EP0933833B1 - Waveguide radiator - Google Patents

Waveguide radiator Download PDF

Info

Publication number
EP0933833B1
EP0933833B1 EP99100867A EP99100867A EP0933833B1 EP 0933833 B1 EP0933833 B1 EP 0933833B1 EP 99100867 A EP99100867 A EP 99100867A EP 99100867 A EP99100867 A EP 99100867A EP 0933833 B1 EP0933833 B1 EP 0933833B1
Authority
EP
European Patent Office
Prior art keywords
waveguide
waveguide radiator
short
radiator
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99100867A
Other languages
German (de)
French (fr)
Other versions
EP0933833A1 (en
Inventor
Helmut Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus DS GmbH
Original Assignee
EADS Astrium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Astrium GmbH filed Critical EADS Astrium GmbH
Publication of EP0933833A1 publication Critical patent/EP0933833A1/en
Application granted granted Critical
Publication of EP0933833B1 publication Critical patent/EP0933833B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the innovation relates to a waveguide radiator consisting of a waveguide section with an aperture and a short-circuit wall and one coaxial feed and a transition from the coaxial feed to the waveguide radiator.
  • Such a waveguide radiator has become known from DE 42 13 539 A1.
  • This waveguide radiator has a straight waveguide section with a circular cross-section, one end of which is connected to a short-circuit plate is completed. The other end ends in a horn.
  • An axially extending rod is arranged on the short-circuit plate, of a transition together with two orthogonal coupling pins from a coaxial lead to a waveguide.
  • This type shows in addition to the coupling of the orthogonally fed waves the disadvantage that the feed takes up a significant amount of space has radial direction around the waveguide and that to form the radiation pattern a home heater is required.
  • the particular advantage of the waveguide radiator is that the above-mentioned Disadvantages of the conventional designs are avoided and that the waveguide radiator in particular with a length of only a little more very little coupling than a quarter of the operating wavelength the orthogonal wave components and a broadband characteristic has and also an arrangement in a tightly packed Array allowed, the coupling by means of simple adaptation measures between neighboring radiators can be largely reduced can.
  • FIG. 1 shows a waveguide radiator 1 which consists of a waveguide section 3 and a short circuit wall 2 and a circular Has aperture with the diameter of the waveguide section 3.
  • the coaxial supply 4 opens under the short-circuit wall 2.
  • the connection between the coaxial feed 4 and the waveguide section 3 takes place via an opening 5 in the short-circuit wall 2 through which a capacitive acting coaxial probe 6 is guided.
  • This probe 6 is by means of Connection 7 connected to the center conductor 8 of the coaxial supply 4.
  • the embodiment of the probe is detailed in DE 40 38 817 C1 described.
  • the aperture end of the capacitive coaxial Probe 6 is on a shorting bar running parallel to the short circuit wall 2 10 attached.
  • a further probe 9 Symmetrical to the main axis A of the waveguide radiator 1 is a further probe 9 with a similar outer shape, which is on the one hand firmly connected to the short-circuit wall 2 and the on the other hand is attached to the free end of the shorting bar 10.
  • the probes 6 and 9 together with the shorting bar 10 form the Coupling system for a polarization direction of a fundamental wave in the waveguide radiator 1.
  • 1 is in the waveguide radiator
  • Another similar coupling system consisting of probes 12 and 13 and the shorting bar 11 orthogonal to the first coupling system 6, 9, 10 arranged.
  • the feed from a separate coaxial feed is in not shown in the figures, but it corresponds to that already described Power for the first coupling system.
  • the two shorting bars 10 and 11 cross each other in the area of the main axis A. led that no electrical contact is made. This can - how 1 - by means of a height offset of both shorting bars respectively.
  • the length L o of the probes 6, 9, 12, 13 is approximately a quarter of the operating wavelength ⁇ .
  • the shorting bars 10, 11 are in the state of idling due to the distance of ⁇ / 4 from the shorting wall 2.
  • the length L o of the probes can optionally be changed, as can the diameter D of the probes and their distance S from one another. The transition designed as a balun is thus matched to the waveguide impedance.
  • the TEM wave that is propagatable in the coaxial feed 4 is converted into the basic wave type of the waveguide 3.
  • the wave types H 01 and H 10 ⁇ are created in the square waveguide and orthogonal H 11 wave types in the round waveguide.
  • the microwaves are emitted via the aperture of the waveguide radiator 1.
  • the aperture level is at a distance 1 from the shorting bars 10, 11 arranged away.
  • By varying the length 1 in Range 0 ⁇ 1 ⁇ ⁇ becomes the secondary radiation contribution of the coupling device with a suitable amplitude and phase the radiation contribution superimposed on the waveguide aperture.
  • the waveguide radiator is distinguished due to a very compact design in the radial direction to the main beam axis A off. This makes a particularly close arrangement of several neighboring ones Coupling devices, such as those in a waveguide array needed, possible.
  • the dimensions of such a waveguide array lie in the area of the dimensions of a planar patch array which the waveguide array is characterized by better electrical performance data and features better broadband characteristics.

Description

Die Neuerung betrifft einen Hohlleiterstrahler, bestehend aus einem Hohlleiterabschnitt mit einer Apertur und einer Kurzschlußwand sowie einer koaxialen Speisung und einem Übergang von der koaxialen Speisung auf den Hohlleiterstrahler.The innovation relates to a waveguide radiator consisting of a waveguide section with an aperture and a short-circuit wall and one coaxial feed and a transition from the coaxial feed to the waveguide radiator.

Ein derartiger Hohlleiterstrahler ist aus der DE 42 13 539 A1 bekannt geworden. Dieser Hohlleiterstrahler weist einen geraden Hohlleiterabschnitt mit kreisförmigem Querschnitt auf, dessen eines Ende mit einer Kurzschlußplatte abgeschlossen ist. Das andere Ende mündet in einen Hornstrahler. Auf der Kurzschlußplatte ist ein axial verlaufender Stab angeordnet, der zusammen mit zwei orthogonalen Koppelstiften einen Übergang von einer koaxialen Zuleitung auf einen Hohlleiter bildet. Diese Bauart weist neben der Verkopplung der orthogonal eingespeisten Wellen auch den Nachteil auf, daß die Einspeisung einen erheblichen Raumbedarf in radialer Richtung um den Hohlleiter hat und daß zur Formung des Strahlungsdiagrammes ein Homstrahler benötigt wird.Such a waveguide radiator has become known from DE 42 13 539 A1. This waveguide radiator has a straight waveguide section with a circular cross-section, one end of which is connected to a short-circuit plate is completed. The other end ends in a horn. An axially extending rod is arranged on the short-circuit plate, of a transition together with two orthogonal coupling pins from a coaxial lead to a waveguide. This type shows in addition to the coupling of the orthogonally fed waves the disadvantage that the feed takes up a significant amount of space has radial direction around the waveguide and that to form the radiation pattern a home heater is required.

Die DE 40 38 817 C1 beschreibt eine Kopplungsvorrichtung für zwei in übereinanderliegenden Ebenen verlaufenden Koaxialleitungssystemen. Dieser Übergang hat sich bewährt. Es ist jedoch kein Hinweis gegeben, wie diese Kopplungsvorrichtung in Verbindung mit einem Hohlleiterstrahler genutzt werden kann.DE 40 38 817 C1 describes a coupling device for two in coaxial line systems running one above the other. This transition has proven itself. However, there is no indication like this coupling device in connection with a waveguide radiator can be used.

Aus der Patentschrift US 3,680,138 ist ebenfalls ein Strahler für Arrayantennen bekannt geworden, der jedoch nur für die Abstrahlung linear polarisierter elektromagnetischer Strahlung geeignet ist. Es wird jedoch kein Hinweis darauf gegeben, auf welche Weise eine zirkular polarisierte Welle abgetrahlt und wie die Formung des Antennendiagramms optimiert werden könnte.From the patent US 3,680,138 is also a radiator for array antennas became known, but only for the radiation linearly polarized electromagnetic radiation is suitable. However, it won't Given the way in which a circularly polarized wave radiated and how the formation of the antenna pattern are optimized could.

Es ist Aufgabe der Erfindung einen Hohlleiterstrahler mit koaxialer Speisung zu entwickeln, der sowohl mit runden wie auch quadratischen Hohlleitern verwendbar ist, der keine über die Hohlleiterwand radial hinausragenden Bauteile aufweist und der trotz kurzer axialer Baulänge wenigstens gleich gute elektrische Leistungsdaten wie z.B. Patch- oder Schlitzstrahler aufweist.It is an object of the invention to provide a waveguide radiator with a coaxial feed to develop that with both round and square waveguides Can be used that does not protrude radially beyond the waveguide wall Has components and at least despite the short axial length equally good electrical performance data such as Patch or slot heater having.

Diese Aufgabe wird mit dem Gegenstand des Anspruchs 1 gelöst, vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.This object is achieved with the subject matter of claim 1, advantageous Refinements are specified in the subclaims.

Der besondere Vorteil des Hohlleiterstrahlers ist darin zu sehen, daß die o.g. Nachteile der konventionellen Bauformen vermieden werden und daß der Hohlleiterstrahler insbesondere bei einer Länge von nur wenig mehr als einem Viertel der Betriebswellenlänge eine nur sehr geringe Verkopplung der orthogonalen Wellenanteile und eine Breitbandcharakteristik aufweist und darüber hinaus eine Anordnung in einem dicht gepackten Array erlaubt, wobei mittels einfacher Anpassungsmaßnahmen die Verkopplung zwischen benachbarten Strahlern weitgehend reduziert werden können.The particular advantage of the waveguide radiator is that the above-mentioned Disadvantages of the conventional designs are avoided and that the waveguide radiator in particular with a length of only a little more very little coupling than a quarter of the operating wavelength the orthogonal wave components and a broadband characteristic has and also an arrangement in a tightly packed Array allowed, the coupling by means of simple adaptation measures between neighboring radiators can be largely reduced can.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:

Fig. 1
einen Schnitt durch einen Übergang von einem koaxialen Leiter auf einen Hohlleiterstrahler,
Fig. 2
eine Aufsicht entsprechend Fig. 1.
An embodiment of the invention is shown in the drawing and will be described in more detail below. Show it:
Fig. 1
a section through a transition from a coaxial conductor to a waveguide radiator,
Fig. 2
a supervision corresponding to Fig. 1st

In der Figur 1 ist ein Hohlleiterstrahler 1 dargestellt, der aus einem Hohlleiterabschnitt 3 und einer Kurzschlußwand 2 besteht und eine kreisförmige Apertur mit dem Durchmesser des Hohlleiterabschnittes 3 aufweist. Unter der Kurzschlußwand 2 mündet die koaxiale Speisung 4. Die Verbindung zwischen der koaxialen Speisung 4 und dem Hohlleiterabschnitt 3 erfolgt über eine Öffnung 5 in der Kurzschlußwand 2, durch die eine kapazitiv wirkende koaxiale Sonde 6 geführt ist. Diese Sonde 6 ist mittels des Anschlusses 7 mit dem Mittelleiter 8 der koaxialen Speisung 4 verbunden. Die Ausführungsform der Sonde ist in der DE 40 38 817 C1 ausführlich beschrieben. Das aperturseitige Ende der kapazitiv wirkenden koaxialen Sonde 6 ist an einem parallel zur Kurzschlußwand 2 verlaufenden Kurzschlußbügel 10 befestigt. Symmetrisch zur Hauptachse A des Hohlleiterstrahlers 1 ist eine weitere Sonde 9 mit gleichartiger Außenform angeordnet, die einerseits mit der Kurzschlußwand 2 fest verbunden ist und die andererseits am freien Ende des Kurzschlußbügels 10 befestigt ist.FIG. 1 shows a waveguide radiator 1 which consists of a waveguide section 3 and a short circuit wall 2 and a circular Has aperture with the diameter of the waveguide section 3. The coaxial supply 4 opens under the short-circuit wall 2. The connection between the coaxial feed 4 and the waveguide section 3 takes place via an opening 5 in the short-circuit wall 2 through which a capacitive acting coaxial probe 6 is guided. This probe 6 is by means of Connection 7 connected to the center conductor 8 of the coaxial supply 4. The embodiment of the probe is detailed in DE 40 38 817 C1 described. The aperture end of the capacitive coaxial Probe 6 is on a shorting bar running parallel to the short circuit wall 2 10 attached. Symmetrical to the main axis A of the waveguide radiator 1 is a further probe 9 with a similar outer shape, which is on the one hand firmly connected to the short-circuit wall 2 and the on the other hand is attached to the free end of the shorting bar 10.

Die Sonden 6 und 9 bilden zusammen mit dem Kurzschlußbügel 10 das Koppelsystem für eine Polarisationsrichtung einer Grundwelle im Hohlleiterstrahler 1. Wie aus Fig. 2 zu ersehen, ist im Hohlleiterstrahler 1 ein weiteres gleichartiges Koppelsystem, bestehend aus den Sonden 12 und 13 und dem Kurzschlußbügel 11 orthogonal zum ersten Koppelsystem 6, 9, 10 angeordnet. Die Speisung aus einer eigenen koaxialen Speisung ist in den Figuren nicht dargestellt, sie entspricht jedoch der bereits beschriebenen Speisung für das erste Koppelsystem. Die beiden Kurzschlußbügel 10 und 11 sind im Bereich der Hauptachse A sich kreuzend so übereinander geführt, daß kein elektrischer Kontakt zustande kommt. Dies kann - wie aus Fig. 1 ersichtlich - mittels eines Höhenversatzes beider Kurzschlußbügel erfolgen.The probes 6 and 9 together with the shorting bar 10 form the Coupling system for a polarization direction of a fundamental wave in the waveguide radiator 1. As can be seen from FIG. 2, 1 is in the waveguide radiator Another similar coupling system, consisting of probes 12 and 13 and the shorting bar 11 orthogonal to the first coupling system 6, 9, 10 arranged. The feed from a separate coaxial feed is in not shown in the figures, but it corresponds to that already described Power for the first coupling system. The two shorting bars 10 and 11 cross each other in the area of the main axis A. led that no electrical contact is made. This can - how 1 - by means of a height offset of both shorting bars respectively.

Die Länge Lo der Sonden 6, 9, 12, 13 beträgt etwa ein Viertel der Betriebswellenlänge λ. Somit befinden sich die Kurzschlußbügel 10, 11 aufgrund des Abstandes von λ/4 von der Kurzschlußwand 2 im Zustand des Leerlaufes. Die Länge Lo der Sonden ist ggf. veränderbar, ebenso wie die Durchmesser D der Sonden und deren Abstand S zueinander. Damit wird der als Symmetrierglied ausgelegte Übergang an die Hohlleiterimpedanz angepaßt.The length L o of the probes 6, 9, 12, 13 is approximately a quarter of the operating wavelength λ. Thus, the shorting bars 10, 11 are in the state of idling due to the distance of λ / 4 from the shorting wall 2. The length L o of the probes can optionally be changed, as can the diameter D of the probes and their distance S from one another. The transition designed as a balun is thus matched to the waveguide impedance.

Mit Hilfe der Übergänge wird die in der koaxialen Speisung 4 ausbreitungsfähige TEM-Welle in den Grundwellentyp des Hohlleiters 3 umgewandelt. Im quadratischen Hohlleiter entstehen die Wellentypen H01 bzw. H10□ und im runden Hohlleiter orthogonale H11-Wellentypen.With the help of the transitions, the TEM wave that is propagatable in the coaxial feed 4 is converted into the basic wave type of the waveguide 3. The wave types H 01 and H 10 □ are created in the square waveguide and orthogonal H 11 wave types in the round waveguide.

Die Abstrahlung der Mikrowellen erfolgt über die Apertur des Hohlleiterstrahlers 1. Die Aperturebene ist hierbei in einem Abstand 1 von den Kurzschlußbügeln 10, 11 entfernt angeordnet. Durch Variation der Länge 1 im Bereich 0 ≤ 1 ≤ λ wird der sekundäre Strahlungsbeitrag der Einkoppelvorrichtung mit geeigneter Amplitude und Phase dem Strahlungsbeitrag der Hohlleiterapertur überlagert. Damit lassen sich Degradationen des Strahlungsdiagrammes durch Verkoppelungseffekte im Array-Betrieb mehrere gleichartiger Hohlleiterstrahler 1 (= mutual coupling) kompensieren. Dies ist ein entscheidender Vorteil der vorgeschlagenen Einkoppelvorrichtung, der bei bekannten Strahlerelementen wie Patch- oder Schlitzstrahlern nicht gegeben ist.The microwaves are emitted via the aperture of the waveguide radiator 1. The aperture level is at a distance 1 from the shorting bars 10, 11 arranged away. By varying the length 1 in Range 0 ≤ 1 ≤ λ becomes the secondary radiation contribution of the coupling device with a suitable amplitude and phase the radiation contribution superimposed on the waveguide aperture. Degradation of the Radiation diagram through coupling effects in array operation compensate for several identical waveguide radiators 1 (= mutual coupling). This is a decisive advantage of the proposed coupling device, of known radiator elements such as patch or slot radiators is not given.

Wie man aus Fig. 2 gut erkennen kann, zeichnet sich der Hohlleiterstrahler durch eine sehr kompakte Bauweise in radialer Richtung zur Hauptstrahlachse A aus. Dadurch ist eine besonders enge Anordnung mehrerer benachbarter Koppelvorrichtungen, wie sie etwa in einem Hohlleiter-Array benötigt wird, möglich. Die Abmessungen eines solchen Hohlleiter-Arrays liegen im Bereich der Abmessungen eines planaren Patch-Arrays, gegenüber dem sich das Hohlleiter-Array durch bessere elektrische Leistungsdaten und eine bessere Breitbandcharakteristik auszeichnet.As can be seen clearly from FIG. 2, the waveguide radiator is distinguished due to a very compact design in the radial direction to the main beam axis A off. This makes a particularly close arrangement of several neighboring ones Coupling devices, such as those in a waveguide array needed, possible. The dimensions of such a waveguide array lie in the area of the dimensions of a planar patch array which the waveguide array is characterized by better electrical performance data and features better broadband characteristics.

Claims (3)

  1. A waveguide radiator, comprising a waveguide portion with an aperture and a short-circuit wall and also a co-axial feeder and a transition from the co-axial feeder to the waveguide radiator, characterised by the following features:
    a) the waveguide portion (3) of the waveguide radiator (1) has a length L = Lo + 1 (with Lo = ¼ λ; 0 ≤ 1 ≤ λ; λ = operating wavelength);
    b) the co-axial feeder (4) is fed via an eccentrically arranged opening (5) in the short-circuit wall (2) by means of a capacitively acting co-axial probe (6) comprising a pin and a sleeve contactlessly surrounding part of the pin, a terminal (7) being connected to the neutral conductor (8) of the co-axial feeder;
    c) a further probe (9) of like external form is conductively fixed to the short-circuit wall (2) and symmetrically arranged relative to the main axis (A) of the waveguide radiator (1) and, on the aperture side, the end of the further probe (9) is connected to the end of the capacitively acting co-axial probe (6) by means of a shorting bar (10).
  2. A waveguide radiator according to claim 1, characterised in that the probes (6, 9) have a length of approximately one quarter of the operating wavelength.
  3. A waveguide radiator according to claim 1 or 2, characterised in that, orthogonally to the first coupling device comprising the two probes (6, 9) and the shorting bar (10), a further, like coupling device (11, 12, 13) is arranged on the short-circuit wall (2), the shorting bars (10, 11) being contactlessly guided over one another in the region of the main axis (A) of the waveguide radiator (1).
EP99100867A 1998-01-30 1999-01-19 Waveguide radiator Expired - Lifetime EP0933833B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803565 1998-01-30
DE19803565 1998-01-30

Publications (2)

Publication Number Publication Date
EP0933833A1 EP0933833A1 (en) 1999-08-04
EP0933833B1 true EP0933833B1 (en) 2003-11-19

Family

ID=7856114

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99100867A Expired - Lifetime EP0933833B1 (en) 1998-01-30 1999-01-19 Waveguide radiator

Country Status (5)

Country Link
US (1) US6154183A (en)
EP (1) EP0933833B1 (en)
CA (1) CA2260394A1 (en)
DE (1) DE29818848U1 (en)
ES (1) ES2207037T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU174536U1 (en) * 2017-03-30 2017-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Waveguide emitter
RU202634U1 (en) * 2020-03-23 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Low profile terahertz dielectric antenna

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603438B2 (en) 2001-02-22 2003-08-05 Ems Technologies Canada Ltd. High power broadband feed
US7194528B1 (en) 2001-05-18 2007-03-20 Current Grid, Llc Method and apparatus for processing inbound data within a powerline based communication system
US9019036B2 (en) * 2010-05-10 2015-04-28 Raytheon Company Multiple E-probe waveguide power combiner/divider
CN103339793B (en) 2011-01-25 2015-11-25 日本电气株式会社 Coaxial waveguide converter and ridge waveguide pipe
US10553940B1 (en) 2018-08-30 2020-02-04 Viasat, Inc. Antenna array with independently rotated radiating elements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603987A (en) * 1969-11-06 1971-09-07 Itt Polarization diversity radiator for phased arrays
US3680138A (en) * 1970-09-21 1972-07-25 Us Army Cross-mode reflector for the front element of an array antenna
US4051447A (en) * 1976-07-23 1977-09-27 Rca Corporation Radio frequency coupler
US4097869A (en) * 1977-03-14 1978-06-27 Stanford Research Institute Orthogonal-port, biconical-horn, direction-finder antenna
DE3129425A1 (en) * 1981-07-25 1983-02-10 Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen MICROWAVE ANTENNA FOR CIRCULAR POLARISATION
DE3150236A1 (en) * 1981-12-18 1983-06-30 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Arrangement for the connection of radiating arrays to a junction network
DE4038817C1 (en) * 1990-12-05 1992-05-07 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
JP3101930B2 (en) * 1991-04-26 2000-10-23 マスプロ電工株式会社 Coaxial waveguide converter
US5304999A (en) * 1991-11-20 1994-04-19 Electromagnetic Sciences, Inc. Polarization agility in an RF radiator module for use in a phased array
DE19629593A1 (en) * 1996-07-23 1998-01-29 Endress Hauser Gmbh Co Arrangement for generating and transmitting microwaves, especially for a level measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU174536U1 (en) * 2017-03-30 2017-10-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Waveguide emitter
RU202634U1 (en) * 2020-03-23 2021-03-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) Low profile terahertz dielectric antenna

Also Published As

Publication number Publication date
EP0933833A1 (en) 1999-08-04
CA2260394A1 (en) 1999-07-30
DE29818848U1 (en) 1999-01-07
ES2207037T3 (en) 2004-05-16
US6154183A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
EP2830156B1 (en) Waveguide radiator, group antenna radiator and synthetic aperture radar radiator
DE60034042T2 (en) FRAME ANTENNA WITH FOUR RESONANCE FREQUENCIES
EP3329545B1 (en) Dual-polarized antenna
DE112013001764B4 (en) Antenna field device with slotted waveguide
DE60009874T2 (en) V-slot antenna for circular polarization
EP2256864B1 (en) Antenna for circular polarisation with a conductive base
DE60102574T2 (en) Printed dipole antenna with dual spirals
EP1695417B1 (en) Antenna comprising at least one dipole or a dipole-like radiator arrangement
DE69735807T2 (en) WENDELANTENNE WITH CURVED SEGMENTS
WO2017133849A1 (en) Dual-polarized antenna
DE2316842C3 (en) Multi-frequency antenna for three frequency bands
EP3533110B1 (en) Dual-polarized horn radiator
DE69817133T2 (en) Surface-mounted antenna and communication device with it
DE3601649A1 (en) LEVEL MICROWAVE ANTENNA
DE102006057144B4 (en) Waveguide radiators
EP0933833B1 (en) Waveguide radiator
DE10359605A1 (en) Broadband antenna, in particular omnidirectional antenna
EP2105991B1 (en) Dielectric horn antenna
DE3027497A1 (en) POLARIZING SWITCH WITH FINE HORN
DE2423420A1 (en) RADIO-ELECTRIC DIRECTIONAL ANTENNA
EP0285879B1 (en) Broad-band polarizing junction
DE2629430C2 (en) Double omnidirectional antenna
DE3622175A1 (en) ARRANGEMENT FOR UNCOUPLING TWO ORTHOGONAL LINEAR POLARIZED WAVES FROM A SEMICONDUCTOR
DE102006036325A1 (en) Ultra broad-band dipole antenna, has dielectric rod and reflector, where radiation pattern is formed by rod and reflector, and metallic broadband dipole is inserted into rear end of rod of arbitrary cross section in form-fit manner
DE2613592C3 (en) Broadband polarization switch

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR GB IT NL SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19990918

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASTRIUM GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS ASTRIUM GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031119

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031216

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2207037

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040820

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20060112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060131

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070120

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070119

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070119

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060120

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070119