EP2256864A1 - Antenne für zirkulare Polarisation mit einer leitenden Grundfläche - Google Patents

Antenne für zirkulare Polarisation mit einer leitenden Grundfläche Download PDF

Info

Publication number
EP2256864A1
EP2256864A1 EP10005480A EP10005480A EP2256864A1 EP 2256864 A1 EP2256864 A1 EP 2256864A1 EP 10005480 A EP10005480 A EP 10005480A EP 10005480 A EP10005480 A EP 10005480A EP 2256864 A1 EP2256864 A1 EP 2256864A1
Authority
EP
European Patent Office
Prior art keywords
slot
radiator
line
antenna
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10005480A
Other languages
English (en)
French (fr)
Other versions
EP2256864B1 (de
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Deutschland GmbH
Original Assignee
Delphi Delco Electronics Europe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Delco Electronics Europe GmbH filed Critical Delphi Delco Electronics Europe GmbH
Publication of EP2256864A1 publication Critical patent/EP2256864A1/de
Application granted granted Critical
Publication of EP2256864B1 publication Critical patent/EP2256864B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

Definitions

  • the invention relates to an antenna for circular polarization with a at a distance in front of an electrically conductive base 2 in a plane oriented perpendicular to the base plane of symmetry SE electric dipole radiator with substantially parallel to the base 2 oriented polarization and in the plane of symmetry SE to the base extending feed line 6.
  • an electric dipole radiator designed in the same way and extending in a further plane of symmetry oriented perpendicular to both the plane of symmetry SE and the electrically conductive base 2 is used. Both dipole radiators are connected together via a 90 ° phase shifter and the combined signal is conducted via the feed line 6 to the base.
  • Antennas of this type are z. B. known from the DE 4008505 A1 , They are often used to receive satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
  • satellite radio services such as Inmarsat, SDARS, Worldspace, etc.
  • the object of the invention is therefore to design an antenna for circular polarization according to the preamble of the main claim in such a way that their extension transverse to the running in the plane of symmetry SE electric dipole radiator 1 is minimal or significantly less than in the direction along the plane of symmetry.
  • Antennas according to the invention can be advantageously used in particular because of their aerodynamically favorable designability in connection with the low volume of construction outside the body of a vehicle or aircraft.
  • the circular polarization is generated in antennas according to the prior art in such a way that two linearly polarized and in their spatial longitudinal extent mutually perpendicular antennas are present, which in the far field of the antenna, the two spatially oriented perpendicular to each other and 90 ° to each other in the Phase shifted electromagnetic fields.
  • the present invention demonstrates a solution which allows two linearly polarized antennas to be combined but with a longitudinal extent substantially along a common line.
  • This solution consists in the advantageous combination of a slot radiator 3, which is designed in an electrically conductive base 2 along its longitudinal symmetry line SL and arranged in the dipole 14 above this electrically conductive base 2 and parallel to both the electrically conductive base 2 and the longitudinal symmetry line SL electrical Dipole radiator 1.
  • FIG. 1 shows the basic form of a circular polarization antenna according to the invention.
  • a slot radiator 3 in the conductive base 2 is a slot with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the conductive base 2 with the slot radiator connection point 7, which by located on opposite longitudinal edges 18 and mutually adjacent slot connection points 19 is formed, formed.
  • the electric dipole radiator 1 with dipole connection point 8 is mounted at a distance from the front side of the electrically conductive base 2. This is oriented substantially parallel to the electrically conductive base 2 and extends in a direction perpendicular to the electrically conductive base 2 oriented plane, here called the plane of symmetry SE.
  • the electric dipole radiator 1 is connected with its dipole connection point 8 to the dipole feed line 6, which is guided in the plane of symmetry SE to the electrically conductive base 2 and extends substantially perpendicular to the electrically conductive base 2 out.
  • the circular polarization is formed by the electromagnetic radiation field of the introduced into the electrically conductive base 2 slot heater 3, the electric field is oriented in the far field perpendicular to its longitudinal extent 4.
  • the slot radiator 3 is therefore arranged with its longitudinal extent 4 along the line of intersection between the plane of symmetry SE and the electrically conductive base area 2, producing a perpendicularly oriented electric radiation field necessary for the circular polarization in a distant reference point to the radiation field of the electric dipole radiator 1.
  • the slot radiator connection point 7 is formed by slot connection points 19 located opposite one another and located on the longitudinal edges 18 of the slot radiator 3.
  • both the electric dipole radiator 1 and the slot radiator 3 are tuned at the frequency for which the antenna is designed, in each case to its resonant frequency, at which the antenna impedance is substantially real.
  • each half-wavelength resonance ( ⁇ / 2) of the two emitters is of particular importance.
  • the slot radiator 3 is introduced with the slot radiator connection point 7 as an elongated approximately rectangular slot with substantially straight longitudinal edges 18 in the electrically conductive base 2. Over the small slot width 5 compared to the longitudinal extent 4, the frequency bandwidth results at the resonance frequency of the slot determined by the longitudinal extent 4.
  • Round radiation properties of the antenna can be achieved according to the invention by observing symmetry conditions in a simple manner.
  • the slot radiator 3 is symmetrical to the longitudinal line SL of symmetry section line between the Symmetrieebene SE and the electrically conductive base 2 to make.
  • the further easy-to-follow symmetry condition is the symmetrical configuration of the electric dipole radiator 1 and its symmetrical feed to the symmetry line ZL perpendicular to the electrically conductive base 2 and passing through the center Z of the slot.
  • the symmetrical feeding at the dipole connection point 8 takes place via the dipole feed line 6 extending substantially symmetrically to the symmetry line ZL.
  • FIG. 2 is to support the radiation on the electric dipole radiator 1 facing the front of the electrically conductive base 2 by shielding against the radiation on the back of the slot radiator 3 on the back of the base 2 by a cavity resonator 15 covered.
  • the cavity resonator 15 is advantageously designed as a conductively bound cavity body, which completely covers the slot radiator 3 and which is electrically connected to the electrically conductive base 2, so that a perfect shield against the radiation of the electromagnetic fields of the slot radiator 3 in the on the back of the electrically conductive base 2 is given half space.
  • the reactive energy stored in the cavity influences - depending on the dimensions of the cavity - the resonance characteristics of the slot radiator 3.
  • the longitudinal extent 4 of the slot radiator 3 is selected about half a wavelength ( ⁇ / 2).
  • the expansion of the cavity body in the longitudinal direction of the slot is at least greater than half a wavelength ( ⁇ / 2) and its dimension in symmetrical mounting transversely to the longitudinal direction of the slot suitably greater than ( ⁇ / 4) selected.
  • the slot is disposed approximately at the level of the electrically conductive base 2 and the cavity body is below, for example, no stylistic disadvantages associated with the application to vehicles, because the housing covering the antennas are wider down to achieve sufficient strength .
  • Its dimension perpendicular to the electrically conductive base 2 is advantageously greater than ( ⁇ / 10) selected depending on the required bandwidth of the slot radiator 3.
  • the center of the cuboid cavity body is suitably chosen lying on the vertical symmetry line ZL.
  • the dipole spacing is 14 to form the circular polarization of the antenna from the electrically conductive base 2 about a quarter of the free space wavelength selected.
  • the phase difference in the interest of the shortest possible dipole feed line 6 for this elevation angle is advantageously 180 ° to choose.
  • the electrical length of the dipole feed line 6 is then approximately ⁇ / 2 and can be implemented to bridge the geometric distance of ⁇ / 4 between the slot connection points 19 and the dipole radiator connection point 8.
  • the required superimposition of the radiation fields of the two radiators at an electrical phase angle of + -90 ° is thus established via the path difference of the electromagnetic wave, which results from the distance of ⁇ / 4 of the electric dipole radiator 1 from the electrically conductive base 2.
  • the signal powers prevailing at the slot radiator connection point 7 and at the dipole connection point 8 must be set approximately the same.
  • the dipole connection point 8 due to the bundling of the radiation, which results together with the mirrored to the electrically conductive base 2 electric dipole radiator 1, correspondingly lower than at the slot radiator Anschlußusstelle 7. Accordingly, to achieve the circular polarization to select both the signal powers and the electrical phase angles at the two radiator connection points 7, 8 in accordance with the different magnitudes of the directional diagrams of the two radiators or their different phases relative to a distant reference point, at a certain predetermined elevation angle. Also, the distance 14 can be varied advantageously for adjusting the vertical directional diagram of the electric dipole radiator 1 and does not have to be selected exactly to ⁇ / 4.
  • This distribution network 13 is in Fig. 1 in a particularly simple embodiment via an asymmetrically designed with respect to the electrically conductive base 2 as a ground plane antenna line 11 to the antenna connection point 12 and in the vicinity of the Center Z formed.
  • one of the slot connection points 19 of the slot radiator connection point 7 is formed by the ground connection of the antenna line 11 on one of the two longitudinal edges 18.
  • the other of the slot connection points 19 is connected by connecting the voltage-carrying conductor of the antenna line 11 adjacent to the opposite longitudinal edge 18.
  • the dipole feed line 6 is designed as a symmetrical two-wire line. Their two conductors are connected with their feed line connection points 25 each with one of the slot connection points 19 of the slot radiator connection point 7. In this way, a conversion of the signals conducted asymmetrically polarized by the antenna line 11 into the signals conducted on the symmetrical two-wire line and symmetrically polarized relative to the electrically conductive base area 2 is achieved in a low-effort manner.
  • the slot connection points 19 of the slot radiator connection point 7 thus also form the feed line connection points 25.
  • the impedance at a slot radiator junction 7 mounted in the center Z of a slot radiator 3 is generally much higher than that of an elongated dipole radiator with values below 100 ohms, up to a few kilo-ohms.
  • the chain circuit of several lines with different characteristic impedances and an electrical length of ⁇ / 4 can be used by way of example.
  • the large impedance of the slot radiator 3 compared to the characteristic impedance of the technically feasible lines is bridged into the impedance level of the electric dipole radiator 1 in two steps. For such an impedance transformation carried out in several steps, sufficiently low-impedance line characteristic impedances result, which can be realized on conventional electrical printed circuit boards.
  • antennas according to the invention it is therefore advantageous, for example, to design the dipole feed line 6 by two ⁇ / 4 transformers in chain connection.
  • a first transformation step first the extremely high impedance of the slot radiator 3 at the slot radiator connection point 7 by an electrically ⁇ / 4-long line with a technically feasible characteristic impedance transformed into an impedance which is less than the impedance of the electric dipole radiator 1.
  • the necessary characteristic impedance can be realized as a ribbon cable.
  • the further transformation - starting from this impedance level - in the higher resistance of the electric dipole radiator 1 can then take place in a second transformation step with an electrically ⁇ / 4-long line with a likewise readily realizable line impedance.
  • An exemplary embodiment of such an advantageous antenna according to the invention thus has an electrical length of ⁇ / 2 in the region of the dipole feed line 6.
  • another line piece can be supplemented to cause additional phase rotations.
  • this overall electrically ⁇ / 2-long dipole feed line 6 can be easily arranged by meandering, designed substantially symmetrically to the vertical line of symmetry ZL and running in the plane of symmetry SE wiring so that overall the geometric length of ⁇ / 4 is bridged.
  • ⁇ r of 4 the straight length of a ⁇ / 2 long line gives exactly a geometric length of ⁇ / 4.
  • the antenna may alternatively be used for left or right polarized signals.
  • the dipole and the dipole feed line 6 are printed on a printed circuit board.
  • This technology allows the design of the characteristic impedance and the transformation properties of the feed line 6 within wide limits.
  • inductive and capacitive blanking elements or concentrated dummy elements printed on the printed circuit board can be applied to the design of matching networks 10 and / or phase rotation elements 17.
  • transformation circuits with resonance character - for example, as a parallel resonant circuit with partial coupling - can be realized, which allow the adaptation of the low impedance of the electric dipole radiator 1 to the impedance level of the high-impedance slot radiator 3 to transform.
  • the dipole feed line 6 consists of a printed symmetrical two-wire line, which is connected at its one end to the electric dipole radiator 1 and at the other End is connected to a consisting of dummy elements transformation circuit with a resonant character, which causes the impedance matching to the high impedance level of the slot radiator 3.
  • the line length required for meeting the phase condition is again advantageously provided by a meander-shaped design of the feed line 6, which is guided substantially symmetrically to the vertical line of symmetry ZL and in the plane of symmetry SE.
  • phase-shift chain circuits of lumped reactive elements can be used which do not transform the impedance.
  • the distribution network 13 is formed from a substantially consisting of concentrated reactive elements circuit.
  • Fig. 2 is in a further advantageous embodiment of the invention, the distribution network 13 connected via a relation to the electrically conductive base 2 asymmetrically designed as a ground surface antenna line 11 to the antenna connection point 12 and in the vicinity of the center Z as in FIG. 1 formed by the one of the feeder line connection points 25 by the ground terminal of the antenna line 11 on one of the two longitudinal edges 18 and the other of the feeder line connection points 25 by connecting the voltage-carrying conductor of the antenna line 11 adjacent formed on the opposite longitudinal edge 18 and there also the dipole feed line 6 is connected with its feed line connection points 25.
  • the slot radiator connection point 7 is formed at a distance 16 from the center Z and connected via a parallel branching of the unbalanced antenna line 11 via slot connection points 19 formed in an analogous manner.
  • the antenna resistance of the slot radiator 3 at resonance is maximum in the center Z when the slot radiator connection point 7 is formed and is generally much larger than the characteristic resistance of conventional lines. It changes with increasing distance 16 from the center Z to smaller values. In the interest of better adaptation to such line structures, it is therefore advantageous according to the invention to choose the distance 16 accordingly.
  • the fulfillment of the phase and power conditions is carried out according to the invention in the part of the wiring between the parallel branching of the antenna line 11 and the slot radiator connection point 7 on the one hand and to the dipole connection point 8 on the other.
  • the antenna line 11 is designed to the slot radiator connection point 7 as an asymmetrical with respect to the electrically conductive base 2 as a ground surface stripline 20 whose strip conductor is coupled in known manner by radiation coupling to the slot of the slot radiator 3.
  • the strip conductor is guided in the region of the slot of the slot radiator 3 perpendicular to its longitudinal extent and at least partially over the slot.
  • the one of the slot connection points 19 is given by the ground point at the point where the strip conductor crosses the one of the longitudinal edges 18 in plan view.
  • the other of the slot connection points 19 is given by non-contact radiation coupling of the voltage-carrying stripline on the opposite longitudinal edge 18.
  • the dipole radiator connection point 8 is in the example of Fig. 5 is again arranged in the center Z of the slot radiator 3, wherein the two dipole feed line connection points 25 are again arranged on the two line edges 18. Due to the electrical dipole radiator 1 connected in the center of the slot radiator 3 is additionally damped, so that the distance 16 must be chosen correspondingly smaller than he would have to be chosen without this damping for the adjustment.
  • the slot radiator 3 is partially included in the distribution network 13 for dividing the signal power present at the antenna connection point 12 on the slot radiator 3 on the one hand and the electric dipole radiator 1 on the other.
  • the slot of the slot radiator 3 at its both ends is formed by substantially transverse to its longitudinal symmetry line SL oriented transverse slots 22.
  • these transverse slots 22 are advantageously designed at both ends to be similar and symmetrical to the longitudinal symmetry line SL, as shown in FIG FIG. 4 is shown.
  • the slot resonance frequency thus occurs at a smaller longitudinal extent 4 than half the free space wavelength ⁇ .
  • the length of the electric dipole radiator 1 can be shortened by the fact that it is loaded at its two ends in each case with a similar end capacity 21.
  • Such end capacities 21 may, for example, as in FIG. 4 be indicated, formed by substantially vertically oriented conductor structures.
  • Such conductor structures according to the invention are particularly advantageous because they do not increase the transverse dimension of the part of the antenna located above the electrically conductive base 2.
  • the electrically conductive base 2 is given by the outer surface of an electrically conductive and formed of sheet metal vehicle body itself, in which the slot radiator 3 is introduced into the sheet.
  • the surface of the electrically conductive body is then designed such that it substantially fills the recess of the electrically conductive vehicle body, and its outer surface is substantially complemented with its surface to a plane and in this way the electrically conductive base 2 is designed.
  • the recess to be introduced into the vehicle body can advantageously be chosen to be only slightly larger in the longitudinal and transverse dimensions than required by the dimensions of the slot.
  • the electrically conductive base 2 is designed as a conductive surface, preferably made of sheet metal and mounted under the vehicle skin.
  • the slot radiator 3 is introduced and it carries in an advantageous embodiment of the invention on its rear side Cavity resonator 15 and on its front side the electric dipole radiator 1 and the dipole feed line 6.
  • the dimensions of the electrically conductive base 2 are two-dimensional sufficiently large to choose so that adjust approximately the radiation properties of the antenna, as they apply to an antenna of this type with extended electrically conductive base 2.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

Die Erfindung betrifft eine Antenne für zirkulare Polarisation. In einem Abstand von der Vorderseite einer elektrisch leitenden Grundfläche 2 und in einer senkrecht zur elektrisch leitenden Grundfläche 2 orientierten Symmetrieebene SE verläuft ein im Wesentlichen parallel zur elektrisch leitenden Grundfläche 2 orientierter elektrischer Dipolstrahler 1 mit Dipol-Anschlussstelle 8. An diese ist eine in der Symmetrieebene SE zur elektrisch leitenden Grundfläche 2 hin verlaufende Dipol-Speiseleitung 6 angeschlossen. Weiterhin ist eine Antennen-Anschlussstelle 12 vorhanden. In der elektrisch leitenden Grundfläche 2 ist ein Schlitzstrahler 3 mit seiner Längsausdehnung 4 entlang der Schnittlinie zwischen der Symmetrieebene SE und der elektrisch leitenden Grundfläche 2 gestaltet. Die Schlitzstrahler-Anschlussstelle 7 ist durch einander gegenüberliegenden, auf den Längsrändern 18 befindlichen Anschlusspunkten 19 gebildet. Der elektrische Dipolstrahler 1 und der Sclllitzstrahler 3 sind in ihren Resonanzfrequenzen aufeinander abgestimmt. Der Schlitzstrahler 3 und der elektrische Dipolstrahler 1 mit Dipol-Speiseleitung 6 sind über ein Verteilnetzwerk 13 mit der Antennen-Anschlussstelle 12 nach Betrag und Phase in der Weise verbunden, dass bei der Frequenz, auf welche die Strahler aufeinander abgestimmt sind, im Fernfeld zirkulare Polarisation gegeben ist.

Description

  • Die Erfindung betrifft eine Antenne für zirkulare Polarisation mit einer in einem Abstand vor der Vorderseite einer elektrisch leitenden Grundfläche 2 in einer senkrecht zur Grundfläche orientierten Symmetrieebene SE verlaufenden elektrischen Dipolstrahlers mit im Wesentlichen parallel zur Grundfläche 2 orientierten Polarisation und einer in der Symmetrieebene SE zur Grundfläche hin verlaufenden Speiseleitung 6.
  • Zur Gestaltung einer Antenne für zirkulare Polarisation wird nach dem Stande der Technik ein in gleicher Weise gestalteter und in einer sowohl zur Symmetrieebene SE und zur elektrisch leitenden Grundfläche 2 senkrecht orientierten weiteren Symmetrienebene verlaufender elektrischer Dipolstrahler eingesetzt. Beide Dipolstrahler werden über ein 90°-Phasendrehglied zusammengeschaltet und das zusammengefasste Signal über die Speiseleitung 6 zur Grundfläche geleitet. Antennen dieser Art sind z. B. bekannt aus der DE 4008505 A1 . Sie werden häufig zum Empfang von Satelliten-Funkdiensten- wie zum Beispiel Inmarsat, SDARS, Worldspace etc. - eingesetzt. Insbesondere bei Verwendung solcher Antennen auf Fahrzeugen zeigt es sich als nachteilig, dass die Antenne - bei Montage der Antenne auf der Außenhaut des Fahrzeugs - auf dessen Außenseite ein dreidimensionales Gebilde darstellt. Häufig besteht zum Beispiel für die Anbringung der Antenne auf einem Fahrzeugdach oder einem Kotflügel die Forderung nach einer weitgehend zweidimensionalen Struktur, deren Ausdehnung quer zur Fahrtrichtung minimal ist. Dies ist sowohl aus Gründen der Geräuscharmut durch Luftverwirbelung als auch aus stilistischen Gründen erwünscht. Diese Forderung gilt in besonderem Maße für die Teile der Antenne, die über die Fahrzeugaußenhaut herausragen, während in der Ebene der Außenhaut geringe Querabmessungen unproblematisch sind.
  • Aufgabe der Erfindung ist es demnach, eine Antenne für zirkulare Polarisation nach dem Oberbegriff des Hauptanspruchs in der Weise zu gestalten, dass ihre Ausdehnung quer zu dem in der Symmetrieebene SE verlaufenden elektrischen Dipolstrahler 1 minimal beziehungsweise deutlich geringer als in der Richtung längs der Symmetrieebene ist.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Hauptanspruchs und die in den weiteren Ansprüchen vorgeschlagenen Maßnahmen gelöst.
  • Antennen nach der Erfindung können insbesondere aufgrund ihrer strömungstechnisch günstigen Gestaltbarkeit in Verbindung mit dem geringen Bauvolumen außerhalb der Karosserie eines Fahrzeugs beziehungsweise Flugzeugs vorteilhaft eingesetzt werden.
  • Die Erfindung wird im Folgenden an Hand der Figuren näher beschrieben. Es zeigen:
    • Fig.1:
      Grundprinzip einer Antenne nach der Erfindung mit einem gestreckten Dipol 1 und mit der elektrischen Länge einer halben Wellenlänge (λ/2) mit einer Speiseleitung 6 über einer elektrisch leitenden Grundfläche 2 mit Schlitzstrahler 3 im Abstand 14 von vorzugsweise etwa einer Viertelwellenlänge und einer einfachen Parallelverzweigung als Verteilnetzwerk 13 und einer als Streifenleitung 20 ausgeführten Antennen-Leitung 11.
    • Fig.2:
      Antenne nach der Erfindung wie in Figur 1, jedoch mit einem Verteilnetzwerk 13 mit Anpassnetzwerk 10 aus konzentrierten Blindelementen zur Einstellung der richtigen Phasen zur Speisung des Schlitzstrahlers 3 und des Dipolstrahlers 1 und der Anpassung der Impedanzen zur erforderlichen Leistungsaufteilung.
    • Fig.3:
      Antenne nach der Erfindung wie in Figur 2, jedoch mit einem Phasenschiebernetzwerk 17 in der Dipol-Speiseleitung 6 zur Einhaltung der Phasenbedingung der zeitlich um 90° gegeneinander verschobenen elektromagnetischen Felder des Schlitzstrahlers 3 und des elektrischen Dipolstrahlers 1 im Fernfeld sowie ein Anpassnetzwerk 10 zur Anpassung der Dipolimpedanz an die Dipol-Speiseleitung 6.
    • Fig.4:
      Antenne nach der Erfindung wie in Figur 3, jedoch mit kurzen Querschlitzen 22 an den beiden Enden des Schlitzstrahlers 3 zur Verringerung der Längsausdehnung 4 des Schlitzstrahlers 3 und mit Endkapazitäten 21 zur Verringerung der Länge des elektrischen Dipolstrahlers 1.
    • Fig.5:
      Antenne nach der Erfindung mit einer Speisung des Schlitzstrahlers 3 über eine Mikro-Streifenleitung 20 zur einfacheren und verlustarmen Anpassung an die Antennen-Leitung 11
  • Die zirkulare Polarisation wird bei Antennen nach dem Stande der Technik in der Weise erzeugt, dass zwei linear polarisierte und in ihrer räumlichen Längsausdehnung zueinander senkrecht orientierte Antennen vorhanden sind, welche im Fernfeld der Antenne die beiden räumlich senkrecht zueinander orientierten und um 90° gegeneinander in der Phase verschobenen elektromagnetischen Felder erzeugen. Die vorliegende Erfindung zeigt eine Lösung auf, welche es ermöglicht, dass zwei linear polarisierte Antennen, jedoch mit einer im Wesentlichen längs einer gemeinsamen Linie verlaufenden Längsausdehnung kombiniert sind. Diese Lösung besteht in der vorteilhaften Kombination eines Schlitzstrahlers 3, welcher in einer elektrisch leitenden Grundfläche 2 längs seiner Längssymmetrielinie SL gestaltet ist und eines im Dipolabstand 14 über dieser elektrisch leitenden Grundfläche 2 und parallel sowohl zur elektrisch leitenden Grundfläche 2 als auch zur Längssymmetrielinie SL angeordneten elektrischen Dipolstrahlers 1.
  • Figur 1 zeigt die Grundform einer Antenne für zirkulare Polarisation nach der Erfindung. Zur Gestaltung eines Schlitzstrahlers 3 in der leitenden Grundfläche 2 ist ein Schlitz mit seiner Längsausdehnung 4 entlang der Schnittlinie zwischen der Symmetrieebene SE und der leitenden Grundfläche 2 mit der Schlitzstrahler-Anschlussstelle 7, welche durch auf einander gegenüberliegenden Längsrändern 18 befindlichen und zueinander benachbarten Schlitz-Anschlusspunkten 19 gestaltet ist, gebildet. Zur Gestaltung der Antenne für zirkulare Polarisation ist in einem Abstand von der Vorderseite der elektrisch leitenden Grundfläche 2 der elektrische Dipolstrahler 1 mit Dipol-Anschlussstelle 8 angebracht. Dieser ist im Wesentlichen parallel zur elektrisch leitenden Grundfläche 2 orientiert und verläuft in einer senkrecht zur elektrisch leitenden Grundfläche 2 orientierten Ebene, hier Symmetrieebene SE genannt. Der elektrische Dipolstrahler 1 ist mit seiner Dipol-Anschlussstelle 8 an die Dipol-Speiseleitung 6 angeschlossen, welche in der Symmetrieebene SE zur elektrisch leitenden Grundfläche 2 geführt ist und im Wesentlichen senkrecht zur elektrisch leitenden Grundfläche 2 hin verläuft. Die zirkulare Polarisation wird durch das elektromagnetische Strahlungsfeld des in die elektrisch leitende Grundfläche 2 eingebrachten Schlitzstrahlers 3 gebildet, dessen elektrisches Feld im Fernfeld senkrecht zu seiner Längsausdehnung 4 orientiert ist. Zur Erzeugung eines im fernen Aufpunkt zum Strahlungsfeld des elektrischen Dipolstrahlers 1 für die zirkulare Polarisation notwendigen senkrecht orientierten elektrischen Strahlungsfeldes ist der Schlitzstrahler 3 deshalb mit seiner Längsausdehnung 4 entlang der Schnittlinie zwischen der Symmetrieebene SE und der elektrisch leitenden Grundfläche 2 angeordnet. Die Schlitzstrahler-Anschlussstelle 7 ist durch einander gegenüberliegende, auf den Längsrändern 18 des Schlitzstrahlers 3 befindliche Schlitz-Anschlusspunkte 19 gebildet. Zur Erreichung günstiger Strahlungseigenschaften und Impedanzanpassungsverhältnisse ist sowohl der elektrische Dipolstrahler 1 als auch der Schlitzstrahler 3 bei der Frequenz, für welche die Antenne gestaltet ist, jeweils auf seine Resonanzfrequenz, bei der die Antennenimpedanz im Wesentlichen reell ist, abgestimmt. Im Interesse kleiner Baugröße der Antenne ist deshalb jeweils die Halbwellenlängenresonanz (λ/2) der beiden Strahler von besonderer Bedeutung. Neben der Orthogonalitätsbedingung der im Fernfeld sich überlagernden Strahlungsfelder der beiden Strahler ist zur Erreichung der zirkularen Polarisation sowohl die Bedingung der zeitlichen Phasenverschiebung von + - 90° Grad, je nach Drehrichtung der Polarisation, als auch die Gleichheit der Intensität der sich überlagernden Strahlungsfelder notwendig. Diese Gleichheit kann unter Berücksichtigung der unterschiedlichen vertikalen Richtdiagramme für einen breiten Bereich des Elevationswinkels für hinreichenden Kreuzpolarisationsabstand erreicht werden. Die Einstellung dieses Elevationswinkelbereichs erfolgt erfindungsgemäß über die Gestaltung des Verteilnetzwerks 13, über welches sowohl der Schlitzstrahler 3 als auch der elektrische Dipolstrahler 1 mit Dipol-Speiseleitung 6 mit der Antennen-Anschlussstelle 12 verbunden ist. Diese Gestaltung erfolgt demnach in der Weise, dass bei der Frequenz, auf welche beide Strahler auf Resonanz abgestimmt sind, die an der Dipol-Anschlussstelle 8 und an der Schlitzstrahler-Anschlussstelle 7 wirksamen Signale nach Betrag und Phase diejenigen Werte besitzen, dass im Fernfeld zirkulare Polarisation gegeben ist. In einer besonders vorteilhaften Ausgestaltung der Erfindung ist der Schlitzstrahler 3 mit der Schlitzstrahler-Anschlussstelle 7 als länglicher in etwa rechteckförmiger Schlitz mit im Wesentlichen geraden Längsrändern 18 in die elektrisch leitende Grundfläche 2 eingebracht. Über die im Vergleich zur Längsausdehnung 4 kleine Schlitzbreite 5 ergibt sich die Frequenzbandbreite bei der durch die Längsausdehnung 4 bestimmten Resonanzfrequenz des Schlitzes.
  • Rundstrahlungseigenschaften der Antenne können erfindungsgemäß durch Einhalten von Symmetriebedingungen auf einfache Weise erreicht werden. Hierfür ist der Schlitzstrahler 3 symmetrisch zu der mit Längssymmetrielinie SL bezeichneten Schnittlinie zwischen der Symmetrieebene SE und der elektrisch leitenden Grundfläche 2 zu gestalten. Die weitere einfach einzuhaltende Symmetriebedingung ist die symmetrische Ausgestaltung des elektrischen Dipolstrahlers 1 und seine symmetrische Speisung zu der auf der elektrisch leitenden Grundfläche 2 senkrecht stehenden und durch das Zentrum Z des Schlitzes laufenden Symmetrielinie ZL. Die symmetrische Speisung an der Dipol-Anschlussstelle 8 erfolgt über die im Wesentlichen symmetrisch zur Symmetrielinie ZL verlaufende Dipol-Speiseleitung 6.
  • In Figur 2 ist zur Unterstützung der Strahlung auf der dem elektrischen Dipolstrahler 1 zugewandten Vorderseite der elektrisch leitenden Grundfläche 2 durch Abschirmung gegen die Strahlung auf deren Rückseite der Schlitzstrahler 3 auf der Rückseite der Grundfläche 2 durch einen Hohlraumresonator 15 abgedeckt. Der Hohlraumresonator 15 ist vorteilhaft als leitend berandeter Hohlraumkörper gestaltet, welcher den Schlitzstrahler 3 vollkommen überdeckt und welcher mit der elektrisch leitenden Grundfläche 2 elektrisch leitend verbunden ist, sodass eine vollkommene Abschirmung gegen die Abstrahlung der elektromagnetischen Felder des Schlitzstrahlers 3 in den auf der Rückseite der elektrisch leitenden Grundfläche 2 befindlichen Halbraum gegeben ist. Die im Hohlraum gespeicherte Blindenergie beeinflusst - abhängig von den Abmessungen des Hohlraums - die Resonanzeigenschaften des Schlitzstrahlers 3. Im Interesse einer reellen Impedanz an der Schlitzstrahler-Anschlussstelle 7 ist die Längsausdehnung 4 des Schlitzstrahlers 3 etwa eine halbe Wellenlänge (λ/2) gewählt. In einer besonders vorteilhaften Gestaltung des Hohlraumkörpers ist dieser, wie in Fig. 2 angedeutet, quaderförmig gewählt. Somit ist die Ausdehnung des Hohlraumkörpers in Längsrichtung des Schlitzes mindestens größer als eine halbe Wellenlänge (λ/2) und seine Abmessung bei symmetrischer Anbringung quer zur Längsrichtung des Schlitzes zweckmäßig größer als (λ/4) gewählt. Da der Schlitz etwa auf Höhe der elektrisch leitenden Grundfläche 2 angeordnet ist und der Hohlraumkörper unterhalb liegt, sind damit zum Beispiel für die Anwendung auf Fahrzeugen keine stilistischen Nachteile verbunden, weil die die Antennen abdeckenden Gehäuse nach unten breiter werden, um eine ausreichende Festigkeit zu erreichen. Seine Abmessung senkrecht zur elektrisch leitenden Grundfläche 2 ist je nach geforderter Bandbreite des Schlitzstrahlers 3 vorteilhaft größer als (λ/10) gewählt. Dabei ist das Zentrum des quaderförmigen Hohlraumkörpers zweckmäßig auf der vertikalen Symmetrielinie ZL liegend gewählt.
  • In einer besonders vorteilhaften Ausgestaltung der Erfindung ist der Dipolabstand 14 zur Gestaltung der Zirkularpolarisation der Antenne von der elektrisch leitenden Grundfläche 2 etwa ein Viertel der Freiraum-Wellenlänge gewählt. Zur Erzeugung der zirkular polarisierten Strahlung unter dem Elevationswinkel von 90° ist der Phasenunterschied der Signale an der Dipol-Anschlussstelle 8 und der Schlitzstrahler-Anschlussstelle 7, abhängig von der Drehrichtungen der zirkularen Polarisation 0° bzw. ein ganzzahlig Vielfaches von 180° zu wählen. Bei dem in Figur 1 dargestellten besonders einfachen Verteilnetzwerk 13 ist demnach der Phasenunterschied im Interesse einer möglichst kurzen Dipol-Speiseleitung 6 für diesen Elevationswinkel vorteilhaft 180° zu wählen. Die elektrische Länge der Dipol-Speiseleitung 6 beträgt dann etwa λ/2 und lässt sich zur Überbrückung der geometrischen Distanz von λ/4 zwischen den Schlitz-Anschlusspunkten 19 und der Dipolstrahler-Anschlussstelle 8 realisieren. Die geforderte Überlagerung der Strahlungsfelder der beiden Strahler unter einem elektrischen Phasenwinkel von +-90° stellt sich somit über den Gangunterschied der elektromagnetischen Welle ein, welcher sich aus dem Abstand von λ/4 des elektrischen Dipolstrahlers 1 von der elektrisch leitenden Grundfläche 2 ergibt. Dabei sind die an der Schlitzstrahler-Anschlussstelle 7 und die an der Dipol-Anschlussstelle 8 herrschenden Signalleistungen in etwa gleich groß einzustellen. Dabei ist die an der Dipol-Anschlussstelle 8 aufgrund der Bündelung der Strahlung, die sich zusammen mit dem an der elektrisch leitenden Grundfläche 2 gespiegelten elektrischen Dipolstrahler 1 ergibt, entsprechend geringer einzustellen als an der Schlitzstrahler-Anschlusstelle 7. Entsprechend sind zur Erreichung der zirkularen Polarisation unter einem bestimmten vorgegebenen Elevationswinkel sowohl die Signalleistungen als auch die elektrischen Phasenwinkel an den beiden Strahler-Anschlussstellen 7, 8 entsprechend den unterschiedlichen Beträgen der Richtdiagramme der beiden Strahler bzw. deren unterschiedlichen Phasen bezogen auf einen fernen Aufpunkt zu wählen. Auch der Abstand 14 kann vorteilhaft zur Einstellung des vertikalen Richtdiagramms des elektrischen Dipolstrahlers 1 variiert werden und muss nicht genau zu λ/4 gewählt werden.
  • Die Erfüllung sowohl der Bedingung der zeitlichen Phasenverschiebung von + - 90° Grad je nach Drehrichtung der Polarisation als auch die Gleichheit der Intensität der sich überlagernden Strahlungsfelder im Fernfeld ist erfindungsgemäß durch Gestaltung des Verteilnetzwerks 13 sowie durch die Gestaltung der Dipol-Speiseleitung 6 bewirkt. Dieses Verteilnetzwerk 13 ist in Fig. 1 in einer besonders einfachen Ausführungsform über eine in Bezug zur elektrisch leitenden Grundfläche 2 als Massefläche unsymmetrisch gestaltete Antennen-Leitung 11 an die Antennen-Anschlussstelle 12 angeschlossen und in der Nähe des Zentrums Z gebildet. Dabei ist einer der Schlitz-Anschlusspunkte 19 der Schlitzstrahler-Anschlussstelle 7 durch den Masseanschluss der Antennenleitung 11 auf einem der beiden Längsränder 18 gebildet. Der andere der Schlitz-Anschlusspunkte 19 ist durch Anschluss des Spannung führenden Leiters der Antennenleitung 11 benachbart an den gegenüberliegenden Längsrand 18 angeschlossen. In einer sehr vorteilhaften Ausgestaltung der Erfindung ist die Dipol-Speiseleitung 6 als symmetrische Zweidrahtleitung ausgeführt. Deren beide Leiter sind mit ihren Speiseleitungs-Anschlusspunkten 25 jeweils mit einem der Schlitz-Anschlusspunkte 19 der Schlitzstrahler-Anschlussstelle 7 verbunden. Damit wird auf aufwandsarme Weise eine Umwandlung der durch die Antennenleitung 11 unsymmetrisch polarisiert geleiteten Signale in die auf der symmetrischen Zweidrahtleitung geführten, in Bezug auf die elektrisch leitende Grundfläche 2 symmetrisch polarisierten Signale erreicht. Durch die Schlitz-Anschlusspunkte 19 der Schlitzstrahler-Anschlussstelle 7 sind somit auch die Speiseleitungs-Anschlusspunkte 25 gebildet. Die Transformation der an der Dipolstrahler-Anschlussstelle 8 vorliegenden Impedanz in die für gleiche Intensität der Strahlungsfelder der beiden Strahler an den Speiseleitungs-Anschlusspunkten 25 erforderliche Impedanz der Dipol-Speiseleitung 6 sowie die Einstellung der notwendigen Phase erfolgt erfindungsgemäß über die Gestaltung der Dipol-Speiseleitung 6.
  • Die Impedanz an einer im Zentrum Z eines Schlitzstrahlers 3 angebrachten Schlitzstrahler-Anschlussstelle 7 ist in der Regel mit bis zu einigen Kilo-Ohm wesentlich höher als die eines gestreckten Dipolstrahlers mit Werten unter 100 Ohm. Im Interesse technisch leichter realisierbarer Leitungs-Wellenwiderstände kann beispielhaft die Kettenschaltung mehrerer Leitungen mit unterschiedlichen Wellenwiderständen und einer elektrischen Länge von jeweils λ/4 zur Anwendung kommen. In diesem Fall wird die im Vergleich zum Wellenwiderstand technisch realisierbarer Leitungen große Impedanz des Schlitzstrahlers 3 in das Impedanzniveau des elektrischen Dipolstrahlers 1 in zwei Schritten überbrückt. Für eine derartige, in mehreren Schritten durchgeführte Impedanztransformation ergeben sich hinreichend niederohmige Leitungs-Wellenwiderstände, welche auf üblichen elektrischen Leiterplatten realisiert werden können.
  • Bei erfindungsgemäßen Antennen ist es daher zum Beispiel vorteilhaft, die Dipol-Speiseleitung 6 durch zwei λ/4-Transformatoren in Kettenschaltung zu gestalten. In einem ersten Transformationsschritt wird zunächst die extrem hohe Impedanz des Schlitzstrahlers 3 an der Schlitzstrahler-Anschlussstelle 7 durch eine elektrisch λ/4-lange Leitung mit einem technisch realisierbaren Wellenwiderstand in eine Impedanz transformiert, welche geringer ist als die Impedanz des elektrischen Dipolstrahlers 1. Der dafür notwendige Wellenwiderstand kann als Bandleitung realisiert werden. Die weitere Transformation - ausgehend von diesem Impedanzniveau - in den hierzu höheren Widerstand des elektrischen Dipolstrahlers 1 kann dann in einem zweiten Transformationsschritt mit einer elektrisch λ/4-langen Leitung mit einem ebenfalls problemlos realisierbaren Leitungs-Wellenwiderstand erfolgen. Eine beispielhaft derart realisierte vorteilhafte Antenne nach der Erfindung weist also im Bereich der Dipol-Speiseleitung 6 eine elektrische Länge von λ/2 auf. Gegebenenfalls kann noch ein weiteres Leitungsstück ergänzt werden, um zusätzliche Phasendrehungen zu bewirken. Geometrisch kann diese insgesamt elektrisch λ/2-lange Dipolspeiseleitung 6 durch mäanderförmige, im Wesentlichen symmetrisch zur vertikalen Symmetrielinie ZL gestaltete und in der Symmetrieebene SE verlaufende Leitungsführung problemlos so angeordnet werden, dass insgesamt die geometrische Länge von λ/4 überbrückt wird. Im Fall eines Trägermaterials mit einem effektiven Dielektrizitätskoeffizienten εr von 4 ergibt dann die gestreckte Länge einer λ/2 langen Leitung genau eine geometrische Länge von λ/4. Bei Trägermaterialien mit einem effektiven Dielektrizitätskoeffizienten εr von größer als 4 ist es dann vorteilhaft, ein weiteres Leitungsstück mit einer elektrischen Länge von λ/2 als weiteres Bestandteil der Dipol-Speiseleitung 6 zu verwenden, um die Phasenforderung weiterhin zu erfüllen. Durch Vertauschen der Speiseleitungs-Anschlusspunkte 25 kann die Antenne alternativ für links- oder rechts-polarisierte Signale verwendet werden.
  • In einer weiteren vorteilhaften Ausgestaltung der Erfindung sind der Dipol und die Dipol-Speiseleitung 6 auf einer Leiterplatte aufgedruckt. Diese Technologie ermöglicht die Gestaltung des Wellenwiderstands und der Transformationseigenschaften der Speiseleitung 6 in weiten Grenzen. Gleichermaßen können auf die Leiterplatte gedruckte induktive und kapazitive Blindelemente bzw. konzentrierte Blindelemente für die Gestaltung von Anpassnetzwerken 10 und/oder Phasendrehgliedern 17 aufgebracht werden. Mit Hilfe an sich bekannter Schaltungen aus konzentrierten Blindelementen können Transformationsschaltungen mit Resonanzcharakter - zum Beispiel als Parallelschwingkreis mit Teilankopplung - realisiert werden, welche es erlauben, die Anpassung der niedrigen Impedanz des elektrischen Dipolstrahlers 1 auf das Impedanzniveau des hochohmigen Schlitzstrahlers 3 zu transformieren. In einem vorteilhaften Ausführungsbeispiel besteht die Dipol-Speiseleitung 6 aus einer aufgedruckten symmetrischen Zweidraht-Leitung, welche an ihrem einen Ende an den elektrischen Dipolstrahler 1 angeschlossen ist und an ihrem anderen Ende an eine aus Blindelementen bestehende Transformationsschaltung mit Resonanzcharakter angeschlossen ist, welche die Impedanz-Anpassung an das hohe Impedanzniveau des Schlitzstrahlers 3 bewirkt. Die zur Erfüllung der Phasenbedingung geforderte Leitungslänge erfolgt dabei wieder vorteilhaft durch mäanderförmige Gestaltung der Speiseleitung 6, welche im Wesentlichen symmetrisch zur vertikalen Symmetrielinie ZL und in der Symmetrieebene SE verlaufend geführt ist. Ebenso können zum Ausgleich der elektrischen Länge der Dipol-Speiseleitung 6 Phasendreh-Kettenschaltungen aus konzentrierten Blindelementen eingesetzt werden, welche die Impedanz nicht transformieren. In einer weiteren vorteilhaften Ausgestaltung der Erfindung ist das Verteilnetzwerk 13 aus einer im Wesentlichen aus konzentrierten Blindelementen bestehenden Schaltung gebildet. Durch diese Impedanztransformations- und Phasendreheigenschaften kann sowohl die Phasen- als auch die Leistungs-Bedingung für die Erreichung der zirkularen Polarisation erfüllt werden.
  • In Fig. 2 ist in einer weiteren vorteilhaften Ausgestaltung der Erfindung das Verteilnetzwerk 13 über eine in Bezug zur elektrisch leitenden Grundfläche 2 als Massefläche unsymmetrisch gestaltete Antennenleitung 11 an die Antennen-Anschlussstelle 12 angeschlossen und in der Nähe des Zentrums Z ähnlich wie in Figur 1 dadurch gebildet, dass der eine der Speiseleitungs-Anschlusspunkte 25 durch den Masseanschluss der Antennenleitung 11 auf einem der beiden Längsränder 18 und der andere der Speiseleitungs-Anschlusspunkte 25 durch Anschluss des Spannung führenden Leiters der Antennenleitung 11 benachbart auf dem gegenüberliegenden Längsrand 18 gebildet ist und dort auch die Dipol-Speiseleitung 6 mit ihren Speiseleitungs-Anschlusspunkten 25 angeschlossen ist. Die Schlitzstrahler-Anschlussstelle 7 ist jedoch in einem Abstand 16 vom Zentrum Z gebildet und über eine Parallelverzweigung der unsymmetrischen Antennenleitung 11 über auf analoge Weise gebildete Schlitz-Anschlusspunkte 19 angeschlossen. Der Antennenwiderstand des Schlitzstrahlers 3 bei Resonanz ist bei Bildung der Schlitzstrahler-Anschlussstelle 7 im Zentrum Z maximal und ist in der Regel wesentlich größer als der charakteristische Widerstand üblicher Leitungen. Er verändert sich mit wachsendem Abstand 16 vom Zentrum Z zu kleineren Werten hin. Im Interesse der besseren Anpassung an solche Leitungsstrukturen ist es deshalb erfindungsgemäß vorteilhaft, den Abstand 16 entsprechend zu wählen. Die Erfüllung der Phasen- und Leistungs-Bedingungen erfolgt dabei erfindungsgemäß in dem Teil der Leitungsführung zwischen der Parallelverzweigung der Antennen-Leitung 11 und der Schlitzstrahler-Anschlussstelle 7 einerseits und hin zur Dipol-Anschlussstelle 8 andererseits. Durch Einfügung von Anpassnetzwerken 10 und/oder Phasendrehgliedern 17 in die Dipol-Speiseleitung 6, wie in Figur 3 dargestellt, sowie durch deren Transformationseigenschaften und durch die Schlitzbreite 5 des Schlitzstrahlers 3 wird die zirkulare Polarisation unter dem gewünschten Elevationswinkel gezielt erreicht.
  • In Fig. 5 ist die Antennenleitung 11 zur Schlitzstrahler-Anschlussstelle 7 als eine in Bezug zur elektrisch leitenden Grundfläche 2 als Massefläche unsymmetrische Streifenleitung 20 gestaltet, deren Streifenleiter auf an sich bekannte Weise durch Strahlungskopplung an den Schlitz des Schlitzstrahlers 3 angekoppelt ist. Hierfür ist der Streifenleiter im Bereich des Schlitzes des Schlitzstrahlers 3 senkrecht zu dessen Längsausdehnung und mindestens teilweise über den Schlitz geführt. Durch diese Anordnung ist der eine der Schlitz-Anschlusspunkte 19 durch den Massepunkt an der Stelle gegeben, wo der Streifenleiter den einen der Längsränder 18 in der Draufsicht kreuzt. Der andere der Schlitz-Anschlusspunkte 19 ist durch berührungslose Strahlungs-Ankopplung des Spannung führenden Streifenleiters auf dem gegenüberliegenden Längsrand 18 gegeben. Durch die geeignete Wahl des Abstands 16 zur Mitte des Schlitzstrahlers kann auf besonders einfache Weise die Anpassung an den Wellenwiderstand üblicher Leitungen von z.B. 50Ω erfolgen. Die Dipolstrahler-Anschlussstelle 8 ist im Beispiel der Fig. 5 wieder im Zentrum Z des Schlitzstrahlers 3 angeordnet, wobei die beiden Dipol-Speiseleitungs-Anschlusspunkte 25 wieder auf den beiden Leitungsrändern 18 angeordnet sind. Durch den im Zentrum angeschlossenen elektrischen Dipolstrahler 1 ist der Schlitzstrahler 3 zusätzlich bedämpft, so dass der Abstand 16 entsprechend kleiner gewählt werden muss als er ohne diese Bedämpfung für die Anpassung gewählt werden müsste. Durch die im Zentrum des Schlitzstrahlers 3 angeordneten Speiseleitungs-Anschlusspunkte 25 und die im Abstand 16 davon entfernt angeordnete Schlitzstrahler-Anschlussstelle 7 wird die über die Dipol-Speiseleitung 6 zum elektrischen Dipolstrahler 1 geleitete Signalleistung über Teile des Schlitzstrahlers 3 geführt. Somit ist der Schlitzstrahlers 3 teilweise in das Verteilnetzwerk 13 zur Aufteilung der an der Antennen-Anschlussstelle 12 vorliegenden Signalleistung auf den Schlitzstrahler 3 einerseits und den elektrischen Dipolstrahler 1 andererseits einbezogen.
  • Insbesondere für mobile Anwendungen von Antennen nach der Erfindung - zum Beispiel auf dem Dach eines Fahrzeugs - kann es notwendig sein, die Längsausdehnung 4 des Schlitzstrahlers 3 kürzer zu gestalten als λ/2. Die notwendige Verkürzung kann erfindungsgemäß dadurch erreicht werden, dass der Schlitz des Schlitzstrahlers 3 an seinen beiden Enden durch im Wesentlichen quer zu seiner Längssymmetrielinie SL orientierte Querschlitze 22 ausgeformt ist. Aus Gründen der azimutalen Rotationssymmetrie des Richtdiagramms der Antenne sind diese Querschlitze 22 vorteilhaft an beiden Enden gleichartig und symmetrisch zur Längssymmetrielinie SL ausgeführt, wie dies in Figur 4 dargestellt ist. Abhängig von der Querschlitzlänge 23 und der Querschlitzbreite 24 tritt damit die Schlitzresonanzfrequenz bei einer kleineren Längsausdehnung 4 als der halben Freiraumwellenlänge λ auf.
  • Auf entsprechende Weise kann die Länge des elektrischen Dipolstrahlers 1 dadurch verkürzt werden, dass dieser an seinen beiden Enden jeweils mit einer gleichartigen Endkapazität 21 belastet ist. Derartige Endkapazitäten 21 können zum Beispiel, wie in Figur 4 angedeutet, durch im Wesentlichen vertikal orientierte Leiterstrukturen gebildet sein. Derartige erfindungsgemäße Leiterstrukturen sind insbesondere deshalb vorteilhaft, weil durch sie die Querabmessung des über der elektrisch leitenden Grundfläche 2 befindlichen Teiles der Antenne nicht vergrößert wird.
  • In einer einfachsten Ausführungsform der Antenne ist die elektrisch leitende Grundfläche 2 durch die Außenfläche einer elektrisch leitenden und aus Blech gestalteten Fahrzeugkarosserie selbst gegeben, in welche der Schlitzstrahler 3 in das Blech eingebracht ist. In der Regel ist es jedoch aus Gründen der leichteren Herstellbarkeit vorteilhafter, wenn ein elektrisch leitender Körper, in dessen Außenfläche der Schlitzstrahler 3 gestaltet ist, in die entsprechende Aussparung in einer elektrisch leitenden Fahrzeugkarosserie eingebracht ist und mit dieser elektrisch leitend verbunden ist. Erfindungsgemäß ist dann die Oberfläche des elektrisch leitenden Körpers derart gestaltet, dass er die Aussparung der elektrisch leitenden Fahrzeugkarosserie im Wesentlichen ausfüllt, und deren Außenfläche mit seiner Oberfläche im Wesentlichen zu einer Ebene ergänzt und auf diese Weise die elektrisch leitende Grundfläche 2 gestaltet ist. Die in die Fahrzeugkarosserie einzubringende Aussparung kann dabei vorteilhaft in der Längs- und Querausdehnung nur wenig größer gewählt sein als dies die Abmessungen des Schlitzes erfordern.
  • Ist die Fahrzeugkarosserie elektrisch nicht leitend - also zum Beispiel aus Kunststoff - wird die elektrisch leitende Grundfläche 2 als leitende Fläche, vorzugsweise aus Blech gestaltet und unter der Fahrzeughaut angebracht. In diese Fläche ist der Schlitzstrahler 3 eingebracht und sie trägt in einer vorteilhaften Ausgestaltung der Erfindung auf ihrer Rückseite den Hohlraumresonator 15 und auf ihrer Vorderseite den elektrischen Dipolstrahler 1 und die Dipol-Speiseleitung 6. Durch eine in ihrer Querabmessung vergleichsweise kleine Aussparung kann die Montage der Antenne auf der Innenseite der Fahrzeugkarosserie erfolgen. Die Abmessungen der elektrisch leitenden Grundfläche 2 sind zweidimensional hinreichend groß zu wählen, so dass sich angenähert die Strahlungseigenschaften der Antenne einstellen, wie sie für eine Antenne dieser Art mit ausgedehnter elektrisch leitender Grundfläche 2 zutreffen.

Claims (18)

  1. Die Erfindung betrifft eine Antenne für zirkulare Polarisation, bei der ein in einem Abstand von der Vorderseite einer elektrisch leitenden Grundfläche (2) und in einer senkrecht zur elektrisch leitenden Grundfläche (2) orientierten Symmetrieebene (SE) verlaufender mit im Wesentlichen parallel zur elektrisch leitenden Grundfläche (2) orientierter elektrischer Dipolstrahler (1) mit Dipol-Anschlussstelle (8) und eine an Letztere angeschlossene und in der Symmetrieebene SE zur elektrisch leitenden Grundfläche (2) hin verlaufende Dipol-Speiseleitung (6) und eine Antennen-Anschlussstelle (12) vorhanden sind, gekennzeichnet durch die folgenden Merkmale:
    - in der elektrisch leitenden Grundfläche (2) ist ein Schlitzstrahler (3) mit seiner Längsausdehnung (4) entlang der Schnittlinie zwischen der Symmetrieebene SE und der elektrisch leitenden Grundfläche (2) mit der Schlitzstrahler-Anschlussstelle (7), welche durch einander gegenüberliegende, auf den Längsrändern (18) befindliche Schlitz-Anschlusspunkte (19) gebildet ist, gestaltet,
    - der elektrische Dipolstrahler (1) und der Schlitzstrahler (3) sind in ihren Resonanzfrequenzen aufeinander abgestimmt,
    - der Schlitzstrahler (3) und der elektrische Dipolstrahler (1) mit Dipol-Speiseleitung (6) sind über ein Verteilnetzwerk (13) mit der Antennen-Anschlussstelle (12) nach Betrag und Phase in der Weise verbunden, dass bei der Frequenz, auf welche die Strahler aufeinander abgestimmt sind, im Fernfeld zirkulare Polarisation gegeben ist.
  2. Antenne nach Anspruch 1
    gekennzeichnet durch die folgenden Merkmale:
    - der Schlitzstrahler (3) mit der Schlitzstrahler-Anschlussstelle (7) ist durch Einbringen eines länglichen in etwa rechteckförmigen Schlitzes mit im Wesentlichen geraden Längsrändern (18) und im Vergleich zur Längsausdehnung (4) kleiner Schlitzbreite (5) in die elektrisch leitende Grundfläche (2) mit der durch die Schnittlinie zwischen der Symmetrieebene (SE) und der elektrisch leitenden Grundfläche (2) gegebenen, parallel zur Längsausdehnung (4) verlaufenden und durch das Zentrum (Z) des Schlitzes führenden Längssymmetrielinie (SL) gebildet.
    - der elektrische Dipolstrahler (1) und der Verlauf der Dipol-Speiseleitung (6) sind im Wesentlichen symmetrisch zu der auf der elektrisch leitenden Grundfläche (2) senkrecht stehenden und durch das Zentrum (Z) des Schlitzes laufende Symmetrielinie (ZL) gestaltet und der elektrische Dipolstrahler (1) mit seiner Dipol-Anschlussstelle (8) ist elektrisch symmetrisch gespeist.
    (Figur 1)
  3. Antenne nach Anspruch 1 bis 2
    dadurch gekennzeichnet, dass
    zur Unterstützung der Strahlung auf der dem elektrischen Dipolstrahler (1) zugewandten Vorderseite und zur Abschirmung gegen die Strahlung auf der Rückseite der elektrisch leitenden Grundfläche (2) der Schlitzstrahler (3) auf der Rückseite der Grundfläche (2) durch einen den Schlitzstrahler (3) überdeckenden Hohlraumresonator (15) abgedeckt ist.
    (Figur 2)
  4. Antenne nach Anspruch 2 bis 3
    dadurch gekennzeichnet, dass
    die Längsausdehnung (4) des Schlitzstrahlers (3) etwa eine halbe Wellenlänge beträgt und zur Gestaltung der Zirkularpolarisation der Antenne der Dipolabstand (14) von der elektrisch leitenden Grundfläche (2) etwa zum einem Viertel der Freiraum-Wellenlänge gewählt ist und der Phasenunterschied der Signale an der Dipol-Anschlussstelle (8) und der Schlitz-Anschlussstelle (7), abhängig von der Drehrichtung der zirkularen Polarisation 0° bzw. ein ganzzahliges Vielfaches von 180° beträgt und die an den beiden Strahler-Anschlussstellen (7, 8) herrschenden Signalleistungen in etwa gleich groß sind.
    (Figur 1)
  5. Antenne nach Anspruch 1 bis 4
    dadurch gekennzeichnet, dass
    das Verteilnetzwerk (13) über eine in Bezug zur elektrisch leitenden Grundfläche (2) als Massefläche unsymmetrisch gestaltete Antennenleitung (11) an die Antennen-Anschlussstelle (12) angeschlossen ist und in der Nähe des Zentrums (Z) in der Weise gebildet ist, dass der eine Schlitz-Anschlusspunkt (19) der Schlitz-Anschlussstelle (7) durch den Masseanschluss der Antennenleitung (11) auf einem der beiden Längsränder (18) und der andere Schlitz-Anschlusspunkt (19) durch Anschluss des Spannung führenden Leiters der Antennenleitung (11) benachbart auf dem gegenüberliegenden Längsrand (18) gebildet ist und die Dipol-Speiseleitung (6) als symmetrische Zweidrahtleitung ausgeführt ist, deren beide Leiter jeweils mit einem der Schlitz-Anschlusspunkte (19) verbunden sind, sodass durch diese auch die Speiseleitungs-Anschlusspunkte (25) gebildet sind.
    (Figur 1)
  6. Antenne ähnlich zu Anspruch 5
    dadurch gekennzeichnet, dass
    das Verteilnetzwerk (13) über eine in Bezug zur elektrisch leitenden Grundfläche (2) als Massefläche unsymmetrisch gestaltete Antennenleitung (11) an die Antennen-Anschlussstelle (12) angeschlossen ist und in der Nähe des Zentrums (Z) in der Weise gebildet ist, dass der eine Speiseleitungs-Anschlusspunkt (25) durch den Masseanschluss der Antennenleitung (11) auf einem der beiden Längsränder (18) und der andere Speiseleitungs-Anschlusspunkt (25) durch Anschluss des Spannung führenden Leiters der Antennenleitung (11) benachbart auf dem gegenüberliegenden Längsrand (18) gebildet ist, dass jedoch die Schlitz-Anschlussstelle (7) zur Erniedrigung der Impedanz des Schlitzstrahlers (3) in einem Abstand (16) vom Zentrum (Z) gebildet und über eine Parallelverzweigung der unsymmetrischen Antennenleitung (11) über auf analoge Weise gebildete Schlitz-Anschlusspunkte (19) angeschlossen ist.
    (Figur 2)
  7. Antenne ähnlich zu Anspruch 5
    dadurch gekennzeichnet, dass
    in dem Teil der Leitungsführung zwischen der Parallelverzweigung der Antennen-Leitung (11) und der Schlitz-Anschlussstelle (7) einerseits und zur Dipol-Anschlussstelle (8) andererseits durch eingefügte Anpassnetzwerke (10) und/oder Phasendrehglieder (17) sowie durch die Schlitzbreite (5) des Schlitzstrahlers (3) und durch die
    Transformationseigenschaften der Dipol-Speiseleitung (6) bewirkt ist, dass die Phasen- und
    Leistungs-Bedingungen erfüllt sind.
    (Figur 3)
  8. Antenne ähnlich zu Anspruch 5
    dadurch gekennzeichnet, dass
    der Dipol und die Dipol-Speiseleitung (6) auf einer Leiterplatte aufgedruckt sind und durch Gestaltung des Wellenwiderstands und durch Gestaltung der Leitungslänge durch mäanderformige im Wesentlichen symmetrisch zur vertikalen Symmetrielinie (ZL) gestalteten Leitungsführung bewirkt ist, dass die Phasen- und Leistungs-Bedingungen erfüllt sind.
  9. Antenne nach Anspruch 5
    dadurch gekennzeichnet, dass
    das Verteilnetzwerk (13) aus einer Schaltung bestehend aus Blindelementen gebildet ist mit den für die Erfüllung der Phasen- und Leistungs-Bedingungen erforderlichen Impedanztransformations- und Phasendreheigenschaften.
  10. Antenne nach Anspruch 5
    dadurch gekennzeichnet, dass
    zur Verkürzung der Längsausdehnung (4) des Schlitzstrahlers (3) dessen beide Enden in symmetrisch zur Längssymmetrielinie (SL) gestaltete und zu dieser im Wesentlichen senkrecht orientierte Querschlitze (22) mit der Querschlitzlänge (23) ausgeformt sind und somit, abhängig von der Querschlitzlänge (23) und der Querschlitzbreite (24), die Schlitzresonanzfrequenz bei einer kleineren Längsausdehnung (4) als der halben Freiraumwellenlänge λ auftritt.
    (Fig. 4)
  11. Antenne nach Anspruch 5
    dadurch gekennzeichnet, dass
    zur Verkürzung der Länge des elektrischen Dipolstrahlers (1) an dessen beiden Enden jeweils eine gleichartige Endkapazität (21) angeschlossen ist.
    (Fig. 4)
  12. Antenne nach Anspruch 1 bis 11
    dadurch gekennzeichnet, dass
    die elektrisch leitende Grundfläche (2) durch die Außenfläche der elektrisch leitenden und aus Blech gestaltete Fahrzeugkarosserie selbst gegeben ist und der Schlitzstrahler (3) in das Blech eingebracht ist.
  13. Antenne nach Anspruch 1 bis 12
    dadurch gekennzeichnet, dass
    ein elektrisch leitender Körper, in dessen Außenfläche der Schlitzstrahler (3) gestaltet ist, in die Aussparung einer elektrisch leitenden Fahrzeugkarosserie eingebracht ist und mit dieser elektrisch leitend verbunden ist, so dass die Außenfläche des elektrisch leitenden Körpers die Aussparung der elektrisch leitenden Fahrzeugkarosserie im Wesentlichen ausfüllt, und deren Außenfläche mit seiner Oberfläche ergänzt und auf diese Weise die elektrisch leitende Grundfläche (2) gestaltet ist.
  14. Antenne nach Anspruch 13
    dadurch gekennzeichnet, dass
    jedoch die Fahrzeugkarosserie elektrisch nicht leitend ist und die elektrisch leitende Grundfläche (2) durch die hinreichend großflächig gewählte Oberfläche des elektrisch leitenden Körpers gebildet ist, in welche der Schlitzstrahler (3) eingebracht ist.
  15. Antenne nach Anspruch 5 bis 12
    dadurch gekennzeichnet, dass
    die Antennenleitung (11) zur Schlitzstrahler-Anschlussstelle (7) als eine in Bezug zur elektrisch leitenden Grundfläche (2) als Massefläche unsymmetrisch gestaltete Streifenleitung (20) gestaltet ist, deren Streifenleiter im Bereich des Schlitzes des Schlitzstrahlers (3) im Wesentlichen senkrecht zu dessen Längsausdehnung geführt ist und mindestens teilweise über den Schlitz geführt ist, wodurch der eine der Schlitz-Anschlusspunkte (19) durch den Punkt auf der elektrisch leitenden Grundfläche (2) an der Stelle gegeben ist, wo der Streifenleiter den einen der Längsränder (18) in der Draufsicht kreuzt und der andere Schlitz-Anschlusspunkt (19) durch berührungslose Strahlungs-Ankopplung des Spannung führenden Streifenleiters auf dem gegenüberliegenden Längsrand (18) gegeben ist.
  16. Antenne nach Anspruch 15
    dadurch gekennzeichnet, dass
    Teile des Schlitzstrahlers (3) in das Verteilnetzwerk (13) in der Weise einbezogen sind, dass die an der Antennen-Anschlussstelle (25) vorliegende und auf den Schlitzstrahler (3) und den elektrischen Dipolstrahler (1) aufzuteilende Signalleistung an einer Stelle des Schlitzstrahlers (3) an der Schlitzstrahler-Anschlussstelle (7) eingespeist ist und die Einspeisung der Signalleistung des elektrischen Dipolstrahlers (1) durch Anschluss der Speiseleitungs-Anschlusspunkte (25) an einer anderen Stelle des Schlitzstrahlers (3) gegeben ist.
  17. Antenne nach Anspruch 1 bis 16
    dadurch gekennzeichnet, dass
    zur Transformation zwischen der im Vergleich zum Wellenwiderstand von technisch realisierbaren Leitungen großen Impedanz des Schlitzstrahlers (3) auf das Impedanzniveau des elektrischen Dipolstrahlers (1) durch die Dipol-Speiseleitung (6) diese Transformation an Hand von mindestens zwei in Kette geschalteten elektrischen Leitungsstücken mit jeweils λ/4 elektrischer Länge gestaltet ist, wobei zur Erreichung eines hinreichend niederohmigen technisch realisierbaren Leitungs-Wellenwiderstands die Impedanz des Schlitzstrahlers (3) auf ein niedrigeres Impedanzniveau als das des Dipolstrahlers (1) durch dieses Leitungsstück transformiert ist und dieses Impedanzniveau durch das weitere, in Kette geschaltete Leitungsstück mit realisierbar niedrigem Leitungs-Wellenwiderstand in die hierzu höhere Impedanz des elektrischen Dipolstrahlers (1) transformiert ist.
  18. Antenne nach Anspruch 1 bis 16
    dadurch gekennzeichnet, dass
    die Speiseleitung eine auf einer Leiterplatte gedruckte und mit einem Ende an den elektrischen Dipolstrahler (1) angeschlossene symmetrische Zweidraht-Leitung enthält, welche mit ihrem anderen Ende an eine aus Blindelementen bestehende Transformationsschaltung mit Resonanzcharakter angeschlossen ist, welche die Impedanzanpassung an das hohe Impedanzniveau des Schlitzstrahlers (3) bewirkt und zur Erfüllung der Phasenbedingung Phasenschieber-Ketten aus konzentrierten Blindelementen vorhanden sind.
EP10005480.8A 2009-05-30 2010-05-27 Antenne für zirkulare Polarisation mit einer leitenden Grundfläche Active EP2256864B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009023514A DE102009023514A1 (de) 2009-05-30 2009-05-30 Antenne für zirkulare Polarisation mit einer leitenden Grundfläche

Publications (2)

Publication Number Publication Date
EP2256864A1 true EP2256864A1 (de) 2010-12-01
EP2256864B1 EP2256864B1 (de) 2017-08-09

Family

ID=42320268

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10005480.8A Active EP2256864B1 (de) 2009-05-30 2010-05-27 Antenne für zirkulare Polarisation mit einer leitenden Grundfläche

Country Status (3)

Country Link
US (1) US8334814B2 (de)
EP (1) EP2256864B1 (de)
DE (1) DE102009023514A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103984833A (zh) * 2014-05-28 2014-08-13 西安交通大学 一种简化的有向天线极化建模方法
DE102016001327A1 (de) 2016-02-05 2017-08-10 Kathrein-Werke Kg Dual polarisierte Antenne
CN109672015A (zh) * 2014-04-11 2019-04-23 康普技术有限责任公司 消除多频带辐射阵列中的共振的方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
US20120013512A1 (en) * 2010-07-16 2012-01-19 Joymax Electronics Co., Ltd. Antenna device for vehicle remote control locking system
US20140062812A1 (en) * 2012-08-30 2014-03-06 Cambridge Silicon Radio Limited Multi-antenna isolation
EP3091610B1 (de) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antennensystem und antennenmodul mit verminderter interferenz zwischen strahlungsmustern
US10083888B2 (en) * 2015-11-19 2018-09-25 Advanced Semiconductor Engineering, Inc. Semiconductor device package
CA3092509A1 (en) 2018-03-19 2019-09-26 Pivotal Commware, Inc. Communication of wireless signals through physical barriers
US10225760B1 (en) 2018-03-19 2019-03-05 Pivotal Commware, Inc. Employing correlation measurements to remotely evaluate beam forming antennas
US10862545B2 (en) 2018-07-30 2020-12-08 Pivotal Commware, Inc. Distributed antenna networks for wireless communication by wireless devices
US10326203B1 (en) 2018-09-19 2019-06-18 Pivotal Commware, Inc. Surface scattering antenna systems with reflector or lens
US10522897B1 (en) 2019-02-05 2019-12-31 Pivotal Commware, Inc. Thermal compensation for a holographic beam forming antenna
US10468767B1 (en) 2019-02-20 2019-11-05 Pivotal Commware, Inc. Switchable patch antenna
WO2020224757A1 (en) * 2019-05-06 2020-11-12 Huawei Technologies Co., Ltd. Dual mode antenna structures
US10734736B1 (en) 2020-01-03 2020-08-04 Pivotal Commware, Inc. Dual polarization patch antenna system
US11069975B1 (en) 2020-04-13 2021-07-20 Pivotal Commware, Inc. Aimable beam antenna system
EP4158796A4 (de) 2020-05-27 2024-06-26 Pivotal Commware, Inc. Hf-signalverstärkervorrichtungsverwaltung für 5g-drahtlosnetzwerke
US11026055B1 (en) 2020-08-03 2021-06-01 Pivotal Commware, Inc. Wireless communication network management for user devices based on real time mapping
WO2022056024A1 (en) 2020-09-08 2022-03-17 Pivotal Commware, Inc. Installation and activation of rf communication devices for wireless networks
CN112688059B (zh) * 2020-12-14 2022-11-01 中国科学院国家空间科学中心 一种宽带圆极化微带阵列天线
US11843955B2 (en) 2021-01-15 2023-12-12 Pivotal Commware, Inc. Installation of repeaters for a millimeter wave communications network
AU2022212950A1 (en) 2021-01-26 2023-09-07 Pivotal Commware, Inc. Smart repeater systems
US11451287B1 (en) 2021-03-16 2022-09-20 Pivotal Commware, Inc. Multipath filtering for wireless RF signals
CN117355990A (zh) * 2021-06-02 2024-01-05 Lg电子株式会社 搭载于车辆的天线系统
US11929822B2 (en) 2021-07-07 2024-03-12 Pivotal Commware, Inc. Multipath repeater systems
JP2023122834A (ja) * 2022-02-24 2023-09-05 株式会社デンソーテン スロットアンテナ
US11937199B2 (en) 2022-04-18 2024-03-19 Pivotal Commware, Inc. Time-division-duplex repeaters with global navigation satellite system timing recovery
KR102588753B1 (ko) * 2023-02-10 2023-10-16 한국지질자원연구원 선형 상보 구조를 갖는 원형 편파 센서 시스템 및 그 동작 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129871A (en) * 1977-09-12 1978-12-12 Rca Corporation Circularly polarized antenna using slotted cylinder and conductive rods
US5021797A (en) * 1990-05-09 1991-06-04 Andrew Corporation Antenna for transmitting elliptically polarized television signals
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
US5272487A (en) * 1991-09-30 1993-12-21 Harris Corporation Elliptically polarized antenna
JP2006186880A (ja) * 2004-12-28 2006-07-13 Denso Corp 円偏波アンテナ

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942119A (en) * 1973-03-02 1976-03-02 Hans Kolbe & Co. Multiple-transmission-channel active antenna arrangement
DE2552002C3 (de) * 1975-11-20 1979-07-19 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
DE2552049C3 (de) * 1975-11-20 1979-01-04 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Funkentstörte Empfangsantenne in der Nähe der Heizleiter auf der Fensterscheibe eines Kraftfahrzeuges
DE3315458A1 (de) * 1983-04-28 1984-11-08 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive windschutzscheibenantenne fuer alle polarisationsarten
DE3410415A1 (de) * 1984-03-21 1985-09-26 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Aktive antenne in der heckscheibe eines kraftfahrzeugs
DE3517247A1 (de) * 1985-05-13 1986-11-13 Gerhard Prof. Dr.-Ing. 8012 Ottobrunn Flachenecker Antennendiversity-empfangsanlage zur elimination von empfangsstoerungen
DE3618452C2 (de) * 1986-06-02 1997-04-10 Lindenmeier Heinz Diversity-Antennenanordnung für den Empfang frequenzmodulierter Signale in der Heckscheibe eines Kraftfahrzeugs mit einem darin befindlichen Heizfeld
DE3820229C1 (de) * 1988-06-14 1989-11-30 Heinz Prof. Dr.-Ing. 8033 Planegg De Lindenmeier
DE3907493A1 (de) * 1989-03-08 1990-09-20 Lindenmeier Heinz Scheibenantenne mit antennenverstaerker
DE3911178A1 (de) * 1989-04-06 1990-10-11 Lindenmeier Heinz Scheibenantennensystem mit antennenverstaerker
DE3914424A1 (de) * 1989-05-01 1990-12-13 Lindenmeier Heinz Antenne mit vertikaler struktur zur ausbildung einer ausgedehnten flaechenhaften kapazitaet
US5266960A (en) * 1989-05-01 1993-11-30 Fuba Hans Kolbe Co. Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
US5801663A (en) * 1989-05-01 1998-09-01 Fuba Automotive Gmbh Pane antenna having at least one wire-like antenna conductor combined with a set of heating wires
DE4101629C3 (de) * 1991-01-21 2003-06-26 Fuba Automotive Gmbh Antennendiversity-Anlage mit mindestens zwei Antennen für den mobilen Empfang von Meter- und Dezimeterwellen
DE4216377A1 (de) * 1992-05-18 1993-11-25 Lindenmeier Heinz Funkantennenanordnung in der Nähe von Fahrzeugfensterscheiben
DE4318869C2 (de) * 1993-06-07 1997-01-16 Lindenmeier Heinz Funkantennen-Anordnung auf der Fensterscheibe eines Kraftfahrzeugs und Verfahren zur Ermittlung ihrer Beschaltung
DE4441761A1 (de) * 1994-11-23 1996-05-30 Lindenmeier Heinz Mehrantennen-Scanning-Diversitysystem für Fahrzeuge
DE19510236A1 (de) * 1995-03-21 1996-09-26 Lindenmeier Heinz Flächige Antenne mit niedriger Bauhöhe
DE19607045A1 (de) * 1996-02-24 1997-08-28 Lindenmeier Heinz Empfangsantennen-Scanningdiversitysystem für den Meterwellenbereich für Fahrzeuge
DE19612958A1 (de) * 1996-04-01 1997-10-02 Fuba Automotive Gmbh Antennenverstärker auf einer Fensterscheibe
DE19614068A1 (de) * 1996-04-09 1997-10-16 Fuba Automotive Gmbh Flachantenne
DE19618333A1 (de) * 1996-05-07 1997-11-13 Lindenmeier Heinz Schaltungsanordnung zur Funktionsprüfung mobiler Rundfunkempfangsanlagen
US5926141A (en) * 1996-08-16 1999-07-20 Fuba Automotive Gmbh Windowpane antenna with transparent conductive layer
DE19636125B4 (de) * 1996-09-06 2007-12-06 Fuba Automotive Gmbh & Co. Kg Raumdiversity-Verfahren und -Schaltungsanordnung
DE19637327B4 (de) * 1996-09-13 2009-04-09 Delphi Delco Electronics Europe Gmbh Frequenzdiversity-Anordnung
DE19740254A1 (de) * 1996-10-16 1998-04-23 Lindenmeier Heinz Funkantennen-Anordnung und Patchantenne auf der Fensterscheibe eines Kraftfahrzeuges
DE19646100A1 (de) * 1996-11-08 1998-05-14 Fuba Automotive Gmbh Flachantenne
ATE342590T1 (de) * 1996-12-13 2006-11-15 Fuba Automotive Gmbh Leitungs-steckverbindung
DE19806834A1 (de) * 1997-03-22 1998-09-24 Lindenmeier Heinz Antennenanlage für den Hör- und Fernsehrundfunkempfang in Kraftfahrzeugen
US6130645A (en) * 1998-01-14 2000-10-10 Fuba Automotive Gmbh & Co. Kg Combination wide band antenna and heating element on a window of a vehicle
DE19817573A1 (de) * 1998-04-20 1999-10-21 Heinz Lindenmeier Antenne für mehrere Funkdienste
DE19834577B4 (de) * 1998-07-31 2011-12-29 Delphi Technologies, Inc. Antennensystem
DE19847653A1 (de) * 1998-10-15 2000-04-20 Heinz Lindenmeier Einrichtung zur Unterdrückung des Empfangs von fahrzeugemittierter Störstrahlung
DE19847887A1 (de) * 1998-10-18 2000-04-20 Heinz Lindenmeier Scanning-Antennen-Diversity-System für Fahrzeuge
DE19854169A1 (de) * 1998-11-24 2000-05-25 Heinz Lindenmeier Fensterscheibenantenne mit hochfrequent hochohmig angeschlossenem Heizfeld
DE19858465A1 (de) * 1998-12-17 2000-06-21 Heinz Lindenmeier Scanning-Diversity-Antennensystem für Fahrzeuge
DE19916855A1 (de) * 1999-04-14 2000-10-26 Heinz Lindenmeier Funktelefonanlage mit Gruppenantenne für Fahrzeuge
DE19930571B4 (de) * 1999-07-02 2010-04-29 Delphi Delco Electronics Europe Gmbh Diagnosevorrichtung für eine Mehrantennenanordnung
DE10033336A1 (de) * 1999-08-11 2001-04-12 Heinz Lindenmeier Diversityantenne für eine Diversityantennenanlage in einem Fahrzeug
DE10010226A1 (de) * 1999-08-31 2001-03-01 Lindenmeier Heinz Antenne auf dem Fenster eines Kraftfahrzeugs
DE10102616A1 (de) * 2000-02-17 2001-08-23 Heinz Lindenmeier Antennendiversityanlage mit phasengeregelter Summation von Antennensignalen
DE10100812B4 (de) * 2001-01-10 2011-09-29 Heinz Lindenmeier Diversityantenne auf einer dielektrischen Fläche in einer Fahrzeugkarosserie
DE10163793A1 (de) * 2001-02-23 2002-09-05 Heinz Lindenmeier Flachantenne für die mobile Satellitenkommunikation
US6768457B2 (en) * 2001-03-02 2004-07-27 Fuba Automotive Gmbh & Co. Kg Diversity systems for receiving digital terrestrial and/or satellite radio signals for motor vehicles
ATE323978T1 (de) * 2001-03-02 2006-05-15 Fuba Automotive Gmbh Diversity-anlage zum empfang digitaler terrestrischer und/oder satelliten-funksignale für fahrzeuge
DE10114769B4 (de) * 2001-03-26 2015-07-09 Heinz Lindenmeier Aktive Breitbandempfangsantenne
WO2003071293A1 (de) * 2002-02-22 2003-08-28 Daimlerchrysler Ag Verfahren und anordnung zum prüfen mindestens einer antenne
DE10209060B4 (de) * 2002-03-01 2012-08-16 Heinz Lindenmeier Empfangsantennenanordnung für Satelliten- und/oder terrestrische Funksignale auf Fahrzeugen
DE10245813A1 (de) * 2002-10-01 2004-04-15 Lindenmeier, Heinz, Prof. Dr.-Ing. Aktive Breitbandempfangsantenne mit Empfangspegelregelung
DE10258367A1 (de) * 2002-12-12 2004-07-08 Daimlerchrysler Ag Mehrzielfähiges Verfahren und mehrzielfähige Sensorvorrichtung für die Abstands- und Winkelortung von Zielobjekten im Nahbereich
DE10304431A1 (de) * 2003-02-04 2004-08-05 Lindenmeier, Heinz, Prof. Dr.-Ing. Scanning-Antennen-Diversitysystem für den FM-Hörrundfunk für Fahrzeuge
DE10304911B4 (de) * 2003-02-06 2014-10-09 Heinz Lindenmeier Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE10304909B4 (de) * 2003-02-06 2014-10-09 Heinz Lindenmeier Antenne mit Monopolcharakter für mehrere Funkdienste
US6927735B2 (en) * 2003-02-25 2005-08-09 Fuba Automotive Gmbh & Co. Kg Antenna arrangement in the aperture of an electrically conductive vehicle chassis
DE102006006266A1 (de) * 2005-02-13 2006-08-24 Lindenmeier, Heinz, Prof. Dr. Ing. Anlage zum Empfang von digital modulierten Funksignalen zu einem Fahrzeug unter Verwendung von Antennendiversity
DE202005008338U1 (de) * 2005-05-24 2005-12-22 Fuba Automotive Gmbh & Co. Kg Antennenkonfiguration für den Rundfunkempfang in Kfz
DE102006039357B4 (de) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102006057520A1 (de) * 2005-12-15 2007-06-21 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit Gleichphasung von Antennensignalen
DE102007011636A1 (de) * 2007-03-09 2008-09-11 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Rundfunk-Empfang mit Diversity-Funktion in einem Fahrzeug
EP1978647A3 (de) * 2007-04-05 2013-10-09 Delphi Delco Electronics Europe GmbH Breitband-Empfangssystem
DE102007017478A1 (de) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
DE102008031068A1 (de) * 2007-07-10 2009-01-15 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage für den relativ breitbandigen Funkempfang in Fahrzeugen
DE102007039914A1 (de) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
DE102008047937A1 (de) * 2008-09-18 2010-03-25 Delphi Delco Electronics Europe Gmbh Rundfunk-Empfangssystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129871A (en) * 1977-09-12 1978-12-12 Rca Corporation Circularly polarized antenna using slotted cylinder and conductive rods
DE4008505A1 (de) 1990-03-16 1991-09-19 Lindenmeier Heinz Antenne fuer die mobile satellitenkommunikation
US5021797A (en) * 1990-05-09 1991-06-04 Andrew Corporation Antenna for transmitting elliptically polarized television signals
US5272487A (en) * 1991-09-30 1993-12-21 Harris Corporation Elliptically polarized antenna
JP2006186880A (ja) * 2004-12-28 2006-07-13 Denso Corp 円偏波アンテナ

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109672015A (zh) * 2014-04-11 2019-04-23 康普技术有限责任公司 消除多频带辐射阵列中的共振的方法
CN109672015B (zh) * 2014-04-11 2021-04-27 康普技术有限责任公司 消除多频带辐射阵列中的共振的方法
CN103984833A (zh) * 2014-05-28 2014-08-13 西安交通大学 一种简化的有向天线极化建模方法
CN103984833B (zh) * 2014-05-28 2017-04-26 西安交通大学 一种简化的有向天线极化建模方法
DE102016001327A1 (de) 2016-02-05 2017-08-10 Kathrein-Werke Kg Dual polarisierte Antenne
US11081800B2 (en) 2016-02-05 2021-08-03 Telefonaktiebolaget Lm Ericsson (Publ) Dual-polarized antenna
EP3411921B1 (de) * 2016-02-05 2021-08-04 Telefonaktiebolaget LM Ericsson (PUBL) Dual polarisierte antenne

Also Published As

Publication number Publication date
DE102009023514A1 (de) 2010-12-02
US8334814B2 (en) 2012-12-18
US20100302112A1 (en) 2010-12-02
EP2256864B1 (de) 2017-08-09

Similar Documents

Publication Publication Date Title
EP2256864B1 (de) Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
DE69732975T2 (de) Kleine antenne für tragbares funkgerät
DE68909072T2 (de) Breitbandige Antenne für bewegliche Funkverbindungen.
DE69604583T2 (de) Gedruckte mehrband-monopolantenne
DE69608132T2 (de) Schlitzspiralantenne mit integrierter symmetriereinrichtung und integrierter zuleitung
DE102005060648B4 (de) Antennenvorrichtung mit für Ultrabreitband-Kommunikation geeigneten Strahlungseigenschaften
EP2664025B1 (de) Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
DE102010035932B4 (de) Antenne für den Empfang zirkular polarisierter Satellitenfunksignale
DE69512831T2 (de) Antenne
EP3635814A1 (de) Dual-polarisierter kreuzdipol und antennenanordnung mit zwei solchen dual-polarisierten kreuzdipolen
DE102008003532A1 (de) Antenne für den Satellitenempfang
DE102016207434B4 (de) Antennenvorrichtung
EP3178129B1 (de) Mehrstruktur-breitband-monopolantenne für zwei durch eine frequenzlücke getrennte frequenzbänder im dezimeterwellenbereich für fahrzeuge
EP3411921A1 (de) Dual polarisierte antenne
EP2424036B1 (de) Empfangsantenne für Zirkular Polarisierte Satellitenfunksignale
DE3931752A1 (de) Koaxialschlitzantenne des wanderwellenleitungstyps
EP2693565B1 (de) Elektrischer Strahler für vertikal polarisierte Funksignale
EP2830156A1 (de) Hohlleiter-Strahler, Gruppenantennen-Strahler und Synthetik-Apertur-Radar-Strahler
EP1955406B1 (de) Multiband-rundstrahler
EP3244483B1 (de) Schirmgehäuse für hf-anwendungen
DE19729664C2 (de) Planare Breitbandantenne
DE102014016851B3 (de) MIMO Schlitzantenne für Kraftfahrzeuge
EP2034557B1 (de) Antenne für den Satellitenempfang
EP2093838A1 (de) Yagiantenne
DE19929879A1 (de) Spiralantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME RS

17P Request for examination filed

Effective date: 20110601

17Q First examination report despatched

Effective date: 20160314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170217

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 917759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010013956

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502010013956

Country of ref document: DE

Owner name: DELPHI DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: DELPHI DELCO ELECTRONICS EUROPE GMBH, 42119 WUPPERTAL, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DELPHI DEUTSCHLAND GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170809

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171109

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180201 AND 20180207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010013956

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 917759

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100527

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170809

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200522

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200527

Year of fee payment: 11

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240726

Year of fee payment: 15