EP2240620B1 - Vefahren zum feuerverzinken von stahlblechen - Google Patents

Vefahren zum feuerverzinken von stahlblechen Download PDF

Info

Publication number
EP2240620B1
EP2240620B1 EP08761863.3A EP08761863A EP2240620B1 EP 2240620 B1 EP2240620 B1 EP 2240620B1 EP 08761863 A EP08761863 A EP 08761863A EP 2240620 B1 EP2240620 B1 EP 2240620B1
Authority
EP
European Patent Office
Prior art keywords
temperature
liquid mixture
coating tank
strip
preparation device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08761863.3A
Other languages
English (en)
French (fr)
Other versions
EP2240620A1 (de
Inventor
Stéphane Barjon
Benjamin Grenier
Arnaud D'halluin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clecim SAS
Original Assignee
Siemens VAI Metals Technologies SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies SAS filed Critical Siemens VAI Metals Technologies SAS
Publication of EP2240620A1 publication Critical patent/EP2240620A1/de
Application granted granted Critical
Publication of EP2240620B1 publication Critical patent/EP2240620B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/521Composition of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/50Controlling or regulating the coating processes
    • C23C2/52Controlling or regulating the coating processes with means for measuring or sensing
    • C23C2/522Temperature of the bath

Definitions

  • the present invention relates to a galvanizing method by dipping a steel strip according to the preamble of claim 1.
  • the dipping galvanization of continuously rolling laminated steel strips is a known technique which essentially comprises two variants, that in which the strip emerging from a galvanizing furnace slopes obliquely into a bath of liquid metal comprising at least one metal adapted to the galvanizing such as zinc, aluminum, and is then deflected vertically and upwards by a roll immersed in said bath of liquid metal.
  • the other alternative is to deflect the strip vertically and upward from its exit from the oven and then to scroll through a vertical channel containing magnetically levitated liquid zinc.
  • the liquid metal bath is a zinc alloy with varying proportions of aluminum or magnesium or manganese. For the sake of clarity, only the case of a zinc and aluminum alloy will be described.
  • the purpose of the operation is to create on the surface of the steel strip a continuous adherent deposit of a liquid mixture of zinc and aluminum in which said strip passes.
  • the kinetics of formation of this deposit is known to those skilled in the art, it has been the subject of numerous communications among which "Modeling of galvanizing reactions” by Giorgi and All. in “La Revue de Metallurgie - CIT" of October 2004 .
  • EP 1 070 765 describes a series of variants of a galvanizing installation comprising, in addition to the coating tank in which dross is formed, an auxiliary tank to which the dross will be evacuated.
  • EP 0 429 351 discloses a method and a device for arranging a circulation of liquid mixture between a coating zone of the metal strip and a cleaning zone of the galvanizing bath containing liquid zinc, to ensure the separation of the dross in the zone of purification and then bring back to the coating zone a liquid mixture "whose iron content is close to or less than the solubility limit". But, if the physical principles involved are well described, this document gives no indication allowing the skilled person to implement them, in particular how to control simultaneously a cooling by a heat exchanger and reheating by induction of the same purification zone. Nor is there any indication of how to determine a flow rate of liquid zinc.
  • An object of the present invention is to provide a method of galvanizing the dipping of a steel strip in a liquid mixture, for which a circulation circuit of the liquid mixture is thermally optimized.
  • the figure 1 shows a schematic diagram of the installation for implementing the method according to the invention.
  • a steel strip (1) is introduced into the installation, ideally in continuous scrolling, obliquely in a coating tank (2) through a connecting pipe to a galvanizing furnace (3) (not shown upstream of the tray coating).
  • the strip is deflected vertically by a roller (4) and passes through a liquid coating mixture (5) contained in said coating tank.
  • the deflection of the band can be achieved by means of a roller (4) horizontal accompanying the scrolling of the band.
  • a channel (6) allows the flow of the overflow of liquid mixture to a preparation device (7) composed of two zones, a first zone (71) in which is ensured the melting of at least one Zn alloy ingot Al (8) in an amount necessary to compensate for the liquid mixture consumed by deposition on the strip in the coating tank and during the inevitable (material) losses, and a second zone (72) sequentially juxtaposed with the first zone and in a direction flow path of the liquid mixture (coating tank to first zone then second zone).
  • a separating device such as an open wall in its central part or may consist of two separate tanks placed side by side.
  • the liquid mixture can also be transferred by pumping or by a connecting channel.
  • the level of a pumping inlet in the first zone (71) or the inlet level of the connecting channel are advantageously located between the upper zone of decantation of the surface dross (81) and the lower zone of sedimentation of the dross. bottom (82) is in the middle third of the height of the area (71). Indeed, at this median height of the preparation device, the method according to the invention provides that it is possible to isolate a free interstice of dross between the two lower and upper accumulation zones (gradually increasing in the direction of flow (FL)) of said dross (81, 82).
  • the liquid mixture from the coating tank is at a sufficiently high temperature for the ingot melting.
  • the energy consumption for the smelting of the ingot leads to a cooling of the liquid mixture which causes the formation of the surface dross (81) and bottom (82) retained by the downstream sealing parts by the separating device (73).
  • Supplemental cooling means (62) for the ingot cooling effect may also be arranged between the coating pan and the preparation device, for example on their connecting channel (6).
  • the second zone (72) of the preparation device thus receives a purified liquid mixture which can be heated by a heating means (75), preferably by induction.
  • a tubing (9) recovers the liquid mixture in the second zone (72) and, in the case of the figure 1 under the action of a pumping device (10) and a tubing as a reflux path (11) feeds the coating tank (2) via a chute (12) at a mixing flow rate purified liquid.
  • Devices such as, for example, skimming or pumping systems make it possible to evacuate the dross out of the preparation device (first zone (71)).
  • the first zone (71) of the preparation device may comprise partitions isolating liquid mixture portions disposed between several ingots (8), sequentially arranged in the direction of the flow path. These can be achieved by means of an open wall in its middle part, thus allowing to concentrate the bottom dross (82) and surface (81) ingot by ingot according to their aluminum content.
  • the first zone (71) of the preparation device advantageously comprises several ingots (8 1 , 8 2 , ..., 8 n ), at least two of which have different contents of aluminum and at least one of which ingots has a content greater than a required content of the liquid mixture in the preparation device.
  • the first zone (71) of the preparation device comprises a means for regulating the melting flow rate of at least two ingots, ideally by dipping or selective removal of at least one ingot in the first zone (71).
  • the first compartment of the preparation device may comprise a regulating means (6, 62) for a predefined temperature reduction (T2, T3) of the liquid mixture in which the ingots merge, ideally also initially produced by selective diving or removal. at least one ingot in the first zone (71).
  • the continuous melting of the ingots (8) in the preparation device (71) is ensured at the total melting rate of at least two ingots. It is then advantageous that a plurality of ingots immersed simultaneously in the liquid-mixing bath each have a different aluminum content and at least one of them has an aluminum content greater than a required content in the preparation device. in order to be able to establish a profile in content (or a rate of fusion) variable according to time.
  • This required content is itself determinable from an aluminum consumption measured or estimated in the coating tank, in the combination layer Fe 2 Al 5 Zn x formed on the surface of the strip and in the dross formed in the preparation device.
  • the melt flow rate of each of the ingots is also controllable individually so as to adjust the aluminum content in the preparation device to the required content while maintaining the required total melting speed.
  • the continuous melting of the ingots in the preparation device leads locally to a cooling of the liquid mixture of the second temperature (outlet of the coating tank) at a predetermined temperature in the first zone (71) in order to lower the solubility threshold of the iron and allowing the localized formation of dross in said preparation device up to the solubility threshold at the predetermined temperature.
  • the so-called "surface” dross with a high aluminum content are then formed preferentially in the vicinity of immersed ingots with a high aluminum content and then decanted towards the surface, and the so-called “bottom” dross with a high zinc content preferentially form in the vicinity of immersed ingots with low aluminum content and sediment towards the bottom.
  • the rate of renewal of the liquid mixture entering the coating tank with an iron content equal to the threshold of solubility of iron at the predetermined temperature makes it possible to limit an increase in the dissolved iron content below the threshold. solubility at the second temperature.
  • the preparation device (7) can thus be composed of a single tank comprising the two zones (71, 72) separated by a separating wall (73), the first zone ensuring the fusion of the ingots and locating the formation of the dross, the second zone receiving the purified liquid mixture.
  • the second zone is equipped with a single and simple heating means (75) by induction ensuring the heating of the purified liquid mixture before returning to the coating tank, so as to ensure a thermal loop backflow in end of stream channel to the beginning of a new stream.
  • the two zones (71) and (72) can also be in two separate tanks connected by a connecting channel.
  • the figure 2 presents a variant of the schematic diagram of the installation according to figure 1 for which the liner initial is subdivided into a first deflection tray (15) of the strip (without liquid mixture) and coating pan (13) comprising a liquid mixing bath (5) maintained by magnetic levitation.
  • the present installation thus implements a variant of the process in which the liquid mixing bath (5) is maintained by magnetic levitation in a coating tank (13) connected to the preparation device such as the figure 1 .
  • the levitation effect is provided in known manner by electromagnetic devices (14).
  • a compartment (15) provides the connection to the oven and the deflection of the strip (1) by the roller (4).
  • Figure 3 has in its upper part a simplified example of the installation according to the figure 1 , having the main elements already mentioned (coating tank 2 and its inlet 12 for liquid mixture reflux, ingots 8, preparation device 7, ingots melting tank on first zone 71, sewage treatment tank on second zone 72 and its output 11, heating means 75) allowing a better interpretation of the implementation of the method according to the invention.
  • Under the scheme of the installation are also shown three distribution profiles - temperature T, aluminum content Al% and dissolved iron content Fe% associated with a solubility threshold SFe iron - which are obtained by implementation of the process according to the invention.
  • the profiles shown thus vary according to the location considered next a flow path direction from the inlet 12 of the coating tank 2 to the outlet 11 of the purification tank 72.
  • outlet 11 is coupled to the inlet 12 via a reflux path of the liquid mixture, distinct from and opposite to the flow path.
  • the invention thus makes it possible to align the values of the profiles between the inlet and the outlet as well as between the different tanks on the voice of flow, in order to achieve a closed thermal looping as well as a precise maintenance of target contents in aluminum and in iron (under a threshold of adequate solubility according to the given temperature).
  • the liquid mixture in the coating tank (2) in the vicinity of the strip to be quenched is fixed at a said second temperature (T 2 ).
  • T 2 the temperature
  • the temperature may be lower than the second temperature (T2), since it comes from the outlet 11 of the purification tank (72) and the reflux path where thermal loss is inevitable, but without consequence on the process.
  • the second target temperature (T 2 ) of the liquid mixture at the outlet of the coating tank - and thus at the inlet to the first zone (71) - is furthermore chosen sufficiently high so as to allow the ingots (8) to merge.
  • the aluminum content (Al%) of the liquid mixture undergoes a decrease (Al c ) depending a loss rate in a combination layer and passes from a first content (Al t ) (aluminum content of the liquid mixture from the molten ingots in the preparation device, then by purification (second zone 72) and reflux, aluminum content of the liquid mixture re-channeled to the inlet (12) of the coating tank) to a second content (Al v ) at the outlet of the coating tank (2).
  • the controlled melting of the ingots allows a rise (Al l ) of the content (or a flow rate according to a unit of time) of aluminum to a content (Al m ) liquid mixture at the outlet of the first zone (71).
  • This latter content (Al m ) must, however, be interpreted as virtual, because correlatively to the contribution of aluminum by the ingots, a part of aluminum is inevitably consumed with the appearance of the dross which causes a real decrease (Al d ) the aluminum content according to the flow rate until reaching the aluminum content (Al t ) in the purification tank (second zone 72) necessary (and equal) to the content of aluminum at the reflux inlet 12 in the coating pan.
  • the solubility threshold of iron (SFe) in the liquid mixture is almost stable at a value (SFe T 2 ) at the second temperature (T 2 ), then decreases considerably to a value (SFe T 3 ) at the third temperature (T 3 ) in the ingots melting zone and undergoes a rise to a value (SFe T 4 ) at the fourth temperature (T 4 ) in the zone of the heating means (75) before returning to the coating tank (2).
  • the iron content (Fe%) of the liquid mixture increases, in turn, in the coating tank (2) to a level remaining below the solubility threshold of the iron (SFe T 2 ) of the liquid mixture at the second temperature ( T 2 ) and is thus maintained until the precipitation of the dross in the first zone (71) for melting the ingots to reach a value equal to a saturation threshold of the iron (SFe T 3 ) of the liquid mixture at the third temperature ( T 3 ) of this first zone.
  • a shaded area (Dross) of the diagram between the iron content variation curves (Fe%) and the iron solubility threshold (SFe) of the liquid mixture makes it possible to locate the dross precipitation domain.
  • the solubility threshold of the iron (SFe) of the liquid mixture is raised to a higher value (SFe T 4 ) at the fourth temperature (T 4 ) (higher than in the first zone 71).
  • a precipitation of dross is then locally avoided so that the liquid mixture in the purification tank remains clean and can be flowed back to the entrance of the coating tank (2) free of any dross.
  • the figure 5 shows an evolution of the solubility limit (Fe%) as a function of the temperature (T) for an aluminum content (Al%) of 0.19%.
  • T 470 ° C.
  • the solubility limit of iron (Fe%) is of the order of 0.015%.
  • the iron solubility limit (Fe%) is of the order of 0.07%.
  • a saturated liquid mixture or close to the temperature saturation limit The working temperature of 470 ° C. thus sees its solubility limit divided by 2 at 440 ° C.
  • the figure 6 shows the variations of the power supplied (PB) to the liquid mixture by the running steel strip and the required power (PZ) to ensure the melting of the consumed mixture in the coating tank (2).
  • These powers (PB, PZ) are limited by two data specific to continuous galvanizing plants: the heating power of the furnace (not shown on figure 1 , but placed upstream of the coating tank) on the one hand and the maximum speed for which a spinning of the band remains effective.
  • these limits are of the order of 100 tons of treated strip per hour for an oven (downstream from the entrance of the strip in the coating tank) and of a little more than 200 m / min. tape speed for spinning (leaving the tape outside the coating tray).
  • the so-called “strip" (dashed) power curve rises continuously in function of the thickness (E) of the strip up to a level corresponding to the heating limits of the oven.
  • the curve (solid line) of required power (PZ) is first limited by the maximum speed of the tape, itself limited by the maximum spin speed and then gradually decreases.
  • the delivered power (PB) by the web is smaller than the required power (PZ) for zinc smelting (PZ> PB) and a power deviation ( ⁇ P) must thus be provided by heating the circulating liquid mixture, in particular before it returns to the coating tank (2).
  • This power difference is here understood as a necessary power supply ( ⁇ P> 0).
  • the case of a power withdrawal ( ⁇ P ⁇ 0) is of course also conceivable, in which case, at least one of the power generating parameters (oven temperature, band speed, etc.) must be modified in order to reduce the supply power (PB) to the liquid mixture while ensuring a melting of the mixture consumed in the coating tank (2).
  • a cooling system may, if necessary, also be coupled to the coating tank.
  • a method according to the invention namely a method of galvanizing the dipping of a strip (1) of rolled steel in continuous scrolling for which the strip is immersed in a tray coating material (2) containing a bath of liquid mixture (5) of metal, such as zinc (Zn) and aluminum (Al), to be deposited on the permanently circulated strip between said coating pan and a device of preparation (7) in which the temperature of the liquid mixture is deliberately lowered in order to reduce a solubility threshold of iron and sufficiently high to activate, in said preparation device, a melting of at least one Zn-Al ingot (8). ) in the amount necessary to compensate for the liquid mixture consumed by deposition on the strip and the inevitable losses (of the order of 5%).
  • the method allows a circulation flow of the liquid mixture continuously and sequentially on a flow path between the inlet of the coating tank and the outlet of the preparation device and then on an identical reverse flow path, which is identical and opposite to the flow path.
  • This flow rate is also thermally optimized, because looped sequentially (flow, reflux) so that each heat exchange required is controlled accurately.
  • the control of the second temperature (T 2 ) and the target aluminum content (Al v ), allows the control of the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the bath (coating tank) at a level such that, given the expected iron dissolution rate (QFe) in the coating tank, the overall iron content (Fe 2 ) is kept below the solubility threshold of iron ( SFe T 2 ) at the second temperature (T 2 ). In this way, the coating tank remaining free of any dross, the coating has an irreproachable quality.
  • a solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 ) in the liquid mixture of the coating tank is controlled to a level such that, given an expected iron dissolution rate (QFe) in the coating tank, an overall iron content (Fe 2 ) is kept below the threshold of solubility of iron (SFe T 2 ) at the second temperature (T 2 ).
  • the continuous smelting is ensured at a total melting flow (Vm) of at least two ingots.
  • a variable number (n) of ingots can be advantageously immersed selectively and simultaneously in the bath of liquid mixture.
  • the ingots preferably each have an aluminum content (Al 1 , Al 2 ..., Al n ) different from one another and at least one of the ingots has an aluminum content greater than a required content (Al t ). in the preparation device (in particular in the second zone 72 comprising the purified mixture). In this way, maintaining or obtaining a target value of the aluminum content in the areas of the preparation device can be made more flexibly and more precisely.
  • cooling means of the liquid mixture to the second temperature (T 2) to the third temperature (T 3) can be activated in the preparation device as an auxiliary of the entire cooling system carried out by the fusion of ingots.
  • Such a complementary cooling means thus makes it possible to provide better control flexibility of the method according to the invention.
  • a compartmentalization between the ingots and according to their respective aluminum content can advantageously be carried out in order to separate the different types of dross, in that so-called "surface” dross with a high aluminum content are preferentially formed in the vicinity of ingots immersed in water. high aluminum content and so-called “background” dross with low aluminum content are formed preferentially in the vicinity of immersed ingots with a low aluminum content.
  • This compartmentalization can be simply carried out by adding partitions arranged between the ingots on the surface and at the bottom of the first zone (71).
  • the method according to the invention provides that a necessary flow rate of liquid zinc, that is to say also of liquid mixture renewal entering the coating tank, is regulated under an iron content equal to the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) in order to limit an increase in the dissolved iron content well below the solubility threshold at the second temperature (T 2 ) in the coating tank.
  • This makes it possible to withstand a quantity of dissolved iron coming from the band in the range between the solubility threshold (SFe T 3 ) of the iron at the third temperature (T 3 ) and the solubility threshold (SFe T 2 ) of the iron at the second temperature (T 2 )
  • PB power control loop
  • This is done by sending a reduction (or increase) instruction to the strip temperature (T 1 ) at the coating tank inlet.
  • the method provides that the preparation device is provided with additional regulated means for recovering and discharging calories associated with a controlled induction heating means adapted to modulate the third temperature (T 3 ) in an ingot melt zone and in a temperature range, particularly defined by +/- 10 ° C, of values close to a temperature value recorded by the regulation means or external controls.
  • a controlled induction heating means adapted to modulate the third temperature (T 3 ) in an ingot melt zone and in a temperature range, particularly defined by +/- 10 ° C, of values close to a temperature value recorded by the regulation means or external controls.
  • the method recommends that the first temperature (T 1 ) of the steel strip at its entry into the coating tank is ideally between 450 and 550 ° C. Similarly, the second temperature (T 2 ) of the liquid mixture in the coating tank is ideally between 450 and 520 ° C. For maximum efficiency of the process, a temperature difference ( ⁇ T 1 ) between the steel strip and the liquid mixture in the coating tank is maintained between 0 and 50 ° C.
  • the second temperature (T 2 ) of the liquid mixture is thus maintained in the coating tank, ideally at an accuracy of +/- 1 at 3 ° C, at a value (T 1 - ⁇ T 1 ) equal to the first temperature (T 1 ) minus the difference in temperature ( ⁇ T 1 ) between the steel strip and the liquid mixture.
  • the method provides that a flow rate (Q 2 ) of the liquid mixture from the coating pan is maintained between 10 and 30 times the amount of mixture deposited on the web in the same time unit.
  • the method according to the invention also provides for the implementation of measurement and control steps for regulating / maintaining the thermal loop, the circulation circuit and the target contents of aluminum, zinc and iron.
  • values of temperature and aluminum concentration of the liquid mixture are measured, ideally continuously, on at least the flow path from the feed inlet (12) in the coating pan to the outlet ( 11) of the preparation device. These values are essential in order to associate them with diagrams of contents of aluminum or iron depending on the location of the liquid mixture in the circulation circuit to be looped.
  • a level of liquid mixture is measured, ideally continuously, in the preparation device or, if necessary, in the coating tank. This makes it possible to regulate the melting flow rate of the ingots and to know the quantity of metal deposited on the strip.
  • a flow rate for example an aluminum content per unit of time
  • a temperature of the liquid mixture are maintained at predetermined pairs of values. by means of a simplified regulation. This allows for example to be able to deduce simply from a diagram (such as those of figures 1 and 2 ) and quickly reach an ideal solubility (iron) threshold for a pair of values.
  • the method includes a function for which a temperature of the strip at the outlet of a galvanizing furnace bound to a strip inlet in the coating pan is maintained within a range of adjustable values.
  • the tape speed is maintained within a range of adjustable values.
  • the method provides that a width and a strip thickness are measured or estimated upstream of the coating pan if, however, they have not already been collected as a Primary Data Input PDI in the control system of the galvanizing plant. These parameters are useful for determining input conditions, in particular in relation to the power provided by the band in the circulation circuit managed by the method according to the invention.
  • introduction and maintenance of ingots in a melting zone of the preparation device is performed dynamically and selectively.
  • the method according to the invention is thus implemented as a function of dynamic measurement and adjustment parameters related to the strip, the coating tank and the preparation device. These parameters are ideally controlled centrally, autonomously according to an analytic model with predictive controls, in real time, being optionally updatable by self-learning.
  • a mode of external commands can also be implemented (for example, by simple input of external commands on the analytical model driving the said method) so, for example for an operator to allow a registration of aluminum content, a strip temperature registration, etc.
  • the analytical model of process control is also updated.
  • the first temperature (T 1 ) of the strip at the outlet of the galvanizing furnace downstream of the coating tank and the second temperature (T 2 ) referred to in the coating tank are calculated the band powers (PB) and required (PZ).
  • the required power can also be lower than the band power (PZ ⁇ PB, case "N”).
  • the method according to the invention then provides a cooling setpoint (ORD1) ( ⁇ T) of the first strip temperature (T 1 ) by means of a temperature decrease at the outlet of a galvanizing furnace.
  • ORD1 cooling setpoint
  • Figure 8 presents the logic diagram for determining the flow rate of circulation of the liquid mixture, associated with the continuation of step "1" of the figure 7 , also shown as the logical starting point of this schema.
  • the flow (Q 2 ) of liquid mixture from the coating tank and necessary to ensure the continuous melting of ingots is determined.
  • This flow rate (Q 2 ) also indicates the flow rate of the liquid mixture between the coating tank and the preparation device.
  • the figure 9 shows the logic diagram for determining the aluminum content (Al t ) of the liquid mixture resulting from the melting of the ingots in the preparation device (purification tank 72).
  • the aluminum consumptions (QAl c ) and (QAl d ) are calculated from the mass flow (QBm) of the strip. They are also included in the calculation scheme of the fourth temperature (T 4 ) of the liquid mixture returning to the coating tank as a function of the third temperature (T 3 ) obtained after melting of the ingots and the complementary power ( ⁇ P) necessary to bring the temperature of the liquid mixture to the second temperature (T 2 ) in the coating tank.
  • the value of the aluminum content (Al t ) of the liquid mixture is then known in terms of consumption to go to a step "2" according to the next figure.
  • a quantity of aluminum losses (QAl c ) in the combination and aluminum loss layer (QAl d ) in the dross which vary in particular according to the width of the treated strip, it is necessary to be able to adapt the content aluminum (Al t ) resulting from the melting of the ingots in order to maintain in return a target value of aluminum content (Al v ) in the coating tank.
  • Each of the (n) ingots of aluminum content (Al 1 , Al 2 , ..., Al n ) is immersed selectively and according to a dynamic (dive time) variably adaptable to each ingot associated with a melting speed (V 1 , V 2 , ..., V n ) calculated to ensure a resulting aluminum content (Al t ) related to the total melting speed (V m ) and to control that the content required aluminum (Al t ) related to the expected consumption of aluminum according to the value from step "2" of the previous figure 9 is ensured by the aluminum content (Al t ) resulting from the melting ingots.
  • the figure 11 shows the logic diagram for checking the theoretical iron content (SFe) dissolved in the liquid mixture from step "1" described above (see figures 6 , 7 , 8 ).
  • the method implements a calculation of the iron dissolution rate (QFe) from both sides of the strip. and on the other hand, the solubility threshold (SFe T 2 ) of the iron in the liquid mixture at the second temperature (T 2 ).
  • S Fe safety factor
  • At the surface of the band is established a strong iron concentration gradient favoring the development of the Fe 2 Al 5 Zn x combination layer.
  • the iron content of the liquid mixture (Fe 2 ) in the coating tank is then the iron content at the end of said gradient and can be considered as the overall iron content of the liquid mixing bath.
  • solubility threshold (SFe T 2 ) of the iron in the liquid mixture at the second temperature (T 2 ) is greater than the actual iron content of the liquid mixture (Fe 2 ) in the coating tank (see case “SFe T 2 > Fe 2 ")
  • the various process control parameters selected are validated (see case "VAL_PA”).
  • the reduction of the iron dissolution rate (QFe) is obtained by decreasing the first temperature (T 1 ) and / or the second temperature (T 2 ) and / or the band surface flux (QBs) and / or by increase in the aluminum content (Al v ) in the coating tank. Practically, it acts preferentially on the first temperature (T 1 ) of the band and / or on its running speed (V).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)
  • Electroplating Methods And Accessories (AREA)

Claims (27)

  1. Verfahren zum Feuerverzinken eines kontinuierlich durchlaufenden gewalzten Stahlbandes (1), bei dem das Band in einen Beschichtungsbehälter (2) getaucht wird, der ein Bad aus flüssigem Gemisch (5) von Metall, wie beispielsweise Zink und Aluminium, enthält, das auf das Band aufgebracht werden soll und in ständigen Umlauf zwischen dem Beschichtungsbehälter und einer Vorbereitungsvorrichtung (7) versetzt wird, in der die Temperatur des flüssigen Gemisches absichtlich abgesenkt ist, um die Eisenlöslichkeitsgrenze zu verringern, und ausreichend hoch ist, um in der Vorbereitungsvorrichtung ein Schmelzen von mindestens einer Zn-Al-Massel (8) in ausreichender Menge zu aktivieren, um das durch das Aufbringen auf das Band verbrauchte flüssige Gemisch auszugleichen,
    wobei das Verfahren die folgenden Schritte umfasst:
    - Bestimmen einer ersten Leistung (PB), die von dem mit einer ersten Temperatur (T1) in das Bad aus flüssigem Gemisch des Beschichtungsbehälters einlaufenden Stahlband abgegeben werden muss, wobei das Bad selbst auf einer zweiten vorherbestimmten Temperatur (T2) stabilisiert ist, die unter der ersten Temperatur (T1) liegt,
    - Bestimmen einer zweiten Leistung (PZ), die erforderlich ist, um das flüssige Gemisch auf die zweite vorherbestimmte Temperatur (T2) zu bringen, und Vergleichen dieser zweiten Leistung mit der ersten, vom Band zugeführten Leistung (PB),
    - wenn die erste Leistung (PB) größer als die zweite Leistung (PZ) ist, Zuweisen eines Sollwerts zur Verringerung der ersten Temperatur (T1) des Bandes,
    - wenn die erste Leistung (PB) kleiner als oder gleich der zweiten Leistung (PZ) ist, Bestimmen einer erforderlichen Energie zum kontinuierlichen Schmelzen von Masseln (8) in der Vorbereitungsvorrichtung in der erforderlichen Menge zum Ausgleichen des durch das Aufbringen auf das Band verbrauchten flüssigen Gemisches,
    - Anpassen einer Umlaufmenge (Q2) des flüssigen Gemisches zwischen dem Beschichtungsbehälter und der Vorbereitungsvorrichtung, um die erforderliche Energie zum kontinuierlichen Schmelzen von Masseln (8) zuzuführen und dabei die Temperatur des flüssigen Gemisches in der Vorbereitungsvorrichtung auf einer dritten vorherbestimmten Temperatur (T3) zu halten, die unter der zweiten vorherbestimmten Temperatur (T2) liegt,
    - Anpassen einer vierten Temperatur (T4) des flüssigen Gemisches im Auslauf (9) der Vorbereitungsvorrichtung, um eine Ergänzungsleistung (ΔP = PZ - PB) zuzuführen, die für ein thermisches Gleichgewicht zwischen dem Auslauf und einem Versorgungseinlauf (12) des Beschichtungsbehälters erforderlich ist, wobei der Einlauf durch den Auslauf (9) versorgt wird.
  2. Verfahren nach Anspruch 1, bei dem mittels einer Einstellung der zweiten Temperatur (T2) und des angestrebten Gehalts an Aluminium (Alv) die Eisenlöslichkeitsgrenze (SFe T2) bei der zweiten Temperatur (T2) im flüssigen Gemisch des Beschichtungsbehälters auf ein solches Niveau geregelt wird, dass unter Berücksichtigung einer im Beschichtungsbehälter erwarteten Eisenlösungsmenge (QFe) der Gesamtgehalt an Eisen (Fe2) unter der Eisenlöslichkeitsgrenze (SFe T2) bei der zweiten Temperatur (T2) gehalten wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem das kontinuierliche Schmelzen von Masseln bei einer Gesamtschmelzgeschwindigkeit (Vm) von mindestens zwei Masseln gewährleistet ist.
  4. Verfahren nach Anspruch 3, bei dem eine veränderliche Anzahl (n) von Masseln selektiv und gleichzeitig in das Bad aus flüssigem Gemisch getaucht wird, wobei die Masseln jeweils einen unterschiedlichen Aluminiumgehalt (Al1, Al2, ..., Aln) haben und mindestens eine der Masseln einen Aluminiumgehalt hat, der über einem in der Vorbereitungsvorrichtung geforderten Gehalt (Alt) liegt.
  5. Verfahren nach Anspruch 4, bei dem eine Tauchgeschwindigkeit (V1, V2, ..., Vn) jeder der n Masseln individuell so geregelt wird, dass der Aluminiumgehalt in der Vorbereitungsvorrichtung auf den geforderten Gehalt (Alt) angepasst wird und dabei die geforderte Gesamtschmelzgeschwindigkeit (Vm) aufrechterhalten wird.
  6. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Kühlung des flüssigen Gemisches von der zweiten Temperatur (T2) auf die dritte Temperatur (T3) in der Vorbereitungsvorrichtung aktiviert wird, um die Eisenlöslichkeitsgrenze zu senken und die Bildung von Schlacke in der Vorbereitungsvorrichtung zu lokalisieren.
  7. Verfahren nach Anspruch 3 bis 6, bei dem eine Abschottung zwischen den Masseln und entsprechend ihres jeweiligen Aluminiumgehalts vorgenommen wird, um die verschiedenen Schlackearten zu trennen, sodass sich die sogenannten "Oberflächenschlacken" mit hohem Aluminiumgehalt bevorzugt in der Umgebung der eingetauchten Masseln mit hohem Aluminiumgehalt bilden und sich die sogenannten "Bodenschlacken" mit geringem Aluminiumgehalt bevorzugt in der Umgebung der eingetauchten Masseln mit geringem Aluminiumgehalt bilden.
  8. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Erneuerungsrate (Q2) an flüssigem Gemisch, das in den Beschichtungsbehälter einläuft, auf einen Eisengehalt eingestellt wird, der gleich der Löslichkeitsgrenze bei der dritten Temperatur (T3) ist, um einen Anstieg des Gehalts an gelöstem Eisen unterhalb der Löslichkeitsgrenze bei der zweiten Temperatur (T2) im Beschichtungsbehälter zu begrenzen.
  9. Verfahren nach einem der vorangehenden Ansprüche, bei dem ein Regelkreis für die erste Leistung (PB), die vom Band abgegeben wird, eine Zufuhr oder einen Entzug von Leistung (ΔP) regelt, was zu einem solchen Gleichgewicht führt, dass die erste Leistung (PB) gleich der Summe aus der zweiten Leistung (PZ) und aus der Zufuhr oder dem Entzug von Leistung (ΔP) ist, sodass PB = PZ + ΔP, und zu einer Soll-Bandtemperatur führt.
  10. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Vorbereitungsvorrichtung mit regulierten Mitteln zur Rückgewinnung und Abführung von Kalorien versehen ist, die mit einem regulierten Mittel zum Heizen durch Induktion kombiniert sind und geeignet sind, die dritte Temperatur (T3) in einem Masselschmelzbereich und in einem Temperaturintervall, das insbesondere durch +/-10 °C definiert wird, von Werten nahe einem Soll-Temperaturwert zu variieren.
  11. Verfahren nach einem der vorangehenden Ansprüche, bei dem die erste Temperatur (T1) des Stahlbandes bei seinem Einlaufen in den Beschichtungsbehälter zwischen 450 und 550 °C liegt.
  12. Verfahren nach einem der vorangehenden Ansprüche, bei dem die zweite Temperatur (T2) des flüssigen Gemisches im Beschichtungsbehälter zwischen 450 und 520 °C liegt.
  13. Verfahren nach einem der Ansprüche 11 oder 12, bei dem eine Temperaturdifferenz (ΔT1) zwischen dem Stahlband und dem flüssigen Gemisch im Beschichtungsbehälter zwischen 0 und 50 °C aufrechterhalten wird.
  14. Verfahren nach Anspruch 13, bei dem die zweite Temperatur (T2) des flüssigen Gemisches im Beschichtungsbehälter idealerweise mit einer Genauigkeit von +/-1 bis 3 °C auf einem Wert (T1 - ΔT1) gehalten wird, der gleich der ersten Temperatur (T1) abzüglich der Temperaturdifferenz (ΔT1) zwischen dem Stahlband und dem flüssigen Gemisch ist.
  15. Verfahren nach einem der Ansprüche 11 oder 12, bei dem eine Temperaturverringerung (ΔT2 = T2 - T3) zwischen der zweiten und der dritten Temperatur des flüssigen Gemisches in der Vorbereitungsvorrichtung auf mindestens 10 °C gehalten wird.
  16. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Umlaufmenge (Q3) des aus dem Beschichtungsbehälter kommenden flüssigen Gemisches auf dem 10- bis 30-Fachen der in der gleichen Zeiteinheit auf das Band aufgebrachten Gemischmenge gehalten wird.
  17. Verfahren nach einem der vorangehenden Ansprüche, bei dem Temperatur- und Aluminiumkonzentrationswerte des flüssigen Gemisches, idealerweise kontinuierlich, an mindestens einem Strömungsweg vom Versorgungseinlauf in den Beschichtungsbehälter bis zum Auslauf der Vorbereitungsvorrichtung gemessen werden.
  18. Verfahren nach einem der vorangehenden Ansprüche, bei dem ein Füllstand des flüssigen Gemisches, idealerweise kontinuierlich, in der Vorbereitungsvorrichtung gemessen wird.
  19. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Durchflussmenge und eine Temperatur des flüssigen Gemisches auf Wertepaaren gehalten werden, die mittels einer Regulierung vorherbestimmt werden.
  20. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Temperatur des Bandes im Ausgang eines Verzinkungsofens, der mit einem Bandeinlauf in den Beschichtungsbehälter verbunden ist, in einem Intervall regelbarer Werte gehalten wird.
  21. Verfahren nach einem der vorangehenden Ansprüche, bei dem die Durchlaufgeschwindigkeit des Bandes in einem Intervall einstellbarer Werte gehalten wird.
  22. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Bandbreite und eine Banddicke stromauf des Beschichtungsbehälters gemessen werden.
  23. Verfahren nach einem der vorangehenden Ansprüche, bei dem eine Zufuhr und ein Halten von Masseln in einem Schmelzbereich der Vorbereitungsvorrichtung dynamisch durchgeführt werden.
  24. Verfahren nach einem der vorangehenden Ansprüche, bei dem dynamische Mess- und Einstellungsparameter im Zusammenhang mit dem Band, dem Beschichtungsbehälter und der Vorbereitungsvorrichtung zentral gesteuert werden.
  25. Verfahren nach einem der vorangehenden Ansprüche, bei dem Regelparameter durch Eingeben von externen Befehlen in ein analytisches Modell, welches das Verfahren steuert, kalibriert werden.
  26. Verfahren nach Anspruch 25, bei dem das analytische Modell durch Selbstlernen aktualisiert wird.
  27. Verfahren nach einem der vorangehenden Ansprüche, bei dem Mess- und Einstellungsparameter aus einem Verfahren zum Abstreifen des Bandes außerhalb des Beschichtungsbehälters zur Steuerung des Verfahrens geliefert werden.
EP08761863.3A 2008-02-08 2008-02-08 Vefahren zum feuerverzinken von stahlblechen Active EP2240620B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2008/000163 WO2009098362A1 (fr) 2008-02-08 2008-02-08 Procédé de galvanisation au trempé d'une bande d'acier

Publications (2)

Publication Number Publication Date
EP2240620A1 EP2240620A1 (de) 2010-10-20
EP2240620B1 true EP2240620B1 (de) 2014-11-26

Family

ID=39865627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08761863.3A Active EP2240620B1 (de) 2008-02-08 2008-02-08 Vefahren zum feuerverzinken von stahlblechen

Country Status (10)

Country Link
US (1) US9238859B2 (de)
EP (1) EP2240620B1 (de)
JP (1) JP5449196B2 (de)
KR (1) KR101502198B1 (de)
CN (1) CN101939461B (de)
AU (1) AU2008350133B2 (de)
BR (1) BRPI0822294A2 (de)
CA (1) CA2714472C (de)
ES (1) ES2529697T3 (de)
WO (1) WO2009098362A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520297B2 (ja) * 2008-07-30 2014-06-11 パンガン グループ スチール ヴァンディウム アンド チタニウム カンパニー リミテッド 溶融亜鉛めっき鋼板の製造方法
BR112013004910B1 (pt) * 2010-09-02 2019-12-31 Nippon Steel & Sumitomo Metal Corp método para fabricação de uma chapa de aço galvanizada e recozida
EP2612947B1 (de) * 2010-09-02 2017-10-04 Nippon Steel & Sumitomo Metal Corporation Verfahren zur herstellung eines feuerverzinkten stahlblechs
DE102011118197B3 (de) 2011-11-11 2013-05-08 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Schmelztauchbeschichten eines Metallbands mit einem metallischen Überzug
DE102011118199B3 (de) 2011-11-11 2013-05-08 Thyssenkrupp Steel Europe Ag Verfahren und Vorrichtung zum Schmelztauchbeschichten eines Metallbands mit einem metallischen Überzug
EP2703515A1 (de) * 2012-09-03 2014-03-05 voestalpine Stahl GmbH Verfahren zum Aufbringen eines Schutzüberzugs auf ein Stahlflachprodukt und Stahlflachprodukt mit einem entsprechenden Schutzüberzug
DE102021123320A1 (de) * 2021-09-09 2023-03-09 Coatinc PreGa GmbH & Co. KG Verfahren zum Hochtemperaturverzinken von Eisenwerkstoffteilen

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2235720A (en) * 1939-01-28 1941-03-18 Matarese Lawrence Cargo loading and unloading platform
US3808033A (en) * 1970-01-27 1974-04-30 Nat Steel Corp Continuous metallic strip hot-dip metal coating apparatus
JPS5735671A (en) * 1980-08-11 1982-02-26 Nippon Kokan Kk <Nkk> Continuously galvanizing method for strip
FR2654749B1 (fr) * 1989-11-21 1994-03-25 Sollac Procede et dispositif d'epuration d'un bain de metal liquide au temps chaud d'une bande d'acier.
JP2808334B2 (ja) * 1989-12-15 1998-10-08 川崎製鉄株式会社 連続溶融金属めっきに用いられるめっき浴槽
JPH05171386A (ja) * 1991-12-16 1993-07-09 Nkk Corp 溶融金属めっき浴中のドロスの低減方法および装置
JP2643048B2 (ja) * 1992-01-09 1997-08-20 川崎製鉄株式会社 溶融めっき装置および溶融めっき装置の操業方法
JPH05222500A (ja) * 1992-02-12 1993-08-31 Sumitomo Metal Ind Ltd 連続溶融メッキ設備
JPH05271893A (ja) 1992-03-27 1993-10-19 Sumitomo Metal Ind Ltd 溶融亜鉛めっき鋼板の製造方法と製造装置
FR2700779B1 (fr) * 1993-01-22 1995-03-10 Lorraine Laminage Procédé pour l'épuration d'un bain de revêtement de produits métallurgiques par un alliage métallique, et installation pour la mise en Óoeuvrer de ce procédé.
EP0663632B1 (de) * 1994-01-17 1997-12-10 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Führung eines Prozesses
JPH0853744A (ja) * 1994-08-09 1996-02-27 Kobe Steel Ltd 合金化溶融亜鉛めっき鋼板の製造方法
CA2225537C (en) * 1996-12-27 2001-05-15 Mitsubishi Heavy Industries, Ltd. Hot dip coating apparatus and method
JP3156963B2 (ja) * 1997-07-31 2001-04-16 川崎製鉄株式会社 連続溶融金属めっき浴のドロス生成防止方法
US5958518A (en) * 1998-01-29 1999-09-28 Sippola; Perti J. Method of producing hot-dip zinc coated steel sheet free of dross pick-up defects on coating and associated apparatus
US6177140B1 (en) * 1998-01-29 2001-01-23 Ispat Inland, Inc. Method for galvanizing and galvannealing employing a bath of zinc and aluminum
EP1070765A4 (de) * 1998-04-01 2008-10-08 Jfe Steel Corp Verfahren und vorrichtung zum feuerverzinken
JP4631913B2 (ja) * 1998-04-01 2011-02-16 Jfeスチール株式会社 溶融亜鉛系めっき方法およびそのための装置
JPH11323519A (ja) * 1998-05-13 1999-11-26 Nkk Corp 溶融亜鉛系めっき装置及び方法
JP2001262306A (ja) * 2000-03-21 2001-09-26 Nisshin Steel Co Ltd Zn−Al系めっき浴の成分調整方法および装置
RU2209846C2 (ru) 2001-04-26 2003-08-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Способ непрерывного горячего цинкования полосы
KR100887114B1 (ko) * 2002-07-15 2009-03-04 주식회사 포스코 용융아연도금욕의 알루미늄 농도 제어장치 및 그 방법
JP2004339553A (ja) * 2003-05-14 2004-12-02 Nkk Steel Sheet & Strip Corp 溶融金属めっき鋼帯の製造方法
JP4507681B2 (ja) * 2003-06-19 2010-07-21 Jfeスチール株式会社 溶融亜鉛めっき鋼板用めっき浴の温度制御方法
JP2005248208A (ja) * 2004-03-01 2005-09-15 Nippon Steel Corp 合金化溶融亜鉛めっき鋼板の誘導加熱における板温制御方法
JP4428096B2 (ja) * 2004-03-10 2010-03-10 Jfeスチール株式会社 溶融めっき浴への金属帯進入板温度制御方法
CN100494430C (zh) * 2006-06-23 2009-06-03 宝山钢铁股份有限公司 利用锌渣生产锌合金的方法
JP4503086B2 (ja) 2008-08-11 2010-07-14 Dic株式会社 超疎水性粉体、これを用いる超疎水性表面を有する構造体及びそれらの製造方法
CN102119245A (zh) 2008-08-11 2011-07-06 财团法人川村理化学研究所 超疏水性粉体、具有超疏水性表面的结构体及这些的制造方法

Also Published As

Publication number Publication date
BRPI0822294A2 (pt) 2021-04-06
US9238859B2 (en) 2016-01-19
JP5449196B2 (ja) 2014-03-19
CN101939461B (zh) 2013-01-02
US20100323095A1 (en) 2010-12-23
KR20100126359A (ko) 2010-12-01
WO2009098362A1 (fr) 2009-08-13
CA2714472A1 (fr) 2009-08-13
EP2240620A1 (de) 2010-10-20
KR101502198B1 (ko) 2015-03-12
ES2529697T3 (es) 2015-02-24
JP2011511165A (ja) 2011-04-07
AU2008350133B2 (en) 2012-11-22
AU2008350133A1 (en) 2009-08-13
CA2714472C (fr) 2015-08-04
CN101939461A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
EP2240620B1 (de) Vefahren zum feuerverzinken von stahlblechen
WO2009098363A1 (fr) Installation de galvanisation au trempe d&#39;une bande d&#39;acier
EP2129810B1 (de) Verfahren zur beschichtung eines substrats und anlage zur metalllegierungsbedampfung
US9181612B2 (en) Manufacturing equipment for galvannealed steel sheet, and manufacturing method of galvannealed steel sheet
EP2358919A1 (de) Verfahren und vorrichtung zur steuerung des eintrags mehrerer metalle in einen hohlraum zum schmelzen der metalle
US9487852B2 (en) Manufacturing equipment for galvanized steel sheet, and manufacturing method of galvanized steel sheet
FR2919876A1 (fr) Ligne combinee de recuit et de galvanisation et procede de transformation d&#39;une ligne de recuit continu en une telle ligne combinee
EP2797840B1 (de) Verfahren und vorrichtung zur reinigung von silicium
RU2463379C2 (ru) Способ цинкования погружением стальной полосы
FR2546534A1 (fr) Procede et installation de fabrication en continu d&#39;une bande d&#39;acier survieillie portant un revetement de zn, al ou d&#39;alliage zn-al
RU2463378C2 (ru) Установка для цинкования погружением стальной полосы
BE699497A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100721

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: D'HALLUIN, ARNAUD

Inventor name: GRENIER, BENJAMIN

Inventor name: BARJON, STEPHANE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140623

INTG Intention to grant announced

Effective date: 20140704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 698277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008035583

Country of ref document: DE

Effective date: 20150108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2529697

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150224

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150326

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150227

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008035583

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150208

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150228

26N No opposition filed

Effective date: 20150827

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008035583

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008035583

Country of ref document: DE

Representative=s name: FISCHER, MICHAEL, DR., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008035583

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR

Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES SAS, SAINT CHAMOND, FR

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS; FR

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), VERANDERING VAN NAAM VAN DE EIGENAAR(S); FORMER OWNER NAME: SIEMENS VAI METALS TECHNOLOGIES SAS

Effective date: 20150918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150226

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR

Effective date: 20160204

Ref country code: FR

Ref legal event code: CA

Effective date: 20160204

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 698277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008035583

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS

Effective date: 20170215

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 698277

Country of ref document: AT

Kind code of ref document: T

Owner name: PRIMETALS TECHNOLOGIES FRANCE SAS, FR

Effective date: 20170403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141126

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080208

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210217

Year of fee payment: 14

Ref country code: DE

Payment date: 20210217

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008035583

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008035583

Country of ref document: DE

Owner name: CLECIM SAS, FR

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES FRANCE SAS, SAVIGNEUX, FR

REG Reference to a national code

Ref country code: NL

Ref legal event code: HC

Owner name: CLECIM SAS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: SIEMENS VAI METALS TECHNOLOGIES SAS

Effective date: 20210831

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CLECIM SAS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: PRIMETALS TECHNOLOGIES FRANCE SAS

Effective date: 20211008

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: CLECIM SAS; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: PRIMETALS TECHNOLOGIES FRANCE SAS

Effective date: 20211008

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 698277

Country of ref document: AT

Kind code of ref document: T

Owner name: CLECIM S.A.S., FR

Effective date: 20220311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220204

Year of fee payment: 15

Ref country code: NL

Payment date: 20220216

Year of fee payment: 15

Ref country code: IT

Payment date: 20220218

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20220426

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008035583

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 698277

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230208

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240221

Year of fee payment: 17