EP2195664A2 - Beschleunigungssensor - Google Patents

Beschleunigungssensor

Info

Publication number
EP2195664A2
EP2195664A2 EP08804670A EP08804670A EP2195664A2 EP 2195664 A2 EP2195664 A2 EP 2195664A2 EP 08804670 A EP08804670 A EP 08804670A EP 08804670 A EP08804670 A EP 08804670A EP 2195664 A2 EP2195664 A2 EP 2195664A2
Authority
EP
European Patent Office
Prior art keywords
web
substrate
seismic mass
acceleration sensor
seismic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804670A
Other languages
English (en)
French (fr)
Inventor
Dirk Rehle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2195664A2 publication Critical patent/EP2195664A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details

Definitions

  • the invention is based on an acceleration sensor with a substrate, at least one web and a seismic mass, wherein the web and the seismic mass are arranged above a plane of the substrate.
  • the seismic mass is arranged at least on two sides of the web, and suspended resiliently on the web.
  • the web is anchored to the substrate by means of at least one anchoring.
  • the substrate is made of a different material than the at least one web, mechanical stresses between the substrate and the
  • Gluing or capping are caused. Since the web and the seismic mass are the much weaker compared to the substrate elements, these stresses are reduced by the fact that deform the web and the seismic mass. This alters the placement of the seismic mass relative to the substrate and other solid elements attached to the substrate. For example, in capacitively operating acceleration sensors as a result of a change in the distance of mobile electrodes to fixed electrodes, a zero error for the measured capacitance results.
  • the patent DE 196 39 946 shows a micromechanical acceleration sensor having a surface micromechanical structure with two closely spaced suspension points between which a movable seismic mass extends, which is suspended at the two suspension points by means of suspension springs.
  • the patent application DE 19523895 A1 shows a micromechanical rotation rate sensor with a surface micromechanical structure with a central suspension (a central suspension point) with a seismic mass arranged around it, which by means of suspension springs on the
  • FIGS. 5 and 6 show in FIGS. 5 and 6 a micromechanical sensor with a central suspension and two seismic masses arranged opposite one another, which are connected to one another by means of connecting webs and suspended from the central suspension.
  • European Patent Application EP 1083144 A1 shows a micromechanical device with a central suspension and two seismic masses arranged opposite one another, which are connected to one another by means of connecting webs and suspended from the central suspension by means of a connecting beam.
  • the central suspension is located at the center (at the center axis of the area or center of mass) of the entire movable structure.
  • EP 1626283 A shows a micromechanical device with a central suspension and two oppositely disposed seismic masses, which are interconnected by means of connecting webs and at the central suspension by means of a
  • the central suspension is located in the center (on the central axis) of the entire movable structure. Furthermore, a plurality of movable electrodes and, in addition, a plurality of fixed electrodes are disclosed on the movable structure. The plurality of fixed electrodes has a common suspension, which in the vicinity the central suspension is arranged.
  • the non-prepublished patent application DE 10 2006 033 636 shows a similar subject.
  • the present invention has for its object to provide an acceleration sensor which is designed so that a zero error for the measured capacitance is avoided.
  • the invention is based on an acceleration sensor with a substrate, at least one web and a seismic mass, wherein the web and the seismic mass are arranged above a plane of the substrate.
  • the seismic mass is arranged at least on two sides of the web, and suspended resiliently on the web.
  • the web is anchored to the substrate by means of at least one anchoring.
  • the essence of the invention is that the at least one anchorage is located outside the center of gravity of the seismic mass.
  • the at least one anchorage is in the immediate vicinity of the center of gravity, so that bending of the substrate and / or the seismic mass may affect the relative orientation of the web and the seismic mass to the substrate as little as possible.
  • such acceleration sensors can be designed to save space on the substrate.
  • An advantageous embodiment of the invention provides that at least two anchors are provided.
  • the at least two anchors are in close proximity to one another, so that bending of the substrate can hardly influence the relative orientation of the web to the substrate.
  • a particularly advantageous embodiment of the invention provides that the center of mass between the two anchors is arranged.
  • the seismic mass is arranged annularly around the web.
  • An advantageous embodiment of the invention provides that at least two webs are provided, on which the seismic mass is suspended resiliently.
  • anchoring the seismic mass in one point or in a relatively small area is advantageous. This point need not be in the center of gravity of the seismic mass. Due to the load distribution, however, it has advantages if the point is close to the center of mass. If several anchors are provided, it is advantageous to have these anchors within a small area, i. in relation to the extent of the structure to be anchored relatively close to each other to arrange. For the load distribution, it is advantageous if the center of gravity is arranged between the anchors. At a capacitive
  • Acceleration sensor are provided movable electrodes on the seismic mass and opposite stationary electrodes on the substrate. If a common anchoring of the stationary electrodes is provided, it is advantageous for achieving the lowest possible zero error to provide this joint anchoring in the vicinity of the anchoring of the seismic mass.
  • Figure 1 shows an acceleration sensor with central suspension in the prior art.
  • FIG. 2 shows a first embodiment of a device according to the invention
  • FIG. 3 shows a second embodiment of a device according to the invention
  • FIG. 4 shows a third embodiment of a device according to the invention
  • FIG. 1 shows an acceleration sensor in the prior art as described in the non-prepublished patent application DE 10 2006 033 636.
  • FIG. 1 shows an acceleration sensor made, for example, by depositing a polysilicon layer on an oxide layer, which in turn is provided on a silicon substrate. In the oxide layer recesses are formed so that in these recesses connections of the polysilicon layer are formed to the silicon substrate. The structures shown in FIG. 1 are then defined and the oxide layer removed in an etching process. The polysilicon layer remains connected to the silicon substrate.
  • the acceleration sensor comprises a central web 1, a right web 2 and a left web 3, while the right web 2 and the left web 3 extend parallel to the central web 1 on the right or left side thereof.
  • the central web 1, the right web 2 and the left web 3 are arranged above a substrate which runs in the plane of the paper and connected to the substrate in each case at a central anchoring area 4, a right anchoring area 5 and a left anchoring area 6.
  • the anchors 4, 5, 6 with the substrate are located under the webs 1, 2, 3 and are not actually visible from this perspective and therefore shown in phantom.
  • Each of the anchors 4, 5, 6 is centrally located, i. the anchors 4, 5, 6 are as close as possible or even just below the centers of gravity of the respective webs
  • the anchors 4, 5, 6 are also located as close to each other as possible. They are therefore on a line that crosses the central web 1, the right web 2 and the left web 3 transversely.
  • tines 7 of a right-hand electrode On the right side of the right web 2, which faces away from the central web 1, tines 7 of a right-hand electrode are formed. The tines 7 of the right-hand electrode engage in the tines 8 of a right seismic electrode. On the left side of the left web 3, which faces away from the central web 1, tines 7 of a left-hand electrode are formed. The tines 7 of the left stem electrode engage in the tines 8 of a left seismic
  • the tines 8 of the left seismic electrode and the right seismic electrode are attached to a closed frame 9.
  • the frame 9 and the tines 8 of the seismic electrodes are perforated, ie have a regular arrangement of through holes.
  • the perforation allows an etching medium to penetrate to an underlying layer during the etching process so that the frame 9 and prongs 8 can be safely separated from the substrate.
  • the tines 7 and the webs 1, 2, 3 may be perforated.
  • the frame 9 is suspended on springs 10 at opposite ends of the central web 1.
  • Each spring 10 consists of a plurality of elongated thin rods which are arranged parallel to each other. Two adjoining bars are spaced apart either at their ends or at their center.
  • the springs 10 can therefore be easily deformed perpendicular to the parallel bars, but not parallel to it.
  • the springs 10 are also arranged so that the frame, in particular along the three parallel webs 1, 2, 3 is displaceable. At the two ends of the web 1 in each case a transverse strut 11 is formed, which protects the fine prongs 7, 8 of the seismic electrodes against an action by the deformed springs 10.
  • the pair of the left and left seismic electrodes and the pair of right and left seismic electrodes together form a differential capacitor.
  • a left side capacitance between the left stator electrode and the left seismic electrode is subtracted from a right side capacitance between the right stator electrode and the right seismic electrode. Without an acceleration this difference is zero because of the distance from neighboring ones
  • Tine pairs 7, 8 on both sides of the central web 1 is the same. If, due to an acceleration, a prong 7 of the left-hand stalk electrode moves away from an adjacent prong 8 of the left seismic electrode, a prong 7 of the right-hand stub of an adjacent prong 8 of the right seismic electrode feeds simultaneously. This takes the left-sided
  • FIG. 2 shows a first embodiment of an acceleration sensor according to the invention with a center-near suspension.
  • the middle web 1 is anchored to the underlying substrate by means of two anchors 41 and 42.
  • the center of gravity 10 also often referred to as the centroid or the central axis
  • the two anchors 41 and 42 are anchored to the underlying substrate by means of two anchors 41 and 42.
  • the center of gravity 10 also often referred to as the centroid or the central axis
  • FIG. 3 shows a second embodiment of an acceleration sensor according to the invention with a suspension close to the center.
  • the central web 1 is divided into two parts, such that two webs 12 and 13 are provided, which are anchored with one anchorage 41 and 42 to the substrate.
  • the center of mass 10 of the seismic mass 9 in this case passes through none of the webs 12, 13.
  • the anchors 41 and 42 are not arranged at the center of gravity 10, but at a small distance next to it.
  • the center of gravity 10 is also between the anchors 41 and 42nd
  • FIG. 4 shows a third embodiment of an acceleration sensor according to the invention with a center-near suspension.
  • the webs 2 and 3 of the left and right stem electrode are also anchored to the substrate with a plurality of anchors 51 and 52 or 61 and 62.
  • the left and right hand electrode do not each have a common web 2, 3, but that the tines 7 are anchored individually or in small groups on the substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Die Erfindung geht aus von einem Beschleunigungssensor mit einem Substrat, wenigstens einem Steg (1, 12, 13) und einer seismischen Masse (9), wobei der Steg (1, 12, 13) und die seismische Masse (9) über einer Ebene des Substrats angeordnet sind. Dabei ist die seismische Masse (9) wenigstens an zwei Seiten des Stegs (1, 12, 13) angeordnet, und federnd an dem Steg (1, 12, 13) aufgehängt. Der Steg (1, 12, 13) ist mittels wenigstens einer Verankerung (41, 42) an dem Substrat verankert. Der Kern der Erfindung besteht darin, daß die wenigstens eine Verankerung (41, 42) außerhalb des Massenschwerpunktes (10) der seismischen Masse (9) angeordnet ist.

Description

Beschreibung
Titel Beschleunigungssensor
Stand der Technik
Die Erfindung geht aus von einem Beschleunigungssensor mit einem Substrat, wenigstens einem Steg und einer seismischen Masse, wobei der Steg und die seismische Masse über einer Ebene des Substrats angeordnet sind. Dabei ist die seismische Masse wenigstens an zwei Seiten des Stegs angeordnet, und federnd an dem Steg aufgehängt. Der Steg ist mittels wenigstens einer Verankerung an dem Substrat verankert.
Wenn das Substrat aus einem anderen Werkstoff besteht als der wenigstens eine Steg, können mechanische Spannungen zwischen dem Substrat und dem
Steg bzw. der seismischen Masse aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten auftreten. Derartige Spannungen können aber auch entstehen, weil der Steg bzw. die seismische Masse bereits mit inneren Spannungen hergestellt wurde. Außerdem können mechanische Spannungen im Substrat selbst durch den Herstellungsprozeß zum Beispiel durch Löten oder
Kleben oder Verkappen hervorgerufen werden. Da der Steg und die seismische Masse im Vergleich zum Substrat die deutlich schwächer ausgebildeten Elemente sind, werden diese Spannungen dadurch abgebaut, daß sich der Steg und die seismische Masse verformen. Dadurch wird die Anordnung der seismischen Masse relativ zum Substrat und anderen an dem Substrat befestigten festen Elementen verändert. Es ergibt sich beispielsweise bei kapazitiv arbeitenden Beschleunigungssensoren infolge einer Abstandsänderung mobiler Elektroden zu festen Elektroden ein Nullpunktfehler für die gemessene Kapazität. Die Patentschrift DE 196 39 946 zeigt einen mikromechanischen Beschleunigungssensor mit einer oberflächen-mikromechanischen Struktur mit zwei nahe beieinander liegenden Aufhängepunkten zwischen denen eine bewegliche seismische Masse verläuft, die an den beiden Aufhängepunkten mittels Aufhängefedern aufgehängt ist.
Die Patentanmeldung DE 19523895 Al zeigt einen mikromechanischen Drehratensensor mit einer oberflächen-mikromechanischen Struktur mit einer Zentralaufhängung (ein zentraler Aufhängepunkt) mit einer darum herum angeordneten seismischen Masse, die mittels Aufhängefedern an der
Zentralaufhängung aufgehängt ist.
Die Patentanmeldung DE 19500800 Al (Fig. 5 +6) zeigt in den Figuren 5 und 6 einen mikromechanischen Sensor mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung aufgehängt sind.
Die Europäische Patentanmeldung EP 1083144 Al zeigt eine mikromechanische Vorrichtung mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung mittels eines Verbindungsbalkens aufgehängt sind. Die Zentralaufhängung ist im Zentrum (an der zentralen Achse des Flächen oder Massenschwerpunkts) der gesamten beweglichen Struktur angeordnet.
Die Europäische Patentanmeldung EP 1626283 A zeigt eine mikromechanische Vorrichtung mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung mittels eines
Verbindungsbalkens aufgehängt sind. Die Zentralaufhängung ist im Zentrum (an der zentralen Achse) der gesamten beweglichen Struktur angeordnet. Weiterhin sind an der beweglichen Struktur eine Mehrzahl beweglicher Elektroden und zusätzlich eine Mehrzahl fester Elektroden offenbart. Die Mehrzahl fester Elektroden weist dabei eine gemeinsame Aufhängung auf, welche in der Nähe der Zentralaufhängung angeordnet ist. Die nicht vorveröffentlichte Patentanmeldung DE 10 2006 033 636 zeigt einen ähnlichen Gegenstand.
Offenbarung der Erfindung
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Beschleunigungssensor zu schaffen, der so ausgebildet ist, daß ein Nullpunktfehler für die gemessene Kapazität vermieden wird.
Vorteile der Erfindung
Die Erfindung geht aus von einem Beschleunigungssensor mit einem Substrat, wenigstens einem Steg und einer seismischen Masse, wobei der Steg und die seismische Masse über einer Ebene des Substrats angeordnet sind. Dabei ist die seismische Masse wenigstens an zwei Seiten des Stegs angeordnet, und federnd an dem Steg aufgehängt. Der Steg ist mittels wenigstens einer Verankerung an dem Substrat verankert. Der Kern der Erfindung besteht darin, daß die wenigstens eine Verankerung außerhalb des Massenschwerpunktes der seismischen Masse angeordnet ist.
Vorteilhafterweise befindet sich die wenigstens eine Verankerungen in unmittelbarer Nähe des Massenschwerpunkts, so daß eine Verbiegung des Substrats und/oder der seismischen Masse die relative Ausrichtung des Stegs und der seismischen Masse zum Substrat möglichst wenig beeinflussen kann. Zudem können derartige Beschleunigungssensoren platzsparend auf dem Substrat ausgebildet werden. Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß wenigstens zwei Verankerungen vorgesehen sind. Vorteilhafterweise befindet sich die wenigstens zwei Verankerungen in unmittelbarer Nähe zueinander, so daß eine Verbiegung des Substrats die relative Ausrichtung des Stegs zum Substrat kaum beeinflussen kann. Eine besonders vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Massenschwerpunkt zwischen den zwei Verankerungen angeordnet ist. Vorteilhaft ist auch, daß die seismische Masse ringförmig um den Steg angeordnet ist. Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß wenigstens zwei Stege vorgesehen sind, an denen die seismische Masse federnd aufgehängt ist. - A -
Zusammenfassend gesagt ist eine Verankerung der seismischen Masse in einem Punkt oder in einem relativ kleinen Gebiet vorteilhaft. Dieser Punkt muß nicht im Massenschwerpunkt der seismischen Masse liegen. Aufgrund der Lastverteilung hat es jedoch Vorteile, wenn der Punkt in der Nähe des Massenschwerpunktes liegt. Sind mehrere Verankerungen vorgesehen, so ist es vorteilhaft, diese Verankerungen innerhalb eines kleinen Gebiets, d.h. im Verhältnis zur Ausdehnung der zu verankernden Struktur relativ dicht beieinander anzuordnen. Für die Lastverteilung vorteilhaft ist es dabei, wenn der Massenschwerpunkt zwischen den Verankerungen angeordnet ist. Bei einem kapazitiven
Beschleunigungssensor sind bewegliche Elektroden an der seismischen Masse und gegenüberliegend stationäre Elektroden am Substrat vorgesehen. Ist eine gemeinsame Verankerung der stationären Elektroden vorgesehen, so ist es zur Erzielung eines möglichst geringen Nullpunktfehlers vorteilhaft, diese gemeinsame Verankerung in der Nähe der Verankerung der seismischen Masse vorzusehen.
Zeichnung
Figur 1 zeigt einen Beschleunigungssensor mit zentraler Aufhängung im Stand der Technik.
Figur 2 zeigt eine erste Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung. Figur 3 zeigt eine zweite Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung.
Figur 4 zeigt eine dritte Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung.
Ausführungsbeispiel
Figur 1 zeigt einen Beschleunigungssensor im Stand der Technik wie er in der nicht vorveröffentlichten Patentanmeldung DE 10 2006 033 636 beschrieben ist. Fig. 1 zeigt einen Beschleunigungssensor, der zum Beispiel hergestellt wird, indem eine Polysiliziumschicht auf einer Oxidschicht abgeschieden wird, die wiederum auf einem Siliziumsubstrat vorgesehen ist. In der Oxidschicht sind Aussparungen ausgebildet, so daß in diesen Aussparungen Verbindungen von der Polysiliziumschicht zu dem Siliziumsubstrat entstehen. Die in Fig. 1 gezeigten Strukturen werden daraufhin definiert und die Oxidschicht in einem Ätzprozeß entfernt. Die Polysiliziumschicht bleibt dabei mit dem Siliziumsubstrat verbunden.
Der Beschleunigungssensor umfaßt einen Mittelsteg 1, einen rechten Steg 2 und einen linken Steg 3, dabei verlaufen der rechte Steg 2 und der linke Steg 3 parallel zu dem Mittelsteg 1 auf dessen rechter bzw. linker Seite. Der Mittelsteg 1, der rechte Steg 2 und der linke Steg 3 sind über einem Substrat, welches in der Papierebene verläuft, angeordnet und mit dem Substrat jeweils bei einem mittleren Verankerungsbereich 4, einem rechten Verankerungsbereich 5 und einem linken Verankerungsbereich 6 verbunden. Die Verankerungen 4, 5, 6 mit dem Substrat befinden sich unter den Stegen 1, 2, 3 und sind aus dieser Perspektive eigentlich nicht sichtbar und daher gestrichelt dargestellt. Jede der Verankerungen 4, 5, 6 ist zentral gelegen, d.h. die Verankerungen 4, 5, 6 liegen möglichst dicht oder sogar genau unter den Schwerpunkten der jeweiligen Stege
1, 2, 3, so daß die auf die Verankerungen 4, 5, 6 einwirkenden Kräfte aufgrund einer Beschleunigung senkrecht zu dem Substrat minimiert sind. Zudem ist dann die Vorsehung genau eines Verankerungsbereichs zur Verankerung eines jeden Stegs 1, 2, 3 auf dem Substrat ausreichend. Die Stege 1, 2, 3 müssen sich daher nicht verformen, um mechanische Spannungen relativ zu dem Substrat auszugleichen. Die Verankerungen 4, 5, 6 sind außerdem möglichst dicht beieinander gelegen. Sie liegen daher auf einer Linie, die den Mittelsteg 1, den rechten Steg 2 und den linken Steg 3 quer schneidet.
Auf der rechten Seite des rechten Stegs 2, die von dem Mittelsteg 1 abgewandt ist, sind Zinken 7 einer rechten Stegelektrode ausgebildet. Die Zinken 7 der rechten Stegelektrode greifen in die Zinken 8 einer rechten seismischen Elektrode ein. Auf der linken Seite des linken Stegs 3, die von dem Mittelsteg 1 abgewandt ist, sind Zinken 7 einer linken Stegelektrode ausgebildet. Die Zinken 7 der linken Stegelektrode greifen in die Zinken 8 einer linken seismischen
Elektrode ein. Die Zinken 8 der linken seismischen Elektrode und der rechten seismischen Elektrode sind an einem geschlossenen Rahmen 9 angebracht. Der Rahmen 9 und die Zinken 8 der seismischen Elektroden sind perforiert, d.h. weisen ein regelmäßige Anordnung durchgehender Löcher auf. Die Perforation ermöglicht es einem Ätzmedium, während dem Ätzprozeß zu einer darunterliegenden Schicht zu dringen, so daß der Rahmen 9 und die Zinken 8 sich sicher vom Substrat trennen lassen. Aus dem gleichen Grund können auch die Zinken 7 und die Stege 1, 2, 3 perforiert sein. Der Rahmen 9 ist an Federn 10 an gegenüberliegenden Enden des Mittelstegs 1 aufgehängt. Jede Feder 10 besteht aus mehreren länglichen dünnen Stäben, die parallel zueinander angeordnet sind. Zwei aneinandergrenzende Stäbe sind beabstandet entweder an ihren Enden oder in ihrem Zentrum miteinander verbunden. Die Federn 10 lassen sich daher senkrecht zu den parallel angeordneten Stäben leicht verformen, aber nicht parallel dazu. Die Federn 10 sind außerdem so angeordnet, daß der Rahmen vor allem entlang der drei parallelen Stege 1, 2, 3 verschiebbar ist. An den beiden Enden des Stegs 1 ist jeweils eine Querstrebe 11 ausgebildet, die die feinen Zinken 7, 8 der seismischen Elektroden vor einer Einwirkung durch die verformten Federn 10 schützt.
Das Paar aus der linken Stegelektrode und der linken seismischen Elektrode und das Paar aus der rechten Stegelektrode und der rechten seismischen Elektrode bilden zusammen einen Differenzkondensator. Bei der Auswertung wird eine linksseitige Kapazität zwischen der linken Stegelektrode und der linken seismischen Elektrode von einer rechtsseitigen Kapazität zwischen der rechten Stegelektrode und der rechten seismischen Elektrode abgezogen. Ohne eine Beschleunigung ist diese Differenz null, weil der Abstand von benachbarten
Zinkenpaaren 7, 8 auf beiden Seiten des Mittelstegs 1 gleich ist. Wenn sich aufgrund einer Beschleunigung jeweils eine Zinke 7 der linken Stegelektrode von einer benachbarten Zinke 8 der linken seismischen Elektrode entfernt, nährt sich jeweils gleichzeitig eine Zinke 7 der rechten Stegelektrode einer benachbarten Zinke 8 der rechten seismischen Elektrode an. Dadurch nimmt die linksseitige
Kapazität ab, und die rechtsseitige Kapazität nimmt zu. Deren Differenz ist besonders sensitiv für eine Beschleunigung.
Figur 2 zeigt eine erste Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem vorstehend beschriebenen Stand der Technik ist der mittlere Steg 1 mittels zweier Verankerungen 41 und 42 an dem darunterliegenden Substrat verankert. Der Massenschwerpunkt 10 (auch oft bezeichnet als der Flächenschwerpunkt oder auch die zentrale Achse) der seismischen Masse 9, bzw. dessen Projektion in Draufsicht, verläuft dabei durch den Steg 1. Die zwei Verankerungen 41 und
42 sind nicht am Massenschwerpunkt 10 angeordnet, sondern in geringem Abstand daneben. In diesem Ausführungsbeispiel befindet sich der Massenschwerpunkt 10 zwischen den Verankerungen 41 und 42. Ein weiteres Ausführungsbeispiel ist denkbar, bei dem im Unterschied zur Figur 2 nur eine der Verankerungen 41 oder 42 vorgesehen ist, um den Steg 1 an dem Substrat zu verankern. Die eine Verankerung 41 oder 42 ist dabei ebenfalls neben dem Massenschwerpunkt 10 angeordnet. Der Massenschwerpunkt 10 verläuft also nicht durch die Verankerung 41 oder 42des Stegs 1.
Figur 3 zeigt eine zweite Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem beschriebenen Ausführungsbeispiel nach Figur 2 ist der mittlere Steg 1 in zwei Teile geteilt, derart, daß zwei Stege 12 und 13 vorgesehen sind, welche mit je einer Verankerung 41 und 42 an dem Substrat verankert sind. Der Massenschwerpunkt 10 der seismischen Masse 9 verläuft dabei durch keinen der Stege 12, 13. Die Verankerungen 41 und 42 sind nicht am Massenschwerpunkt 10 angeordnet, sondern in geringem Abstand daneben. In diesem
Ausführungsbeispiel befindet sich der Massenschwerpunkt 10 ebenfalls zwischen den Verankerungen 41 und 42.
Figur 4 zeigt eine dritte Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem beschriebenen Ausführungsbeispiel nach Figur 2 ist vorgesehen, daß die Stege 2 und 3 der linken und rechten Stegelektrode ebenfalls mit mehreren Verankerungen 51 und 52 bzw. 61 und 62 an dem Substrat verankert sind.
In einer anderen Ausführungsform der Erfindung ist vorgesehen, daß die linke und rechte Stegelektrode nicht jeweils einen gemeinsamen Steg 2, 3 aufweisen, sondern daß die Zinken 7 einzeln oder in kleinen Gruppen auf dem Substrat verankert sind.

Claims

Ansprüche
1. Beschleunigungssensor mit einem Substrat, wenigstens einem Steg (1, 12, 13) und einer seismischen Masse (9),
- wobei der Steg (1, 12, 13) und die seismische Masse (9) über einer Ebene des Substrats angeordnet sind,
- wobei die seismische Masse (9) wenigstens an zwei Seiten des Stegs (1, 12, 13) angeordnet ist,
- wobei die seismische Masse (9) federnd an dem Steg (1, 12, 13) aufgehängt ist, und - wobei der Steg (1, 12, 13) mittels wenigstens einer Verankerung (41, 42) an dem Substrat verankert ist, dadurch gekennzeichnet, daß die wenigstens eine Verankerung (41, 42) außerhalb des Massenschwerpunktes (10) der seismischen Masse (9) angeordnet ist.
2. Beschleunigungssensor nach Anspruch 1, dadurch gekennzeichnet, daß wenigstens zwei Verankerungen (41 und 42) vorgesehen sind.
3. Beschleunigungssensor nach Anspruch 2, dadurch gekennzeichnet, daß der Massenschwerpunkt (10) zwischen den zwei Verankerungen (41 und 42) angeordnet ist.
4. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die seismische Masse (9) ringförmig um den Steg (1, 12, 13) angeordnet ist.
5. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß wenigstens zwei Stege (12 und 13) vorgesehen sind, an denen die seismische Masse (9) federnd aufgehängt ist.
EP08804670A 2007-10-05 2008-09-24 Beschleunigungssensor Withdrawn EP2195664A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007047592.8A DE102007047592B4 (de) 2007-10-05 2007-10-05 Beschleunigungssensor
PCT/EP2008/062765 WO2009047120A2 (de) 2007-10-05 2008-09-24 Beschleunigungssensor

Publications (1)

Publication Number Publication Date
EP2195664A2 true EP2195664A2 (de) 2010-06-16

Family

ID=40418107

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804670A Withdrawn EP2195664A2 (de) 2007-10-05 2008-09-24 Beschleunigungssensor

Country Status (6)

Country Link
US (1) US8516890B2 (de)
EP (1) EP2195664A2 (de)
CN (1) CN101903778B (de)
DE (1) DE102007047592B4 (de)
TW (1) TWI438431B (de)
WO (1) WO2009047120A2 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001863A1 (de) 2008-05-19 2009-11-26 Robert Bosch Gmbh Beschleunigungssensor mit umgreifender seismischer Masse
DE102009026476A1 (de) * 2009-05-26 2010-12-02 Robert Bosch Gmbh Mikromechanische Struktur
US8138007B2 (en) * 2009-08-26 2012-03-20 Freescale Semiconductor, Inc. MEMS device with stress isolation and method of fabrication
GB201020722D0 (en) 2010-12-07 2011-01-19 Atlantic Inertial Systems Ltd Accelerometer
GB2523320A (en) * 2014-02-19 2015-08-26 Atlantic Inertial Systems Ltd Accelerometers
WO2015166771A1 (ja) * 2014-04-28 2015-11-05 日立オートモティブシステムズ株式会社 加速度検出装置
JP6558110B2 (ja) * 2015-07-10 2019-08-14 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP6657626B2 (ja) * 2015-07-10 2020-03-04 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
CN107782916B (zh) * 2016-08-27 2021-07-09 深迪半导体(绍兴)有限公司 一种三轴加速计
JP6866624B2 (ja) 2016-12-07 2021-04-28 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP6866623B2 (ja) * 2016-12-07 2021-04-28 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP6822200B2 (ja) * 2017-02-17 2021-01-27 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器および移動体
JP6816603B2 (ja) * 2017-03-27 2021-01-20 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
JP2018179575A (ja) * 2017-04-05 2018-11-15 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
GB2565295A (en) * 2017-08-07 2019-02-13 Atlantic Inertial Systems Ltd Accelerometer
JP6922552B2 (ja) 2017-08-25 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器、携帯型電子機器および移動体
JP6922562B2 (ja) 2017-08-31 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、携帯型電子機器、電子機器および移動体
JP6922594B2 (ja) * 2017-09-22 2021-08-18 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス、電子機器、携帯型電子機器および移動体
JP7188311B2 (ja) 2019-07-31 2022-12-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、及び移動体

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19500800A1 (de) 1994-06-16 1995-12-21 Bosch Gmbh Robert Beschleunigungssensor
DE4432837B4 (de) * 1994-09-15 2004-05-13 Robert Bosch Gmbh Beschleunigungssensor und Meßverfahren
US5635640A (en) 1995-06-06 1997-06-03 Analog Devices, Inc. Micromachined device with rotationally vibrated masses
DE19523895A1 (de) 1995-06-30 1997-01-02 Bosch Gmbh Robert Beschleunigungssensor
DE19539946C2 (de) 1995-10-26 2002-03-28 Linde Gas Ag Verfahren und Vorrichtung zur integrierten Entsorgung von Filterstäuben in thermischen Behandlungsanlagen
DE19639946B4 (de) * 1996-09-27 2006-09-21 Robert Bosch Gmbh Mikromechanisches Bauelement
US6070464A (en) * 1997-09-05 2000-06-06 Motorola, Inc. Sensing structure comprising a movable mass and a self-test structure
US6230567B1 (en) 1999-08-03 2001-05-15 The Charles Stark Draper Laboratory, Inc. Low thermal strain flexure support for a micromechanical device
DE69938658D1 (de) 1999-09-10 2008-06-19 St Microelectronics Srl Gegen mechanische Spannungen unempfindliche mikroelektromechanische Struktur
US6393913B1 (en) * 2000-02-08 2002-05-28 Sandia Corporation Microelectromechanical dual-mass resonator structure
US6401536B1 (en) * 2000-02-11 2002-06-11 Motorola, Inc. Acceleration sensor and method of manufacture
US6845670B1 (en) * 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
US20050235751A1 (en) * 2004-04-27 2005-10-27 Zarabadi Seyed R Dual-axis accelerometer
EP1626283B1 (de) * 2004-08-13 2011-03-23 STMicroelectronics Srl Mikroelektromechanische Struktur, insbesondere Beschleunigungssensor, mit verbesserter Unempfindlichkeit gegenüber thermischen und mechanischen Spannungen
DE602004023082D1 (de) * 2004-09-22 2009-10-22 St Microelectronics Srl Mikro-Elektromechanische Struktur mit Selbstkompensation von durch thermomechanische Spannungen hervorgerufenen thermischen Driften
US7121141B2 (en) * 2005-01-28 2006-10-17 Freescale Semiconductor, Inc. Z-axis accelerometer with at least two gap sizes and travel stops disposed outside an active capacitor area
DE102006033636B4 (de) 2006-07-20 2022-08-11 Robert Bosch Gmbh Beschleunigungssensor
DE102006059928A1 (de) * 2006-12-19 2008-08-21 Robert Bosch Gmbh Beschleunigungssensor mit Kammelektroden
DE102008001863A1 (de) * 2008-05-19 2009-11-26 Robert Bosch Gmbh Beschleunigungssensor mit umgreifender seismischer Masse

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2009047120A2 *

Also Published As

Publication number Publication date
WO2009047120A2 (de) 2009-04-16
US20100212423A1 (en) 2010-08-26
WO2009047120A3 (de) 2009-06-25
DE102007047592B4 (de) 2022-01-05
TWI438431B (zh) 2014-05-21
CN101903778B (zh) 2013-01-09
US8516890B2 (en) 2013-08-27
CN101903778A (zh) 2010-12-01
DE102007047592A1 (de) 2009-04-09
TW200925606A (en) 2009-06-16

Similar Documents

Publication Publication Date Title
WO2009047120A2 (de) Beschleunigungssensor
EP2102666B1 (de) Beschleunigungssensor mit kammelektroden
EP2100151B1 (de) Mikromechanischer z-sensor
EP1379884B1 (de) Sensor
DE102008002606B4 (de) Mikromechanischer Beschleunigungssensor mit offener seismischer Masse
DE102008043524B4 (de) Beschleunigungssensor und Verfahren zu seiner Herstellung
DE19930779A1 (de) Mikromechanisches Bauelement
DE102008001863A1 (de) Beschleunigungssensor mit umgreifender seismischer Masse
EP2394177B1 (de) Beschleunigungssensor und verfahren zum betreiben eines beschleunigungssensors
DE102012223016B4 (de) Inertialsensor mit verringerter Querempfindlichkeit
DE69309008T2 (de) Kapazitiver Messaufnehmer für Beschleunigungen in allen Richtungen in einer Ebene
DE102011076551A1 (de) Inertialsensor
EP2435786A1 (de) Mikromechanische struktur
DE102011057110A1 (de) MEMS-Beschleunigungssensor
EP0651371A2 (de) Schwingungsabsorber zur Körperschalldämpfung
DE202009007836U1 (de) MEMS-Sensor
DE102006033636B4 (de) Beschleunigungssensor
EP3377856B1 (de) Mikromechanischer drehratensensor und betriebsverfahren desselben
DE102009045645B4 (de) Sensorvorrichtung und Herstellungsverfahren für eine Sensorvorrichtung
DE102020204767A1 (de) Mikromechanische Vorrichtung mit Anschlagsfederstruktur
DE102006051329A1 (de) Z-Beschleunigungssensor mit verringerter Störempfindlichkeit
DE102015222532A1 (de) Mikromechanische Struktur für einen Beschleunigungssensor
DE102009045393B4 (de) Mikromechanisches Bauelement
DE4226430C2 (de) Kapazitiver Beschleunigungssensor
EP3665438B1 (de) Drehratensensor, verfahren zur herstellung eines drehratensensors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100506

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20110525

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170401