Beschreibung
Titel Beschleunigungssensor
Stand der Technik
Die Erfindung geht aus von einem Beschleunigungssensor mit einem Substrat, wenigstens einem Steg und einer seismischen Masse, wobei der Steg und die seismische Masse über einer Ebene des Substrats angeordnet sind. Dabei ist die seismische Masse wenigstens an zwei Seiten des Stegs angeordnet, und federnd an dem Steg aufgehängt. Der Steg ist mittels wenigstens einer Verankerung an dem Substrat verankert.
Wenn das Substrat aus einem anderen Werkstoff besteht als der wenigstens eine Steg, können mechanische Spannungen zwischen dem Substrat und dem
Steg bzw. der seismischen Masse aufgrund unterschiedlicher thermischer Ausdehnungskoeffizienten auftreten. Derartige Spannungen können aber auch entstehen, weil der Steg bzw. die seismische Masse bereits mit inneren Spannungen hergestellt wurde. Außerdem können mechanische Spannungen im Substrat selbst durch den Herstellungsprozeß zum Beispiel durch Löten oder
Kleben oder Verkappen hervorgerufen werden. Da der Steg und die seismische Masse im Vergleich zum Substrat die deutlich schwächer ausgebildeten Elemente sind, werden diese Spannungen dadurch abgebaut, daß sich der Steg und die seismische Masse verformen. Dadurch wird die Anordnung der seismischen Masse relativ zum Substrat und anderen an dem Substrat befestigten festen Elementen verändert. Es ergibt sich beispielsweise bei kapazitiv arbeitenden Beschleunigungssensoren infolge einer Abstandsänderung mobiler Elektroden zu festen Elektroden ein Nullpunktfehler für die gemessene Kapazität.
Die Patentschrift DE 196 39 946 zeigt einen mikromechanischen Beschleunigungssensor mit einer oberflächen-mikromechanischen Struktur mit zwei nahe beieinander liegenden Aufhängepunkten zwischen denen eine bewegliche seismische Masse verläuft, die an den beiden Aufhängepunkten mittels Aufhängefedern aufgehängt ist.
Die Patentanmeldung DE 19523895 Al zeigt einen mikromechanischen Drehratensensor mit einer oberflächen-mikromechanischen Struktur mit einer Zentralaufhängung (ein zentraler Aufhängepunkt) mit einer darum herum angeordneten seismischen Masse, die mittels Aufhängefedern an der
Zentralaufhängung aufgehängt ist.
Die Patentanmeldung DE 19500800 Al (Fig. 5 +6) zeigt in den Figuren 5 und 6 einen mikromechanischen Sensor mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung aufgehängt sind.
Die Europäische Patentanmeldung EP 1083144 Al zeigt eine mikromechanische Vorrichtung mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung mittels eines Verbindungsbalkens aufgehängt sind. Die Zentralaufhängung ist im Zentrum (an der zentralen Achse des Flächen oder Massenschwerpunkts) der gesamten beweglichen Struktur angeordnet.
Die Europäische Patentanmeldung EP 1626283 A zeigt eine mikromechanische Vorrichtung mit einer Zentralaufhängung und zwei einander gegenüberliegend daneben angeordneten seismischen Massen, die mittels Verbindungsstegen miteinander verbunden und an der Zentralaufhängung mittels eines
Verbindungsbalkens aufgehängt sind. Die Zentralaufhängung ist im Zentrum (an der zentralen Achse) der gesamten beweglichen Struktur angeordnet. Weiterhin sind an der beweglichen Struktur eine Mehrzahl beweglicher Elektroden und zusätzlich eine Mehrzahl fester Elektroden offenbart. Die Mehrzahl fester Elektroden weist dabei eine gemeinsame Aufhängung auf, welche in der Nähe
der Zentralaufhängung angeordnet ist. Die nicht vorveröffentlichte Patentanmeldung DE 10 2006 033 636 zeigt einen ähnlichen Gegenstand.
Offenbarung der Erfindung
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen Beschleunigungssensor zu schaffen, der so ausgebildet ist, daß ein Nullpunktfehler für die gemessene Kapazität vermieden wird.
Vorteile der Erfindung
Die Erfindung geht aus von einem Beschleunigungssensor mit einem Substrat, wenigstens einem Steg und einer seismischen Masse, wobei der Steg und die seismische Masse über einer Ebene des Substrats angeordnet sind. Dabei ist die seismische Masse wenigstens an zwei Seiten des Stegs angeordnet, und federnd an dem Steg aufgehängt. Der Steg ist mittels wenigstens einer Verankerung an dem Substrat verankert. Der Kern der Erfindung besteht darin, daß die wenigstens eine Verankerung außerhalb des Massenschwerpunktes der seismischen Masse angeordnet ist.
Vorteilhafterweise befindet sich die wenigstens eine Verankerungen in unmittelbarer Nähe des Massenschwerpunkts, so daß eine Verbiegung des Substrats und/oder der seismischen Masse die relative Ausrichtung des Stegs und der seismischen Masse zum Substrat möglichst wenig beeinflussen kann. Zudem können derartige Beschleunigungssensoren platzsparend auf dem Substrat ausgebildet werden. Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß wenigstens zwei Verankerungen vorgesehen sind. Vorteilhafterweise befindet sich die wenigstens zwei Verankerungen in unmittelbarer Nähe zueinander, so daß eine Verbiegung des Substrats die relative Ausrichtung des Stegs zum Substrat kaum beeinflussen kann. Eine besonders vorteilhafte Ausgestaltung der Erfindung sieht vor, daß der Massenschwerpunkt zwischen den zwei Verankerungen angeordnet ist. Vorteilhaft ist auch, daß die seismische Masse ringförmig um den Steg angeordnet ist. Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, daß wenigstens zwei Stege vorgesehen sind, an denen die seismische Masse federnd aufgehängt ist.
- A -
Zusammenfassend gesagt ist eine Verankerung der seismischen Masse in einem Punkt oder in einem relativ kleinen Gebiet vorteilhaft. Dieser Punkt muß nicht im Massenschwerpunkt der seismischen Masse liegen. Aufgrund der Lastverteilung hat es jedoch Vorteile, wenn der Punkt in der Nähe des Massenschwerpunktes liegt. Sind mehrere Verankerungen vorgesehen, so ist es vorteilhaft, diese Verankerungen innerhalb eines kleinen Gebiets, d.h. im Verhältnis zur Ausdehnung der zu verankernden Struktur relativ dicht beieinander anzuordnen. Für die Lastverteilung vorteilhaft ist es dabei, wenn der Massenschwerpunkt zwischen den Verankerungen angeordnet ist. Bei einem kapazitiven
Beschleunigungssensor sind bewegliche Elektroden an der seismischen Masse und gegenüberliegend stationäre Elektroden am Substrat vorgesehen. Ist eine gemeinsame Verankerung der stationären Elektroden vorgesehen, so ist es zur Erzielung eines möglichst geringen Nullpunktfehlers vorteilhaft, diese gemeinsame Verankerung in der Nähe der Verankerung der seismischen Masse vorzusehen.
Zeichnung
Figur 1 zeigt einen Beschleunigungssensor mit zentraler Aufhängung im Stand der Technik.
Figur 2 zeigt eine erste Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung. Figur 3 zeigt eine zweite Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung.
Figur 4 zeigt eine dritte Ausführungsform eines erfindungsgemäßen
Beschleunigungssensors mit zentrumsnaher Aufhängung.
Ausführungsbeispiel
Figur 1 zeigt einen Beschleunigungssensor im Stand der Technik wie er in der nicht vorveröffentlichten Patentanmeldung DE 10 2006 033 636 beschrieben ist. Fig. 1 zeigt einen Beschleunigungssensor, der zum Beispiel hergestellt wird, indem eine Polysiliziumschicht auf einer Oxidschicht abgeschieden wird, die wiederum auf einem Siliziumsubstrat vorgesehen ist. In der Oxidschicht sind Aussparungen ausgebildet, so daß in diesen Aussparungen Verbindungen von
der Polysiliziumschicht zu dem Siliziumsubstrat entstehen. Die in Fig. 1 gezeigten Strukturen werden daraufhin definiert und die Oxidschicht in einem Ätzprozeß entfernt. Die Polysiliziumschicht bleibt dabei mit dem Siliziumsubstrat verbunden.
Der Beschleunigungssensor umfaßt einen Mittelsteg 1, einen rechten Steg 2 und einen linken Steg 3, dabei verlaufen der rechte Steg 2 und der linke Steg 3 parallel zu dem Mittelsteg 1 auf dessen rechter bzw. linker Seite. Der Mittelsteg 1, der rechte Steg 2 und der linke Steg 3 sind über einem Substrat, welches in der Papierebene verläuft, angeordnet und mit dem Substrat jeweils bei einem mittleren Verankerungsbereich 4, einem rechten Verankerungsbereich 5 und einem linken Verankerungsbereich 6 verbunden. Die Verankerungen 4, 5, 6 mit dem Substrat befinden sich unter den Stegen 1, 2, 3 und sind aus dieser Perspektive eigentlich nicht sichtbar und daher gestrichelt dargestellt. Jede der Verankerungen 4, 5, 6 ist zentral gelegen, d.h. die Verankerungen 4, 5, 6 liegen möglichst dicht oder sogar genau unter den Schwerpunkten der jeweiligen Stege
1, 2, 3, so daß die auf die Verankerungen 4, 5, 6 einwirkenden Kräfte aufgrund einer Beschleunigung senkrecht zu dem Substrat minimiert sind. Zudem ist dann die Vorsehung genau eines Verankerungsbereichs zur Verankerung eines jeden Stegs 1, 2, 3 auf dem Substrat ausreichend. Die Stege 1, 2, 3 müssen sich daher nicht verformen, um mechanische Spannungen relativ zu dem Substrat auszugleichen. Die Verankerungen 4, 5, 6 sind außerdem möglichst dicht beieinander gelegen. Sie liegen daher auf einer Linie, die den Mittelsteg 1, den rechten Steg 2 und den linken Steg 3 quer schneidet.
Auf der rechten Seite des rechten Stegs 2, die von dem Mittelsteg 1 abgewandt ist, sind Zinken 7 einer rechten Stegelektrode ausgebildet. Die Zinken 7 der rechten Stegelektrode greifen in die Zinken 8 einer rechten seismischen Elektrode ein. Auf der linken Seite des linken Stegs 3, die von dem Mittelsteg 1 abgewandt ist, sind Zinken 7 einer linken Stegelektrode ausgebildet. Die Zinken 7 der linken Stegelektrode greifen in die Zinken 8 einer linken seismischen
Elektrode ein. Die Zinken 8 der linken seismischen Elektrode und der rechten seismischen Elektrode sind an einem geschlossenen Rahmen 9 angebracht. Der Rahmen 9 und die Zinken 8 der seismischen Elektroden sind perforiert, d.h. weisen ein regelmäßige Anordnung durchgehender Löcher auf. Die Perforation ermöglicht es einem Ätzmedium, während dem Ätzprozeß zu einer darunterliegenden Schicht zu dringen, so daß der Rahmen 9 und die Zinken 8 sich sicher vom Substrat trennen lassen. Aus dem gleichen Grund können auch die Zinken 7 und die Stege 1, 2, 3 perforiert sein.
Der Rahmen 9 ist an Federn 10 an gegenüberliegenden Enden des Mittelstegs 1 aufgehängt. Jede Feder 10 besteht aus mehreren länglichen dünnen Stäben, die parallel zueinander angeordnet sind. Zwei aneinandergrenzende Stäbe sind beabstandet entweder an ihren Enden oder in ihrem Zentrum miteinander verbunden. Die Federn 10 lassen sich daher senkrecht zu den parallel angeordneten Stäben leicht verformen, aber nicht parallel dazu. Die Federn 10 sind außerdem so angeordnet, daß der Rahmen vor allem entlang der drei parallelen Stege 1, 2, 3 verschiebbar ist. An den beiden Enden des Stegs 1 ist jeweils eine Querstrebe 11 ausgebildet, die die feinen Zinken 7, 8 der seismischen Elektroden vor einer Einwirkung durch die verformten Federn 10 schützt.
Das Paar aus der linken Stegelektrode und der linken seismischen Elektrode und das Paar aus der rechten Stegelektrode und der rechten seismischen Elektrode bilden zusammen einen Differenzkondensator. Bei der Auswertung wird eine linksseitige Kapazität zwischen der linken Stegelektrode und der linken seismischen Elektrode von einer rechtsseitigen Kapazität zwischen der rechten Stegelektrode und der rechten seismischen Elektrode abgezogen. Ohne eine Beschleunigung ist diese Differenz null, weil der Abstand von benachbarten
Zinkenpaaren 7, 8 auf beiden Seiten des Mittelstegs 1 gleich ist. Wenn sich aufgrund einer Beschleunigung jeweils eine Zinke 7 der linken Stegelektrode von einer benachbarten Zinke 8 der linken seismischen Elektrode entfernt, nährt sich jeweils gleichzeitig eine Zinke 7 der rechten Stegelektrode einer benachbarten Zinke 8 der rechten seismischen Elektrode an. Dadurch nimmt die linksseitige
Kapazität ab, und die rechtsseitige Kapazität nimmt zu. Deren Differenz ist besonders sensitiv für eine Beschleunigung.
Figur 2 zeigt eine erste Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem vorstehend beschriebenen Stand der Technik ist der mittlere Steg 1 mittels zweier Verankerungen 41 und 42 an dem darunterliegenden Substrat verankert. Der Massenschwerpunkt 10 (auch oft bezeichnet als der Flächenschwerpunkt oder auch die zentrale Achse) der seismischen Masse 9, bzw. dessen Projektion in Draufsicht, verläuft dabei durch den Steg 1. Die zwei Verankerungen 41 und
42 sind nicht am Massenschwerpunkt 10 angeordnet, sondern in geringem Abstand daneben. In diesem Ausführungsbeispiel befindet sich der Massenschwerpunkt 10 zwischen den Verankerungen 41 und 42.
Ein weiteres Ausführungsbeispiel ist denkbar, bei dem im Unterschied zur Figur 2 nur eine der Verankerungen 41 oder 42 vorgesehen ist, um den Steg 1 an dem Substrat zu verankern. Die eine Verankerung 41 oder 42 ist dabei ebenfalls neben dem Massenschwerpunkt 10 angeordnet. Der Massenschwerpunkt 10 verläuft also nicht durch die Verankerung 41 oder 42des Stegs 1.
Figur 3 zeigt eine zweite Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem beschriebenen Ausführungsbeispiel nach Figur 2 ist der mittlere Steg 1 in zwei Teile geteilt, derart, daß zwei Stege 12 und 13 vorgesehen sind, welche mit je einer Verankerung 41 und 42 an dem Substrat verankert sind. Der Massenschwerpunkt 10 der seismischen Masse 9 verläuft dabei durch keinen der Stege 12, 13. Die Verankerungen 41 und 42 sind nicht am Massenschwerpunkt 10 angeordnet, sondern in geringem Abstand daneben. In diesem
Ausführungsbeispiel befindet sich der Massenschwerpunkt 10 ebenfalls zwischen den Verankerungen 41 und 42.
Figur 4 zeigt eine dritte Ausführungsform eines erfindungsgemäßen Beschleunigungssensors mit zentrumsnaher Aufhängung. Im Unterschied zu dem beschriebenen Ausführungsbeispiel nach Figur 2 ist vorgesehen, daß die Stege 2 und 3 der linken und rechten Stegelektrode ebenfalls mit mehreren Verankerungen 51 und 52 bzw. 61 und 62 an dem Substrat verankert sind.
In einer anderen Ausführungsform der Erfindung ist vorgesehen, daß die linke und rechte Stegelektrode nicht jeweils einen gemeinsamen Steg 2, 3 aufweisen, sondern daß die Zinken 7 einzeln oder in kleinen Gruppen auf dem Substrat verankert sind.