の深さを有する構成とした。
【0007】
また、本発明の一次放射器では、一端に電波の導入用の開口を有する導波管と、この導波管の開口端に保持された誘電材料からなる誘電体フィーダと、前記導波管内に挿入されたプローブとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と前記導波管の内面に固定される保持部とを設けると共に、この保持部の端面に前記プローブに対して約45度の角度で交叉して前記導波管の径方向へ延びる90度移相部を形成し、前記90度移相部が板厚の異なる複数の凸部を前記導波管の管軸方向へ連続させた段付き突起からなり、前記各凸部がそれぞれ電波の約1/4波長の高さを有する構成とした。
【0008】
このように構成すると、誘電体フィーダの放射部から入力した円偏波が90度移相部で直線偏波に変換されるため、一次放射器の全長を大幅に短くすることができと共に、90度移相部が幅方向に段差を持たせた段付き溝または段付き突起からなるため、直交する偏波に対してインピーダンス整合することができ、しかも、90度移相部が誘電体フィーダに一体形成されているため、90度移相部をプローブに対して精度良く位置合わせすることができる。その際、段付き溝を構成する凹溝や段付き突起を構成する凸部の数は特に限定されないが、段付き溝を幅広な凹溝の底面に幅狭な凹溝を連続させた2段構成にしたり、段付き突起を幅広な凸部の端面に幅狭な凸部を突出させた2段に構成にすると、90度移相部の長さを効果的に短縮することができて好ましい。
【0009】
また、上記の構成において、前記放射部が前記導波管の開口端から突出方向へ広がるラッパ状に形成されていると共に、該放射部の端面に複数の環状溝が形成されていると、放射部の端面と環状溝の底面で反射した電波の位相が逆転してキャンセルされるため、放射部に向かう電波の反射成分がほとんどなくなり、電波を効率良く誘電体フィーダに収束させることができる。
【0010】
【実施例】
実施例について図面を参照して説明すると、図1は本発明の第1実施例に係る一次放射器の断面図、図2は図1の矢印A方向から見た側面図、図3は該一次放射器に備えられる誘電体フィーダの斜視図である。
【0011】
これらの図に示すように、本実施例に係る一次放射器は、一端を開口し他端を閉塞面5aとした断面円形の導波管5と、この導波管5の開口端に保持された誘電体フィーダ6とを具備しており、導波管5の内部には第1プローブ7と第2プローブ8が互いに直交するように設置されている。これらプローブ7,8と閉塞面5aとの距離は管内波長λgの約1/4波長分だけ離れており、両プローブ7,8は図示せぬコンバータ回路に接続されている。
【0012】
誘電体フィーダ6は誘電正接の低い誘電材料からなり、本実施例の場合は価格の点を考慮して安価なポリエチレン(誘電率ε=2.25)が用いられている。この誘電体フィーダ6は、一端面に90度移相部としての凹部9を有する保持部6aと、保持部6aの他端から円錐状に連続する放射部6bとで構成されており、放射部6bは導波管5の開口端から外部に突出している。保持部6aの外径は導波管5の内径とほぼ同じに設定されており、この保持部6aを導波管5の開口端内面に圧入することにより、誘電体フィーダ6は導波管5に固定されている。凹部9は幅広な凹溝9aの底面に幅狭な凹溝9bを連続させた段付き孔であり、両凹溝9a,9bの深さは誘電体フィーダ6内を伝播する電波波長λεの約1/4波長に設定されている。図2に示すように、凹部9(凹溝9a,9b)は導波管5の径方向へ延びており、その延出方向は第1および第2プローブ7,8に対してそれぞれ略45度の角度で交叉している。
【0013】
このように構成された一次放射器において、衛星から送信された左旋円偏波および右旋円偏波は、放射部6bから進入して誘電体フィーダ6内を伝播し、保持部6aの端面に形成された凹部9により、左旋円偏波は垂直偏波に変換され、右旋円偏波は水平偏波に変換される。その際、凹部9を構成する両凹溝9a,9bの深さは誘電体フィーダ6内を伝播する電波波長λεの約1/4波長に設定されているため、保持部6aの端面および幅狭な凹溝9bの底面で反射した電波と、幅広な凹溝9aの底面で反射した電波との位相が逆転してキャンセルされる。これにより、誘電体フィーダ6内を伝播して導波管5内に向かう電波の反射成分がほとんどなくなり、誘電体フィーダ6と導波管5とのインピーダンス整合が良好になる。そして、導波管5に入力した水平偏波と垂直偏波からなる直線偏波のうち、垂直偏波に変換された左旋円偏波は第1プローブ7により受信され、水平偏波に変換された右旋円偏波は第2プローブ8により受信され、その受信信号は図示せぬコンバータ回路でIF周波数信号に周波数変換されて出力される。
【0014】
上記した第1実施例にあっては、放射部6bを有する誘電体フィーダ6の保持部5aの端面に形成された凹部9が円偏波を直線偏波に変換する90度移相部として機能するため、導波管5と誘電体フィーダを含む一次放射器の全長を小型化することができる。また、保持部6aに十分な長さを確保しても誘電体フィーダ6の全長が長くならないため、誘電体フィーダ6の姿勢を安定化することができ、しかも、誘電体フィーダ6に90度移相部としての凹部9が一体形成されているため、凹部9をプローブ7,8に対して精度良く位置合わせすることができる。さらに、凹部9が2つの凹溝9a,9bを階段状に連続させた段付き孔からなり、両凹溝9a,9bの深さが誘電体フィーダ6内を伝播する電波波長λεの約1/4波長に設定されているため、各凹溝9a,9bの底面と開放端で反射した電波の位相が逆転してキャンセルされ、誘電体フィーダ6と導波管5とのインピーダンス整合が良好になる。
【0015】
図4は本発明の第2実施例に係る一次放射器の断面図、図5は図4の矢印B方向から見た側面図であり、図1〜図3に対応する部分には同一符号を付してある。
【0016】
この第2実施例が前述した第1実施例と相違する点は、誘電体フィーダ6の保持部6aの端面に90度移相部としての凸部10を形成したことにあり、それ以外の構成は基本的に同じである。この凸部10は凹部9を逆にした形状、すなわち、幅広な凸部10aの端面から幅狭な凸部10bが突出する段付き突起であり、両凸部10a,10bの高さは誘電体フィーダ6内を伝播する電波波長λεの約1/4波長に設定されている。したがって、誘電体フィーダ6内を伝播して保持部6aの端面に向かう電波のうち、両凸部10a,10bの端面と底面側で反射した電波の位相が逆転してキャンセルされるため、誘電体フィーダ6内を伝播する電波の反射成分がほとんどなくなり、誘電体フィーダ6と導波管5のインピーダンス整合が良好になる。
【0017】
このように構成された一次放射器では、保持部6aの端面に形成した凸部10が円偏波を直線偏波に変換する90度移相部として機能するため、第1実施例に比べると誘電体フィーダ6の全長は若干長くなるものの、ほぼ同様の効果を奏することができる。
【0018】
なお、本発明による一次放射器は上記各実施例に限定されず、種々の変形例を採用することができる。例えば、90度移相部として機能する凹部9や凸部10の段数を適宜増減したり導波管5や誘電体フィーダ6の保持部6aの断面形状を円形に代えて角形にすることも可能であ
【0019】
また、誘電体フィーダの放射部の形状も上記各実施例の円錐形に限定されず、放射部自体の長さもより縮めるために、図6に示すように、放射部6bをラッパ状に広がる形状にしても良い。この場合、放射部6bの端面に複数の環状溝11を形成し、各環状溝7の深さを空気中を伝播する電波波長λ0の約1/4波長に設定すると、放射部6bの端面と環状溝11の底面で反射した電波の位相が逆転してキャンセルされるため、放射部6bに向かう電波の反射成分がほとんどなくなり、電波を効率良く誘電体フィーダ6に収束させることができる。
【0020】
【発明の効果】
本発明は、以上説明したような形態で実施され、以下に記載されるような効果を奏する。
【0021】
導波管の開口端に放射部を有する誘電体フィーダを保持すると共に、この誘電体フィーダの放射部とは反対側の部位プローブと約45度の角度で交叉して導波管の径方向へ延びる90度移相部を形成し、この90度移相部を幅方向に段差を持たせた段付き溝または段付き突起にて構成すると、放射部から誘電体フィーダ内に入力した円偏波が90度移相部で直線偏波に変換されるため、一次放射器の全長を大幅に短くすることができると共に、90度移相部が幅方向に段差を持たせた段付き溝または段付き突起からなるため、直交する偏波に対してそれぞれ良好にインピーダンス整合することができ、しかも、90度移相部が誘電体フィーダに一体形成されているため、90度移相部をプローブに対して精度良く位置合わせすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例に係る一次放射器の断面図である。
【図2】図1の矢印A方向から見た側面図である。
【図3】該一次放射器に備えられる誘電体フィーダの斜視図である。
【図4】本発明の第2実施例に係る一次放射器の断面図である。
【図5】図4の矢印B方向から見た側面図である。
【図6】誘電体フィーダの変形例を示す断面図である。
【図7】従来例に係る一次放射器の説明図である。
【符号の説明】
5 導波管
5a 閉塞面
6 誘電体フィーダ
6a 保持部
6b 放射部
7 第1プローブ
8 第2プローブ
9 凹部
9a,9b 凹溝
10,10a,10b 凸部
11 環状溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a primary radiator provided in a satellite broadcast reflection antenna or the like, and more particularly to a primary radiator suitable for converting circularly polarized waves into linearly polarized waves.
[0002]
[Prior art]
FIG. 7 shows a conventional example of this type of primary radiator, wherein FIG. 7 (a) is a left side view and FIG. 7 (b) is a cross-sectional view. The primary radiator includes a waveguide 1 having a horn portion 1a at one end and a closed surface 1b at the other end, a 90-degree phase shift plate 2 installed inside the waveguide 1, and a waveguide 1 The first and second probes 3 and 4 are inserted from the wall surface of the tube, and the distance between the probes 3 and 4 and the blocking surface 1a is about 1/4 wavelength of the guide wavelength. . The horn part 1a is opened in a conical shape, and the waveguide 1 including the horn part 1a is integrally formed by zinc die casting or the like. The 90-degree phase shift plate 2 is made of a dielectric plate having a predetermined thickness. The 90-degree phase shift plate 2 is inserted from the opening end of the horn 1a and fixed to the inner wall of the waveguide 1 by press-fitting or the like. Yes. Both the probes 3 and 4 are orthogonal to each other, and the 90-degree phase shift plate 2 is installed in a state inclined approximately 45 degrees with respect to the first and second probes 3 and 4.
[0003]
In the primary radiator configured as described above, the left-handed circularly polarized wave and the right-handed circularly polarized wave transmitted from the satellite are guided into the waveguide 1 from the horn portion 1a and linearly moved by the 90-degree phase shift plate 2. Converted to polarization. In the example shown in FIG. 7, since the left-handed circularly polarized wave is converted into the vertically polarized wave and the right-handed circularly polarized wave is converted into the horizontally polarized wave, the left-handed circularly polarized wave is installed vertically in the waveguide 1. The right-handed circularly polarized wave is received by the second probe 4 installed horizontally in the waveguide 1, and the received signal is converted into an IF frequency signal by a converter circuit (not shown). It is converted and output.
[0004]
[Problems to be solved by the invention]
By the way, in the conventional primary radiator configured as described above, the horn portion 1a protruding from the tip of the waveguide 1 needs to have a desired opening diameter and length, and continues to the horn portion 1a. Since it is necessary to fix the 90-degree phase shift plate 2 inside the waveguide 1, there is a problem that the primary radiator becomes longer in the axial direction of the waveguide 1. In particular, the 90-degree phase shift plate 2 fixed inside the waveguide 1 needs a sufficient length to convert circularly polarized light into linearly polarized light. The size increases due to the installation space of the 90-degree phase shift plate 2, and this is a major factor that hinders downsizing of the primary radiator. The 90-degree phase shift plate 2 is inserted from the horn 1a and fixed inside the waveguide 1. The 90-degree phase shift plate 2 is tilted by about 45 degrees with respect to the probes 3 and 4. Therefore, it is difficult to fix with high accuracy, and there is a problem that assembly workability is poor.
[0005]
[Means for Solving the Problems]
The present invention holds the dielectric feeder having a radiating portion on the open end of the waveguide, the radiation portion of the dielectric feeder intersect at an angle of about 45 degrees with respect to the probe at a site opposite A 90-degree phase shift portion extending in the radial direction of the waveguide is formed, and the 90-degree phase shift portion is configured by a stepped groove or a stepped projection having a step in the width direction . If comprised in this way, since a dielectric feeder has both functions as a horn part and a 90-degree phase shift plate, while being able to greatly shorten the full length of a primary radiator, it consists of a stepped groove | channel or a stepped protrusion. Impedance matching can be performed with respect to orthogonal polarization by the 90-degree phase shift section, and the 90-degree phase shift section can be accurately aligned with the probe.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the primary radiator of the present invention, a waveguide having an opening for introducing a radio wave at one end thereof, a dielectric feeder made of a dielectric material held at the opening end of the waveguide, and inserted into the waveguide. The dielectric feeder is provided with a radiating portion protruding from the open end of the waveguide and a holding portion fixed to the inner surface of the waveguide, and the probe is disposed on the end surface of the holding portion. A 90-degree phase shift portion extending in the radial direction of the waveguide is formed by crossing at an angle of about 45 degrees, and the 90-degree phase shift portion includes a plurality of concave grooves having different groove widths. Each groove has a depth of about ¼ wavelength of the radio wave .
[0007]
In the primary radiator of the present invention, a waveguide having an opening for introducing a radio wave at one end, a dielectric feeder made of a dielectric material held at the opening end of the waveguide, and the waveguide The dielectric feeder is provided with a radiation portion protruding from the open end of the waveguide and a holding portion fixed to the inner surface of the waveguide, and the end surface of the holding portion is provided with the A 90-degree phase shift portion extending in the radial direction of the waveguide is formed by crossing at an angle of about 45 degrees with respect to the probe, and the 90-degree phase shift portion guides the plurality of convex portions having different plate thicknesses to the waveguide. The projections are stepped projections continuous in the tube axis direction of the tube, and each of the convex portions has a height of about a quarter wavelength of the radio wave.
[0008]
If comprised in this way, since the circularly polarized wave input from the radiation | emission part of the dielectric feeder will be converted into a linear polarization | polarized-light by a 90 degree | times phase-shifting part, the full length of a primary radiator can be reduced significantly, and 90 Since the phase shift part is composed of a stepped groove or a stepped protrusion having a step in the width direction, impedance matching can be performed with respect to orthogonal polarized waves, and the 90 degree phase shift part is in the dielectric feeder. Since it is integrally formed, the 90-degree phase shift portion can be accurately aligned with the probe. At that time, the number of the concave grooves constituting the stepped groove and the number of convex parts constituting the stepped protrusion is not particularly limited, but the stepped groove is a two-stage having a narrow concave groove continuously on the bottom surface of the wide concave groove. It is preferable to use a two-step structure in which the stepped protrusion is formed on the end surface of the wide protrusion, or the length of the 90-degree phase shift portion can be effectively shortened. .
[0009]
Further, in the above configuration, when the radiating portion is formed in a trumpet shape extending in the protruding direction from the open end of the waveguide, and a plurality of annular grooves are formed on the end face of the radiating portion, Since the phase of the radio wave reflected by the end face of the portion and the bottom surface of the annular groove is reversed and canceled, there is almost no reflection component of the radio wave toward the radiating portion, and the radio wave can be efficiently converged on the dielectric feeder.
[0010]
【Example】
Embodiments will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a primary radiator according to a first embodiment of the present invention, FIG. 2 is a side view seen from the direction of arrow A in FIG. It is a perspective view of the dielectric material feeder with which a radiator is equipped.
[0011]
As shown in these drawings, the primary radiator according to the present embodiment is held by a waveguide 5 having a circular section with one end opened and the other end closed surface 5a, and the open end of the waveguide 5. A dielectric feeder 6 is provided, and a first probe 7 and a second probe 8 are installed inside the waveguide 5 so as to be orthogonal to each other. The distance between the probes 7 and 8 and the blocking surface 5a is about 1/4 wavelength of the guide wavelength λg, and both probes 7 and 8 are connected to a converter circuit (not shown).
[0012]
The dielectric feeder 6 is made of a dielectric material having a low dielectric loss tangent. In the case of the present embodiment, inexpensive polyethylene (dielectric constant ε = 2.25) is used in consideration of cost. The dielectric feeder 6 includes a holding portion 6a having a concave portion 9 as a 90-degree phase shift portion on one end surface, and a radiating portion 6b that continues in a conical shape from the other end of the holding portion 6a. 6 b protrudes from the open end of the waveguide 5 to the outside. The outer diameter of the holding portion 6 a is set to be substantially the same as the inner diameter of the waveguide 5. By pressing the holding portion 6 a into the inner surface of the opening end of the waveguide 5, the dielectric feeder 6 can be used as the waveguide 5. It is fixed to. The concave portion 9 is a stepped hole in which a narrow concave groove 9b is connected to the bottom surface of a wide concave groove 9a, and the depth of both concave grooves 9a and 9b is approximately the wavelength of the wave wavelength λε propagating in the dielectric feeder 6. The quarter wavelength is set. As shown in FIG. 2, the concave portion 9 (the concave grooves 9 a and 9 b) extends in the radial direction of the waveguide 5, and the extending direction is approximately 45 degrees with respect to the first and second probes 7 and 8, respectively. Crossing at an angle of
[0013]
In the primary radiator configured as described above, the left-handed circularly polarized wave and the right-handed circularly polarized wave transmitted from the satellite enter from the radiating portion 6b and propagate through the dielectric feeder 6, and reach the end face of the holding portion 6a. Due to the formed recess 9, the left-handed circularly polarized wave is converted into a vertically polarized wave, and the right-handed circularly polarized wave is converted into a horizontally polarized wave. At this time, since the depth of both concave grooves 9a and 9b constituting the concave portion 9 is set to about ¼ wavelength of the radio wave wavelength λε propagating in the dielectric feeder 6, the end surface and the width of the holding portion 6a are narrow. The phase of the radio wave reflected from the bottom surface of the concave groove 9b and the radio wave reflected from the bottom surface of the wide concave groove 9a are reversed and canceled. Thereby, the reflection component of the radio wave propagating through the dielectric feeder 6 and going into the waveguide 5 is almost eliminated, and impedance matching between the dielectric feeder 6 and the waveguide 5 is improved. Of the linearly polarized waves composed of the horizontally polarized waves and the vertically polarized waves input to the waveguide 5, the left-handed circularly polarized waves converted into the vertically polarized waves are received by the first probe 7 and converted into the horizontally polarized waves. The right-handed circularly polarized wave is received by the second probe 8, and the received signal is converted into an IF frequency signal by a converter circuit (not shown) and output.
[0014]
In the first embodiment described above, the concave portion 9 formed on the end surface of the holding portion 5a of the dielectric feeder 6 having the radiating portion 6b functions as a 90-degree phase shift portion that converts circularly polarized light into linearly polarized light. Therefore, the overall length of the primary radiator including the waveguide 5 and the dielectric feeder can be reduced. Further, even if a sufficient length is secured in the holding portion 6a, the total length of the dielectric feeder 6 does not become long, so that the posture of the dielectric feeder 6 can be stabilized, and the dielectric feeder 6 can be moved 90 degrees. Since the concave portion 9 as the phase portion is integrally formed, the concave portion 9 can be accurately aligned with the probes 7 and 8. Further, the concave portion 9 is formed by a stepped hole in which two concave grooves 9 a and 9 b are continuously arranged, and the depth of both concave grooves 9 a and 9 b is about 1 / wavelength λε propagating in the dielectric feeder 6. Since the four wavelengths are set, the phase of the radio wave reflected by the bottom surface and the open end of each concave groove 9a, 9b is reversed and canceled, and impedance matching between the dielectric feeder 6 and the waveguide 5 becomes good. .
[0015]
4 is a cross-sectional view of a primary radiator according to a second embodiment of the present invention, FIG. 5 is a side view seen from the direction of arrow B in FIG. 4, and parts corresponding to those in FIGS. It is attached.
[0016]
The second embodiment is different from the first embodiment described above in that a convex portion 10 as a 90-degree phase shift portion is formed on the end face of the holding portion 6a of the dielectric feeder 6, and the other configuration. Are basically the same. The convex portion 10 is a shape in which the concave portion 9 is reversed, that is, a stepped projection in which the narrow convex portion 10b protrudes from the end face of the wide convex portion 10a, and the height of both convex portions 10a and 10b is a dielectric. It is set to about ¼ wavelength of the radio wave wavelength λε propagating in the feeder 6. Therefore, among the radio waves propagating through the dielectric feeder 6 and traveling toward the end surface of the holding portion 6a, the phases of the radio waves reflected from the end surfaces and the bottom surface side of the both convex portions 10a and 10b are reversed and canceled. The reflection component of the radio wave propagating through the feeder 6 is almost eliminated, and the impedance matching between the dielectric feeder 6 and the waveguide 5 is improved.
[0017]
In the primary radiator configured as described above, the convex portion 10 formed on the end face of the holding portion 6a functions as a 90-degree phase shift portion that converts circularly polarized light into linearly polarized light. Therefore, compared to the first embodiment. Although the overall length of the dielectric feeder 6 is slightly longer, substantially the same effect can be achieved.
[0018]
In addition, the primary radiator by this invention is not limited to said each Example, A various modification can be employ | adopted. For example, the number of steps of the concave portion 9 and the convex portion 10 functioning as a 90-degree phase shift portion may be appropriately increased or decreased, or the cross-sectional shape of the holding portion 6a of the waveguide 5 or the dielectric feeder 6 may be changed to a square shape instead of a circular shape. possible Ru der.
[0019]
Further, the shape of the radiating portion of the dielectric feeder is not limited to the conical shape of each of the above embodiments, and the radiating portion 6b is expanded in a trumpet shape as shown in FIG. 6 in order to reduce the length of the radiating portion itself. Anyway. In this case, when a plurality of annular grooves 11 are formed on the end face of the radiating portion 6b and the depth of each annular groove 7 is set to about ¼ wavelength of the radio wave wavelength λ 0 propagating in the air, the end face of the radiating portion 6b Since the phase of the radio wave reflected from the bottom surface of the annular groove 11 is reversed and canceled, the reflected component of the radio wave directed toward the radiating portion 6 b is almost eliminated, and the radio wave can be efficiently converged on the dielectric feeder 6.
[0020]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0021]
Holds the dielectric feeder having a radiating portion on the open end of the waveguide, the radial direction of the dielectric crossover to waveguide at an angle of the probe and approximately 45 degrees at the site opposite to the radiating portion of the feeder If the 90-degree phase shift part is formed with a stepped groove or stepped protrusion having a step in the width direction, the circular deviation input from the radiating part into the dielectric feeder is formed. since the wave is converted into linear polarization with 90 degree phase shifting unit, Rutotomoni can greatly reduce the overall length of the primary radiator, stepped grooves 90 degree phase shifting unit to have a step in the width direction Alternatively, since it is composed of stepped protrusions, impedance matching can be satisfactorily performed with respect to orthogonally polarized waves, and since the 90-degree phase shift portion is integrally formed with the dielectric feeder, the 90-degree phase shift portion is It can be accurately aligned with the probe .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a primary radiator according to a first embodiment of the present invention.
FIG. 2 is a side view as seen from the direction of arrow A in FIG.
FIG. 3 is a perspective view of a dielectric feeder provided in the primary radiator.
FIG. 4 is a cross-sectional view of a primary radiator according to a second embodiment of the present invention.
5 is a side view seen from the direction of arrow B in FIG.
FIG. 6 is a cross-sectional view showing a modification of the dielectric feeder.
FIG. 7 is an explanatory diagram of a primary radiator according to a conventional example.
[Explanation of symbols]
5 Waveguide 5a Closed surface 6 Dielectric feeder 6a Holding portion 6b Radiating portion 7 First probe 8 Second probe 9 Recessed portions 9a, 9b Recessed grooves 10, 10a, 10b Protruded portion 11 Annular groove

Claims (5)

一端に電波の導入用の開口を有する導波管と、この導波管の開口端に保持された誘電材料からなる誘電体フィーダと、前記導波管内に挿入されたプローブとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と前記導波管の内面に固定される保持部とを設けると共に、この保持部の端面に前記プローブと約45度の角度で交叉して前記導波管の径方向へ延びる90度移相部を形成し、前記90度移相部が溝幅の異なる複数の凹溝を前記導波管の管軸方向へ連続させた段付き溝からなり、前記各凹溝がそれぞれ電波の約1/4波長の深さを有することを特徴とする一次放射器。A waveguide having an opening for introducing a radio wave at one end thereof, a dielectric feeder made of a dielectric material held at the opening end of the waveguide, and a probe inserted into the waveguide; The body feeder is provided with a radiating portion protruding from the open end of the waveguide and a holding portion fixed to the inner surface of the waveguide, and the end surface of the holding portion crosses the probe at an angle of about 45 degrees. A stepped groove in which a 90-degree phase shift portion extending in the radial direction of the waveguide is formed, and the 90-degree phase shift portion has a plurality of concave grooves having different groove widths continuous in the tube axis direction of the waveguide. A primary radiator characterized in that each of the concave grooves has a depth of about ¼ wavelength of a radio wave . 請求項1の記載において、前記段付き溝が幅広な凹溝の底面に幅狭な凹溝を連続させた2段に構成されていることを特徴とする一次放射器。 2. The primary radiator according to claim 1, wherein the stepped groove is configured in two steps in which a narrow concave groove is continuously connected to a bottom surface of a wide concave groove . 一端に電波の導入用の開口を有する導波管と、この導波管の開口端に保持された誘電材料からなる誘電体フィーダと、前記導波管内に挿入されたプローブとを備え、前記誘電体フィーダに前記導波管の開口端から突出する放射部と前記導波管の内面に固定される保持部とを設けると共に、この保持部の端面に前記プローブに対して約45度の角度で交叉して前記導波管の径方向へ延びる90度移相部を形成し、前記90度移相部が板厚の異なる複数の凸部を前記導波管の管軸方向へ連続させた段付き突起からなり、前記各凸部がそれぞれ電波の約1/4波長の高さを有することを特徴とする一次放射器。 A waveguide having an opening for introducing a radio wave at one end thereof, a dielectric feeder made of a dielectric material held at the opening end of the waveguide, and a probe inserted into the waveguide; The body feeder is provided with a radiating portion protruding from the open end of the waveguide and a holding portion fixed to the inner surface of the waveguide, and the end surface of the holding portion is at an angle of about 45 degrees with respect to the probe. A step in which a 90-degree phase shift portion extending in the radial direction of the waveguide is formed by crossing, and the 90-degree phase shift portion has a plurality of convex portions having different plate thicknesses continuous in the tube axis direction of the waveguide. A primary radiator characterized by comprising protrusions, wherein each convex part has a height of about a quarter wavelength of a radio wave . 請求項3の記載において、前記段付き突起が幅広な凸部の端面に幅狭な凸部を突出させた2段に構成されていることを特徴とする一次放射器。 4. The primary radiator according to claim 3, wherein the stepped protrusion is configured in two steps in which a narrow convex portion protrudes from an end surface of the wide convex portion . 請求項1または3の記載において、前記放射部が前記導波管の開口端から突出方向へ広がるラッパ状に形成されていると共に、該放射部の端面に複数の環状溝が形成されていることを特徴とする一次放射器。 4. The radiating portion according to claim 1 or 3, wherein the radiating portion is formed in a trumpet shape extending in a protruding direction from the open end of the waveguide, and a plurality of annular grooves are formed on an end surface of the radiating portion. Primary radiator characterized by.
JP24380599A 1999-08-30 1999-08-30 Primary radiator Expired - Fee Related JP3668649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24380599A JP3668649B2 (en) 1999-08-30 1999-08-30 Primary radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24380599A JP3668649B2 (en) 1999-08-30 1999-08-30 Primary radiator

Publications (2)

Publication Number Publication Date
JP2001068922A JP2001068922A (en) 2001-03-16
JP3668649B2 true JP3668649B2 (en) 2005-07-06

Family

ID=17109211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24380599A Expired - Fee Related JP3668649B2 (en) 1999-08-30 1999-08-30 Primary radiator

Country Status (1)

Country Link
JP (1) JP3668649B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694263A (en) * 2011-03-25 2012-09-26 香港城市大学 Elliptically or circularly polarized dielectric block antenna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452559B1 (en) 2000-07-27 2002-09-17 Alps Electric Co., Ltd Circular-Polarized-wave converter
JP2002252519A (en) 2001-02-26 2002-09-06 Alps Electric Co Ltd Primary radiator
JP4947662B2 (en) * 2008-06-23 2012-06-06 シャープ株式会社 Primary radiator, and microwave receiving converter, transmitter, and parabona antenna apparatus using the same
US9544006B2 (en) * 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102694263A (en) * 2011-03-25 2012-09-26 香港城市大学 Elliptically or circularly polarized dielectric block antenna
CN102694263B (en) * 2011-03-25 2014-12-03 香港城市大学 Elliptically or circularly polarized dielectric block antenna

Also Published As

Publication number Publication date
JP2001068922A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP3692273B2 (en) Primary radiator
JP2001053537A (en) Primary radiator
US5675348A (en) Feedome, primary radiator, and antenna for microwave
US4199764A (en) Dual band combiner for horn antenna
JP3668649B2 (en) Primary radiator
US6717553B2 (en) Primary radiator having excellent assembly workability
US6501432B2 (en) Primary radiator capable of achieving both low reflection and low loss
US6580400B2 (en) Primary radiator having improved receiving efficiency by reducing side lobes
US6437754B2 (en) Primary radiator having a shorter dielectric plate
JP4178265B2 (en) Waveguide horn antenna, antenna device, and radar device
JP2546034B2 (en) Small antenna space matching method
JPH0774503A (en) Circularly polarized wave generator
JP3893305B2 (en) Primary radiator
JP3660534B2 (en) Primary radiator
JP3781943B2 (en) Primary radiator
JP3805948B2 (en) Primary radiator
JP2001284950A (en) Primary radiator
JP3110875B2 (en) Coaxial waveguide converter and satellite broadcast antenna converter having the same
JP2002252519A (en) Primary radiator
JP2001077621A (en) Primary radiator
JP4053928B2 (en) Circular-rectangular waveguide converter, demultiplexer for orthogonal polarization separation, primary radiator, feeder and antenna
JP2001085933A (en) Primary radiator
JP3362292B2 (en) Primary radiator
JP2001068923A (en) Primary radiator
JPH04207702A (en) Primary radiator for circularly polarized wave

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees