EP2220371B1 - Ensemble pompe avec soupape de sécurité - Google Patents

Ensemble pompe avec soupape de sécurité Download PDF

Info

Publication number
EP2220371B1
EP2220371B1 EP07846798A EP07846798A EP2220371B1 EP 2220371 B1 EP2220371 B1 EP 2220371B1 EP 07846798 A EP07846798 A EP 07846798A EP 07846798 A EP07846798 A EP 07846798A EP 2220371 B1 EP2220371 B1 EP 2220371B1
Authority
EP
European Patent Office
Prior art keywords
pump
inlet
arrangement
outlet
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07846798A
Other languages
German (de)
English (en)
Other versions
EP2220371A1 (fr
Inventor
Martin Richter
Jürgen KRUCKOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP2220371A1 publication Critical patent/EP2220371A1/fr
Application granted granted Critical
Publication of EP2220371B1 publication Critical patent/EP2220371B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/14Machines, pumps, or pumping installations having flexible working members having peristaltic action having plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/10Other safety measures

Definitions

  • Embodiments of the invention relate to a pump arrangement and in particular to a pump arrangement which has a safety valve at a pump outlet of a pump.
  • Diaphragm pumps with passive check valves at the pump inlet and at the pump outlet are, for example, the DE-A-19719862 known.
  • Peristaltic pumps without active valves are for example from DE-A-10238600 known.
  • micropumps which can be understood as meaning those pumps whose pumping volume is in the microliter range or less with a single actuation.
  • micropumps have a problem in that free flow through the pump can take place when an overpressure is applied to the inlet reservoir connected to the respective pump inlet and no operating voltage is applied to the pump.
  • Normally closed, self-blocking valves are out of the DE-A1-10048376 and the WO-A1-2004 / 081390 known. Under a normally closed valve is a valve to understand that is closed in the unactuated state.
  • the DE-A1-10048376 discloses a normally closed self-blocking valve in which a positive pressure acts on a valve inlet closing.
  • the valve comprises a piezoceramic, wherein the application of a voltage to the piezoceramic results in an opening of the valve.
  • the advantage of such a valve is the self-blocking function, even with an overpressure at the inlet, as well as the simple structure. If you wanted to combine such a valve with a pump, To avoid a free flow, this leads by the required separate component to an increased space and cost requirements. Furthermore, a separate piezo drive is required.
  • valve outlet is fluidly coupled to the inlet of a downstream micropump.
  • the valve is formed in a valve chip which has a self-blocking function when an overpressure is applied to the inlet of the valve, which has a self-blocking function when an overpressure is applied to the outlet of the valve, and the valve Valve opens when a vacuum is applied to the outlet.
  • the pump When the pump is turned on, it creates a vacuum at the pump inlet and the valve outlet, which opens the valve.
  • Such a microvalve provides a self-blocking function, has passive components, so that no piezo actuation is needed and thus has a very good element-to-element reproducibility.
  • micropump with integrated double normally closed microvalve has a compact design and a small dead volume.
  • the design of the pump is designed for a sufficiently high compression ratio.
  • the pump chip required is large, and at high inlet pressures, the pump may not be able to reach the negative pressure needed to open the integrated double normally closed microvalve.
  • a medication metering device which comprises a pump and at the outlet of the pump a safety valve.
  • An embodiment of this document teaches a diaphragm pump with passive ball check valves at a pump inlet and a pump outlet.
  • a safety valve is provided which has a valve seat and a diaphragm acting as a valve.
  • One face of this membrane is fluidly connected to an inlet reservoir of the pump assembly so that pressure in that inlet reservoir acts on that side of the membrane.
  • the other surface of the membrane is connected via the check valve at the outlet of the pump to the pressure generated in a pumping chamber of the pump.
  • the safety valve when the pump is off, the safety valve is pressure compensated over almost the entire diaphragm size, but not in the area within the safety valve seat.
  • the advantage of a safety valve connected in series with the outlet of a micropump is that a positive pressure at the pump inlet acts to close the safety valve.
  • a relatively small overpressure generated at the pump outlet can open the safety valve.
  • the in the WO-A-03/099351 described pump assemblies are disadvantageous in that separate components are needed, which in turn leads to increased space and cost requirements. Furthermore, the pump assemblies have a large dead volume, which in turn fluid connections are needed.
  • a safety valve is integrated directly with a pump.
  • the valve seat of the safety valve, the pump outlet and the pump inlet are structured in a first surface of an integral part of the pump assembly. Characterized in that the outlet of the pump and the valve seat are formed in the same surface of a one-piece part, the valve seat of the safety valve can be formed directly at the outlet of the pump, which in addition to a simple structure, a small dead volume can be obtained.
  • the pump inlet is structured in the same surface and fluidly connected to a fluid region of the pump assembly which acts on the safety valve. This makes it possible to implement the pump arrangement according to the invention with a simple structure.
  • the second integral part of the pump assembly is a layer of substantially uniform thickness disposed between and separating the first one-piece part and the third part.
  • This second integral part may have at least one opening through which the pump inlet is fluidically connected to the fluid area, which is an inlet fluid area of the pump arrangement.
  • the second integral part may have another opening through which an outlet of the safety valve is fluidly connected to the outlet of the pump assembly.
  • the second one-piece part may be formed only in the area of the safety valve.
  • Embodiments of pump arrangements according to the invention can be implemented with different pumps, for example diaphragm pumps with passive check valves at the pump inlet and at the pump outlet or peristaltic pumps.
  • Embodiments of the present invention are particularly suitable for implementing micropumps in which a pumping volume pumped during a pumping cycle may be in the microliter range and below.
  • relevant dimensions of such a micropump such as pump stroke of a pumping membrane or thickness of a pumping membrane, may be in the micrometer range.
  • the present invention provides a pump assembly in which a pump and a safety valve are integrated in a component which may be implemented with a small number of parts.
  • a pump assembly element may be implemented, which is formed of five or six individual parts or layers, wherein a pumping membrane part with associated piezoceramic and corresponding terminals is considered as a part.
  • Embodiments of the present invention provide a pump assembly chip constructed of a plurality of stacked structured layers forming a pump and a safety valve integrated with the pump outlet. In embodiments of the invention thus no separate fluidic connections between the pump and the valve are required. Thus, in embodiments of the invention both a dead volume and a space requirement can be minimized. embodiments In addition to a simple design, the invention enables a saving in terms of size, weight and costs.
  • an overpressure at the pump arrangement inlet acts closing on the safety valve, so that in the unactuated state, a flow in the direction from the inlet to the outlet can be effectively avoided.
  • FIG. 1a and 1b An embodiment of a pump arrangement according to the invention will now be described, in which a pump is implemented by a micromembrane pump with passive check valves.
  • the pump arrangement comprises five structured layers, which are arranged one above the other and attached to one another. These layers are referred to below as first layer 10, second layer 12, third layer 14, fourth layer 16 and fifth layer 18.
  • the pump arrangement shown has a diaphragm pump 20 with a pump inlet 22 and a pump outlet 24.
  • the pump inlet 22 and the pump outlet 24 are structured in the lower surface of the third layer 14.
  • the diaphragm pump 20 includes a passive check valve at the pump inlet 22, which has a valve seat 26 and a valve flap 28.
  • the valve seat 26 is patterned in the upper surface of the third layer 14, and the valve flap 28 is patterned in the fourth layer 16.
  • the micropump 20 further includes a passive check valve at the pump outlet 24, which has a valve seat 30 and a valve flap 32.
  • the valve seat 30 is structured in the fourth layer 16 and the valve flap 32 is structured in the upper surface of the third layer 14.
  • the diaphragm pump 20 further includes a pumping membrane 34 which is structured in the fifth part 18.
  • a piezoceramic 36 is mounted, so that a volume of a pumping chamber 38 of the diaphragm pump 20 can be varied by operating the same.
  • suitable means (not shown) for applying a voltage to the piezoceramic 36 are provided, through which the pumping membrane 34 from the position shown in FIG Fig. 1a is shown, can be deflected into a position in which the volume of the pumping chamber 38 is reduced.
  • FIG. 1a shown embodiment of a pump assembly according to the invention has a safety valve 40 on the pump outlet 24.
  • the safety valve 40 includes a safety valve seat 42 and a safety valve door 44.
  • the safety valve seat 42 is structured in the lower surface of the third layer 14.
  • the safety valve flap 44 is formed by a portion of the second layer 12 that faces the safety valve seat 42.
  • the third layer 14 west in the lower surface thereof has a recess 62 defining the movable part of the second layer 12.
  • the pump assembly shown includes a pump assembly inlet 46 and a pump assembly outlet 48.
  • the pump assembly inlet 46 is connected to a fluid region 50.
  • the pump assembly inlet 46, the pump assembly outlet 48, and the fluid region 50 are structured in the first layer 10.
  • the fluid region 50 adjoins the underside of the second layer 12, so that a pressure prevailing in the fluid region 50 acts closing on the safety valve 40.
  • the fluid region 50 and thus the pump assembly inlet 46 are fluidly connected to the pump inlet 22 via a first opening 52 in the second layer 12.
  • the pump outlet 48 is fluidly connected via a second opening 54 in the second layer 12 to a fluid channel 56, which in turn is fluidically connected to the safety valve 40 and an outlet 58 of the safety valve, respectively.
  • the fluid channel 56 is formed in the illustrated embodiment by appropriate structuring in the third layer 14 and the fourth layer 16.
  • the outlet of the safety valve is structured in the upper surface of the third layer 14.
  • the pump assembly inlet 46 and the pump assembly outlet 48 may be provided with suitable fluid connectors that facilitate connection of further fluidic structures, such as so-called luer connectors for connecting tubing and the like.
  • Fig. 1b shows the structures formed in the bottom of the third layer 14, the pump inlet 22, the pump outlet 24, the safety valve seat 42 and a structured in the lower surface of the third layer 14 outlet-side end 60 of the fluid channel 56 include.
  • the fluid channel 56 is in Fig. 1b indicated by dashed lines.
  • Above the pump outlet 24 is in Fig. 1b to recognize the valve flap 32 of the check valve at the outlet of the micropump.
  • Fig. 1b in dashed lines the position and arrangement of the pumping membrane 34 indicated.
  • the recess represented a safety valve chamber 62, which is structured in the underside of the third layer 14, and has a substantially square shape in the illustrated embodiment.
  • an optional spacer structure 64 may be provided for the same by means of regularly distributed supports in Fig. 1b is indicated.
  • This spacer structure used in Fig. 1a is not shown, may be formed by projections in the third layer 14, which may have the same height as the safety valve seat 42.
  • the protrusions may be made using the same process steps, for example, the same etching step as the safety valve seat 42.
  • the spacer structure may be configured to reduce or substantially prevent sagging of the safety valve flap toward the third layer 14 when the pressure at the pump assembly inlet 46 is high. As a result, leaks due to a deflection of the safety valve flap 44 can be prevented. Further, the diaphragm forming the safety valve flap 44 is thereby subjected to lower stresses, whereby the durability thereof can be increased.
  • the piezoceramic 36 may be periodically energized, for example by a pulsed square wave voltage. Depending on the frequency of the applied actuating voltage and a stroke volume of the pumping membrane 34 thus a desired delivery rate can be achieved.
  • the pressure acts from below on the entire movable flap surface, while the pressure from above on the area covered by the valve seat 42 does not work. Thereby, a free flow at a positive pressure at the pump assembly inlet in the non-actuated state can be securely prevented.
  • FIG. 2 A modification of the in the Fig. 1a and 1b shown embodiment is in Fig. 2 are shown, wherein like elements are designated by like reference numerals and further description of these elements is omitted.
  • the pumping membrane 34 at the bottom of the same elevations 34a, 34b, which protrude into the pumping chamber.
  • the fourth layer 16, compared with the in FIG Fig. 1a shown an example projecting into the pumping chamber 38 increase 66.
  • the pumping membrane 34 is shown in the actuated state.
  • the elevations 34a, 34b may be formed in the edge area of the pumping membrane 34a, 34b.
  • the elevations 34a, 34b and 66 result in a reduction in the dead volume of the pumping chamber 38, which in turn results in an increase in the compression ratio of the pump. Operation of in Fig. 2 shown pump assembly corresponds to the operation of the above with reference to the Fig. 1a and 1b described embodiment.
  • the pump arrangement shown comprises five layers 110, 112, 114, 116 and 118, which are arranged one above the other and attached to each other.
  • the pump assembly includes a pump having a pump inlet 122 and a pump outlet 124.
  • the pump inlet 122 and the pump outlet 124 are structured in the lower surface of the third layer 114.
  • a recess is formed, in which a check valve module 126 is arranged.
  • the check valve module 126 may be glued, for example, in the recess.
  • the check valve module 126 may, for example, have a structure as shown in FIG DE-A-19719862 is described.
  • the upper surface of the third layer 114 is further patterned to define a pumping chamber 130 together with the underside of a pumping membrane 128 formed by the fourth layer 116.
  • the pumping membrane 128 may be formed, for example, by a metal layer, such as a stainless steel foil.
  • a piezoceramic 132 is arranged on the pumping diaphragm 128, a piezoceramic 132 is arranged. A voltage can be applied to the piezoceramic 132 via corresponding connection devices, which are shown schematically at 134, in order to actuate the pumping membrane 128.
  • the pumping membrane 128 Upon actuation, the pumping membrane 128 is deflected downwardly so that the volume of the pumping chamber 130 is reduced.
  • the contour of the pumping membrane 128 facing surface of the third layer 114 is adapted to the contour of the pumping diaphragm 128 in the deflected state, so that a dead volume of the pump can be reduced and thus a compression ratio thereof can be increased.
  • a cover 136 is provided in the example shown, which is formed by a corresponding structuring of the fifth layer 118.
  • the illustrated pump assembly further includes a safety valve 140 having a safety valve seat 142 and a safety valve door 144.
  • the safety valve seat 142 is structured in the bottom of the third layer 114.
  • the safety valve flap 144 is formed by a movable part of the second layer 112.
  • the movable part of the second layer 112 is in turn defined by a corresponding recess in the bottom of the third layer 114.
  • the pump assembly includes a pump assembly inlet 146 and a pump assembly outlet 148.
  • the pump assembly inlet 146 is structured in the first layer 110 and fluidly connected to a fluid region 150, which is also structured in the first layer 110.
  • the fluid region 150 adjoins the underside of the safety valve flap 144, so that an overpressure prevailing at the inlet 146 acts on the underside of the valve flap 144.
  • the pump assembly outlet 148 is fluidly connected to an outlet 158 of the safety valve 140 via a fluid passage 156.
  • the movable safety valve flap 44 is not attached to the valve seat 142, so that a pressure acting on the top of the valve flap prevailing on the underside of the valve flap opening acts on the safety valve.
  • the check valve module 100 provides a check valve at the pump inlet 122 and a check valve 124 at the pump outlet.
  • An overpressure in the pumping chamber 130 acts to close the check valve at the pump inlet 122 and to open the check valve at the pump outlet 124, while a negative pressure in the pumping chamber 130 acts to open the check valve at the pump inlet 122 and to close the check valve at the pump outlet 124.
  • the pump assembly inlet 146 and the pump assembly outlet 148 may be configured to facilitate connection of fluid tubing or the like.
  • the pump inlet 122 is fluidly connected to the fluid area 150 via an opening 152 in the second layer 112.
  • the fourth layer 116 may be formed by a metal foil with a piezoceramic applied thereto.
  • the check valve module 126 may be silicon-structured microvalves exhibit. Such a combination advantageously allows for the implementation of micropumps of small construction and high delivery rate.
  • FIG. 3 The pump assembly shown corresponds substantially to the above with reference to the in Fig. 1a shown embodiment described operation.
  • a pressure differential created by a pumping stroke in the pumping chamber 130 acts to open the safety valve door 144 so that fluid is pumped out of the pumping chamber through the pumping assembly outlet 148 during such a pumping stroke.
  • fluid is drawn through the pump assembly inlet 146 and the check valve at the pump inlet 122 while the check valve at the pump outlet 126 is closed.
  • pump overpressure at the pump assembly inlet 146 again acts to close the underside of the safety valve door 144 so that flow through the pump assembly can be safely prevented when the inlet is over-pressurized in the de-energized state.
  • FIG. 4 An alternative embodiment of a pump arrangement according to the invention will now be described, which has a peristaltic micropump.
  • the pump assembly shown includes a first layer 210, a second layer 212, a third layer 214, a fourth layer 216, and a fifth layer 218.
  • the layers 210, 212, 214 and 218 are stacked and attached to each other.
  • the layer 216 is disposed on the layer 214, as shown in FIG Fig. 4 is shown arranged in a recess formed in an upper surface of the layer 214.
  • the pump assembly shown has a peristaltic micropump 220 that includes a pump inlet 222, a pump outlet 224, a pumping membrane formed by the fourth layer 216, and three piezoelectric actuators 226, 228 and 230.
  • An inlet valve seat 232 forms an active inlet valve, along with a portion of diaphragm 216 opposite thereto, while an outlet valve seat 234, along with a portion of diaphragm 216 opposite thereto, provides an active outlet valve.
  • the pumping chamber 236 is fluidly connected via fluidic connections 238 to an inlet valve chamber 240 and an outlet valve chamber 242.
  • the structure of the peristaltic micropump essentially the structure of a peristaltic micropump, as in the DE-A-10238600 is described correspond.
  • the piezoelectric actuators 226, 228 and 230 are connected via respective electrical connections (not shown) to voltage sources and control means, respectively (not shown).
  • the individual membrane sections of the membrane 216 can be actuated or deflected downwards in a specific sequence in order to effect a pumping action from the pump inlet 222 to the pump outlet 224, as described, for example, in US Pat DE-A-10238600 is described, the teaching of which is hereby incorporated by reference.
  • the pump assembly shown has at the pump outlet 224 of the pump 220 a safety valve 250 having a safety valve seat 252 and a safety valve flap 254.
  • the safety valve seat 252 is formed in the lower surface of the third layer 214 while the safety valve flap 254 is formed by a movable portion of the second layer 212.
  • the movable part of the second layer 212 is defined by a recess 256 in the bottom of the third layer 214.
  • the pump assembly includes a pump assembly inlet 260 and a pump assembly outlet 262.
  • the pump assembly inlet 260 is fluidly connected to a fluid region 270 that communicates with the pump inlet 222 via an opening 272 in the second layer 212.
  • the fluid assembly outlet 262 is fluidly connected to an outlet 276 of the safety valve 250 via a fluid channel 274.
  • the fifth layer 218 is patterned to provide a cover for protecting the diaphragm 216 and the piezoelectric actuators 226, 228 and 230 disposed thereon and the electrical connections therefor.
  • the portions of membrane 216 may be operated as shown in FIG DE-A-10238600 is described.
  • An overpressure effected during a pumping stroke in the pumping chamber 236 thereby opens the safety valve 250 fluidically connected to the pump outlet 224.
  • the present invention thus provides pump assemblies in which fluid flow from the inlet to the outlet can be safely avoided with positive pressure at the inlet, with a simple structure, using a small number of components and with a small gate volume.
  • the different parts or layers of embodiments of the pump assemblies of the present invention may be implemented from any suitable materials using any suitable manufacturing method.
  • the parts can be made of silicon, with appropriate structuring by wet etching (isotropic) or dry etching (anisotropic) can be generated.
  • the parts may be made of plastic and produced by injection molding.
  • the layers 12, 14 16 and 18 may be structured of silicon.
  • the second layers 12, 112 and 212 may, for example, of an elastic material, such. B. corresponding to thin silicon or rubber.
  • the first layers 10, 110 and 210, the third layers 114 and 214 and the fifth layers 118 and 218 may be formed by injection molding from plastic, for example.
  • the diaphragm 216 may be made of silicon or other suitable material, for example, to realize together with the actuators 226, 228 and 230 each piezoelectric bending transducers.
  • Inventive pump assemblies are suitable for a variety of applications. In the following, only examples are given of applications in which it is important to avoid a free flow at an overpressure at the pump inlet. Such applications, for which embodiments of pump assemblies according to the invention are suitable, include e.g. Methanol feed pumps in fuel cell systems, infusion pumps, implantable drug delivery systems, portable drug delivery systems, respiratory humidification systems, and anesthetic dosage systems.
  • a peristaltic micropump with normally open valves allows the implementation of a pump with a high compression ratio, which in turn is advantageous in terms of a bubble-tolerant operation.
  • a pump arrangement according to the invention could also comprise a peristaltic micropump with normally closed active valves at the pump inlet and / or pump outlet.
  • two separate recesses could be provided in the upper surface of the third layer 114, wherein in a first recess a check valve module for a check valve is mounted on the pump inlet and in a second recess a second check valve module is mounted with a check valve for the pump outlet.
  • inventions of the pump assembly according to the invention such as e.g. the second layer 12 and the third layer 14 may be interconnected using any known joining techniques, such as e.g. by gluing, clamping or bonding without bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Cet ensemble pompe comprend : une pompe (20) avec une admission de pompe (22) et une évacuation de pompe (24), qui est conçue pour pomper un fluide de l'admission de pompe vers l'évacuation de pompe ; et une soupape de sécurité (40), qui est disposée entre l'évacuation de pompe (24) et une évacuation (48) de l'ensemble pompe et qui présente un siège de soupape (42) et un couvercle de soupape (44). Le siège de soupape, l'évacuation de pompe et l'admission de pompe sont structurés dans une première surface d'une première partie d'un seul tenant (14) de l'ensemble pompe, tandis que le couvercle de soupape est formé dans une deuxième partie d'un seul tenant (12) de l'ensemble pompe. Une admission (46) de l'ensemble pompe et une zone de fluide (50) fluidiquement reliée à cette admission sont formées dans une troisième partie (10) de l'ensemble pompe. La deuxième partie d'un seul tenant (12) est disposée entre la première partie d'un seul tenant (14) et la troisième partie (10) de l'ensemble pompe de telle sorte qu'une pression régnant dans la zone de fluide agit dans le sens de fermeture sur la soupape de sécurité, sachant que l'admission de pompe et l'admission de l'ensemble pompe sont fluidiquement reliées.

Claims (15)

  1. Ensemble de pompe, aux caractéristiques suivantes:
    une pompe (20; 120; 220) avec une entrée de pompe (22; 122; 222) et une sortie de pompe (24; 124; 224), qui est réalisée pour pomper un fluide de l'entrée de pompe vers la sortie de pompe;
    une soupape de sécurité (40; 140; 250) qui est disposée entre la sortie de pompe (24; 124; 224) et une sortie (48; 148; 262) de l'ensemble de pompe et qui présente un siège de soupape (42; 142; 252) et un couvercle de soupape (44; 144; 254),
    le couvercle de soupape étant formé dans une deuxième partie d'une seule pièce (12; 112; 212) de l'ensemble de pompe,
    une entrée (46; 146; 260) de l'ensemble de pompe et une zone de fluide y connectée en fluide (50; 150; 270) étant formées dans une troisième partie (10; 110; 210) de l'ensemble de pompe, et
    la deuxième partie d'une seule pièce (12; 112; 212) étant disposée entre une première partie d'une seule pièce (14; 114; 214) et la troisième partie (10; 110; 210) de l'ensemble de pompe, une pression régnant dans la zone de fluide (50; 150; 270) agissant en fermeture sur la soupape de sécurité (40; 140; 250) et l'entrée de pompe (22; 122; 222) et l'entrée de l'ensemble de pompe (46; 146; 260) étant connectées en fluide,
    caractérisé par le fait que le siège de soupape, la sortie de pompe et l'entrée de pompe sont structurés dans une première surface de la première partie d'une seule pièce (14; 114; 214) de l'ensemble de pompe.
  2. Ensemble de pompe selon la revendication 1, dans lequel l'entrée de pompe (22; 122; 222) et l'entrée de l'ensemble de pompe (46; 146; 260) sont connectées en fluide par l'intermédiaire d'une ouverture (52; 152; 272) dans la deuxième partie d'une seule pièce (12; 112; 212).
  3. Ensemble de pompe selon les revendications 1 ou 2, dans lequel la pompe (20; 120) est une pompe à membrane avec des clapets de retenue passifs.
  4. Ensemble de pompe selon la revendication 3, dans lequel sont structurés, dans une deuxième surface de la première partie d'une seule pièce (14), opposée à la première surface de la première partie d'une seule pièce (14), un siège de soupape (26) d'un clapet de retenue passif à l'entrée de pompe (22) et un clapet de soupape (32) d'un clapet de retenue passif à la sortie de pompe (24).
  5. Ensemble de pompe selon la revendication 4, présentant par ailleurs une quatrième partie (16) de l'ensemble de pompe, la première partie d'une seule pièce (14) étant disposée entre la quatrième partie (16) et la deuxième partie d'une seule pièce (12) de l'ensemble de pompe, et dans une première surface, orientée vers la première partie d'une seule pièce (14), de la quatrième partie (16) étant structurés un clapet de soupape (28) du clapet de retenue à l'entrée de pompe (22) et un siège de soupape (30) du clapet de retenue à la sortie de pompe (24).
  6. Ensemble de pompe selon la revendication 5, présentant par ailleurs une cinquième partie (18), la quatrième partie (16) étant disposée entre la première partie d'une seule pièce (14) et la cinquième partie (18), et une membrane (34) de la pompe (20) étant structurée dans la cinquième partie (18).
  7. Ensemble de pompe selon la revendication 3, dans lequel la première partie d'une seule pièce (114) présente un ou plusieurs évidements dans une deuxième surface opposée à la première surface de cette dernière, un ou plusieurs modules de clapet de retenue (126) avec un clapet de retenue pour l'entrée de pompe et avec un clapet de retenue pour la sortie de pompe étant placés dans l'un ou les plusieurs évidements.
  8. Ensemble de pompe selon la revendication 3 ou 7, dans lequel la pompe à membrane présente une membrane métallique (128) et des clapets de retenue en silicium.
  9. Ensemble de pompe selon la revendication 1 ou 2, dans lequel la pompe (220) est une micro-pompe péristaltique.
  10. Ensemble de pompe selon l'une des revendications 1 à 9, dans lequel au moins des segments d'une chambre de pompage (38; 130; 236) sont structurés dans une deuxième surface, opposée à la première surface de la première partie d'une seule pièce (14; 114; 214) de cette dernière, et une membrane de pompe (34; 128; 216) étant prévue adjacente à la chambre de pompage.
  11. Ensemble de pompe selon la revendication 10, dans lequel un contour de segments de paroi de la chambre de pompage (130) opposée à la membrane de pompe (128) est adapté à un contour de la membrane de pompe (128) dans un état déformé.
  12. Ensemble de pompe selon la revendication 10, dans lequel la membrane de pompe (34) présente des rehaussements (34a, 34b) pénétrant dans la chambre de pompage.
  13. Ensemble de pompe selon l'une des revendications 1 à 12, dans lequel la deuxième partie d'une seule pièce (12; 112; 212) présente une couche d'épaisseur uniforme qui est disposée entre la première partie d'une seule pièce (14; 114; 214) et la troisième partie (10; 110; 210), dans laquelle sont formées une ou plusieurs ouvertures (52; 54; 152; 272), la deuxième partie d'une seule pièce (12; 112; 212) séparant complètement l'une de l'autre la première partie d'une seule pièce (14; 114 ; 214) et la troisième partie d'une seule pièce (10; 110; 210).
  14. Ensemble de pompe selon l'une des revendications 1 à 13, dans lequel une sortie de l'ensemble de pompe (48) est formée dans la troisième partie (10) ou dans la première partie d'une seule pièce (114; 214).
  15. Ensemble de pompe selon l'une des revendications 1 à 14, dans lequel la soupape de sécurité présente des espaceurs qui réduisent une flexion du couvercle de soupape (44) en cas de surpression régnant dans la zone de fluide (50).
EP07846798A 2007-11-23 2007-11-23 Ensemble pompe avec soupape de sécurité Active EP2220371B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/010198 WO2009065427A1 (fr) 2007-11-23 2007-11-23 Ensemble pompe avec soupape de sécurité

Publications (2)

Publication Number Publication Date
EP2220371A1 EP2220371A1 (fr) 2010-08-25
EP2220371B1 true EP2220371B1 (fr) 2012-06-06

Family

ID=39027183

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07846798A Active EP2220371B1 (fr) 2007-11-23 2007-11-23 Ensemble pompe avec soupape de sécurité

Country Status (4)

Country Link
US (1) US8382452B2 (fr)
EP (1) EP2220371B1 (fr)
JP (1) JP5027930B2 (fr)
WO (1) WO2009065427A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224622A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Freistrahldosiersystem
DE102015224619A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrodosiersystem

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7553295B2 (en) 2002-06-17 2009-06-30 Iradimed Corporation Liquid infusion apparatus
US8105282B2 (en) 2007-07-13 2012-01-31 Iradimed Corporation System and method for communication with an infusion device
FR2952628A1 (fr) * 2009-11-13 2011-05-20 Commissariat Energie Atomique Procede de fabrication d'au moins une micropompe a membrane deformable et micropompe a membrane deformable
DE102010028524A1 (de) * 2010-05-04 2011-11-10 Robert Bosch Gmbh Mikrofluidisches Bauteil, insbesondere peristaltische Mikropumpe, und Verfahren zu dessen Herstellung
JP5826009B2 (ja) * 2011-12-05 2015-12-02 株式会社菊池製作所 マイクロポンプ実装用の基板およびマイクロポンプ組立体
GB201201330D0 (en) * 2012-01-26 2012-03-14 Quanta Fluid Solutions Ltd Dialysis machine
JP5761455B2 (ja) * 2012-05-09 2015-08-12 株式会社村田製作所 冷却装置、加熱冷却装置
WO2014019632A1 (fr) 2012-08-03 2014-02-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Appareil pour fermer et ouvrir un trajet d'écoulement comprenant une paroi de trajet d'écoulement flexible
WO2014094879A1 (fr) * 2012-12-21 2014-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ensemble pompe comprenant un ensemble soupape de sûreté
US10393101B2 (en) * 2013-08-12 2019-08-27 Koninklijke Philips N.V. Microfluidic device with valve
JP5735690B1 (ja) * 2014-08-15 2015-06-17 応研精工株式会社 急排弁一体型ダイヤフラムポンプ
ES2846834T3 (es) * 2015-02-17 2021-07-29 Daiken Medical Co Ltd Unidad de bomba y procedimiento para fabricar la misma
US11268506B2 (en) * 2017-12-22 2022-03-08 Iradimed Corporation Fluid pumps for use in MRI environment
GB2577710B (en) 2018-10-03 2022-12-14 Lee Ventus Ltd Methods and devices for driving a piezoelectric pump
GB2576796B (en) * 2018-12-07 2020-10-07 Ttp Ventus Ltd Improved valve
US11828374B2 (en) 2018-12-07 2023-11-28 Ttp Ventus Ltd. Valve
DE112020007236T5 (de) 2020-05-26 2023-03-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Arzneimittelabgabesystem
GB2597942B (en) 2020-08-10 2022-08-03 Ttp Ventus Ltd Pump for microfluidic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19719862A1 (de) 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Mikromembranpumpe
US8052792B2 (en) * 2001-04-06 2011-11-08 California Institute Of Technology Microfluidic protein crystallography techniques
JP2001294483A (ja) * 2000-04-12 2001-10-23 Ngk Spark Plug Co Ltd ジルコニア含有セラミックボールとその製造方法、セラミックボールベアリング及びチェックバルブ
DE10048376C2 (de) 2000-09-29 2002-09-19 Fraunhofer Ges Forschung Mikroventil mit einem normalerweise geschlossenen Zustand
US6514047B2 (en) * 2001-05-04 2003-02-04 Macrosonix Corporation Linear resonance pump and methods for compressing fluid
US8425493B2 (en) * 2002-05-22 2013-04-23 The Alfred E. Mann Foundation For Scientific Research Implantable medication delivery device
DE10238600A1 (de) * 2002-08-22 2004-03-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Peristaltische Mikropumpe
WO2004081390A1 (fr) 2003-03-11 2004-09-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. Microvanne normalement doublement fermee

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224622A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Freistrahldosiersystem
DE102015224619A1 (de) 2015-12-08 2017-06-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrodosiersystem
US10550833B2 (en) 2015-12-08 2020-02-04 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Microdosing system
US11022470B2 (en) 2015-12-08 2021-06-01 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Free-jet dosing system

Also Published As

Publication number Publication date
EP2220371A1 (fr) 2010-08-25
US20100290935A1 (en) 2010-11-18
US8382452B2 (en) 2013-02-26
WO2009065427A1 (fr) 2009-05-28
JP2011504560A (ja) 2011-02-10
JP5027930B2 (ja) 2012-09-19

Similar Documents

Publication Publication Date Title
EP2220371B1 (fr) Ensemble pompe avec soupape de sécurité
EP1320686B1 (fr) Microsoupape se trouvant normalement a l'etat ferme
EP2207963B1 (fr) Pompe et ensemble pompe
EP2205869B1 (fr) Pompe à membrane
EP1458977B2 (fr) Micropompe peristaltique
EP1331538B1 (fr) Micro-actionneur pour fluides à commande piezo-électrique
DE4135655C2 (fr)
DE112007003042B4 (de) Piezoelektrisches Ventil
EP0613535B1 (fr) Soupape micromecanique pour dispositifs de dosage micromecaniques
EP1576294B1 (fr) Microvanne normalement doublement fermee
EP2556282B1 (fr) Micro-soupape, methode de production et micro-pompe
WO2000070224A1 (fr) Pompe micromecanique
DE102019211941B3 (de) Mikrostrukturierte fluidflussregelvorrichtung
DE102007045637A1 (de) Mikrodosiervorrichtung zum Dosieren von Kleinstmengen eines Mediums
DE10135569B4 (de) Mikromechanisches Bauteil
EP2567092B1 (fr) Elément microfluidique, en particulier micropompe péristaltique, et son procédé de réalisation
DE112015002776T5 (de) Fluidsteuervorrichtung mit elektroaktivem Material
WO2004046563A1 (fr) Resistance a l'ecoulement variable
DE10164474A1 (de) Mikropumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 561172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007010011

Country of ref document: DE

Effective date: 20120809

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121006

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120917

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

26N No opposition filed

Effective date: 20130307

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAN

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007010011

Country of ref document: DE

Effective date: 20130307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120906

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 561172

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231020

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231019

Year of fee payment: 17

Ref country code: DE

Payment date: 20231019

Year of fee payment: 17

Ref country code: CH

Payment date: 20231201

Year of fee payment: 17