EP2195115B1 - Bauliche struktur von abgasreinigungsanlagen - Google Patents

Bauliche struktur von abgasreinigungsanlagen Download PDF

Info

Publication number
EP2195115B1
EP2195115B1 EP08785630A EP08785630A EP2195115B1 EP 2195115 B1 EP2195115 B1 EP 2195115B1 EP 08785630 A EP08785630 A EP 08785630A EP 08785630 A EP08785630 A EP 08785630A EP 2195115 B1 EP2195115 B1 EP 2195115B1
Authority
EP
European Patent Office
Prior art keywords
gas
ionization
duct
flow
collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08785630A
Other languages
English (en)
French (fr)
Other versions
EP2195115A2 (de
Inventor
Hanns-Rudolf Paur
Andrei Bologa
Klaus Woletz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2195115A2 publication Critical patent/EP2195115A2/de
Application granted granted Critical
Publication of EP2195115B1 publication Critical patent/EP2195115B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/025Combinations of electrostatic separators, e.g. in parallel or in series, stacked separators or dry-wet separator combinations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • B03C3/361Controlling flow of gases or vapour by static mechanical means, e.g. deflector
    • B03C3/366Controlling flow of gases or vapour by static mechanical means, e.g. deflector located in the filter, e.g. special shape of the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides

Definitions

  • the invention relates to the structure of emission control systems for cleaning aerosols loaded gases or atmospheres and types of emission control systems having such a structure.
  • the invention is to be embedded in the technology of electrostatic particle separation, in particular of a space-charge-type electrostatic particle separator.
  • a space charge separator unipolar charged particles are deposited according to the field of their own space charge [1].
  • wet scrubbers have provided a useful improvement in efficiency in which the particles / aerosols are loaded prior to entering the scrubber. Charged particles are separated by the wet scrubbing process and the electrostatic deposition under the influence of the space charge.
  • An electrostatic precipitator also operates on the principle of mutual repulsion of the charged particles on a wall to reference potential, preferably ground potential. As the charged particles pass through the grounded portion of a precipitator, a portion of the charged particles are forced to the grounded wall by the electric field generated by the space charge. Deposited particles are entrained and discharged in the co-flowing water flowing down the walls of the grounded tube electrodes.
  • a gas stream to be processed is ionized prior to its passage through the wet scrubber to provide the particles / aerosols in the gas stream with an electrical charge of predetermined polarity.
  • the charged particles / aerosols become close to the scrubber liquid and / or packing elements as an effect of the attractive forces between the charged particles and the electrically neutral packing elements and the liquid carried. The particles are removed from the gas stream through the scrubber liquid.
  • a particle of ionizing scrubber (see for example US Apl. Publ. 2006/0236858 A1 consists of a charge and collector section.
  • the collector consists of either a fixed or liquid bed packed section, which is irrigated continuously from above.
  • the gas stream and the charged particles are transported directly from the charging means to the collector means and the clean gas then passes through a liquid separator to remove liquid droplets.
  • the described separator have a collection chamber between the charging device and the collector device, therefore, the space charge distribution at the collector input is homogeneous.
  • the direction of the gas flow at the inlet and at the outlet of the collector is the same.
  • the output of the charging device is attached to a chamber which has electrically conductive packing material, for. B. tower packing elements.
  • the direction of the gas flow at the entrance and exit is either the same or the gas flow changes direction within the collector means.
  • the space charge distribution in the input area of the collector is not homogeneous. It is maximum in the area where the gas flow enters the collector, and is minimal compared to the inlet area on the wall. There is a non-homogeneous space charge distribution. As particles are separated, the space charge field decreases and the aerosol collection worsens in the central area opposite the flow entrance. Therefore, the entrance area of the collector is often ineffective for particle collection.
  • the invention has for its object to make the deposition of electrically charged particles in the inlet region of a collector of an electrostatic emission control system more effective.
  • an exhaust gas purification system for purifying aerosols loaded gases or atmospheres is known to consist of at least one assembly of an ionization and adjoining it in the flow direction collector device.
  • the emission control system is fitted with its input to a raw gas duct or to raw gas ducts. It flows at its outlet clean gas flows into the environment or in a secondary exhaust duct.
  • the ionization device of an assembly consists of at least one plane perpendicular to the channel axis with at least two identical, lying in a plane, the channel axis equally distributed ionization, through which the gas flows radially with respect to the channel axis.
  • the gas streams change their direction of flow into the associated collector device, which is centrally seated with respect to the channel axis. They are deflected into a common flow direction after the confluence with the collector, so that, in the collector region, the clear cross section in FIG Course of the gas flow with respect to the channel axis not oblique, not one-sided flow profile sets.
  • the collector device consists of collector stages, which in each case connects to an ionization of the ionization, in which the radial gas flow from the associated ionization stage opens and pivots in the course of gas flow parallel to the channel axis to (claim 1) ,
  • an emission control system specified as follows, namely the emission control system consists of at least two, channel axially juxtaposed assemblies of one ionization and central collector device, in which the central collector devices follow each other directly and initial component of the gas continuing channel.
  • the first upstream central collector device upstream of the gas allows the gas streams flowing into it to flow and flow only to the following central collector device.
  • an additive, composed of currents gas stream exits from the gas collector downstream last collector device.
  • the assemblies with respect to the channel axis similar or twisted to each other.
  • the emission control system now consists of at least two groups arranged axially one after the other, each comprising one ionization and collector device.
  • the number of ionization stages per module is the same and the gas flow in the ionization stages of successive modules is radially opposite.
  • the channel leading the raw gas with its end, closed at the end channel piece fanned either the raw gas flow through openings in its jacket wall to the attached ionization of the first device flowed into partial gas streams to one ionization in order to flow radially outwardly there to the respective attached collector stage. From this, a channel piece leads to associated ionization stage of the following module, in which the partial gas flow flows radially inward. All partial gas flows through this assembly open into the associated central collector means, redirect there and continue to flow together axially for discharging or reprocessing.
  • the gas stream composed of the partial gas streams flows into the axially adjoining, end-side sealed channel piece and fanning in through openings in the jacket wall back into the attached ionization stages of the following assembly. Now they flow radially outward to the respective collector stage to continue from there to the respective or summarized discharge or reprocessing in a subsequent assembly.
  • the exhaust gas purification system consists of a first gas channel cross-section-like hollow cylindrical piece as an ionization device whose wall intersects at least one plane perpendicular to the channel axis. In this sit the ionization stages through the hollow cylinder wall around the circumference uniformly distributed. They are surrounded by a second gas channel cross-section-like hollow cylinder piece like a shell over at least the length of the first hollow cylinder.
  • either the raw gas channel opens into the first hollow cylindrical piece, which is closed on the opposite end, so that the raw gas must flow radially outwardly through the ionization stages, and the second, surrounding hollow cylindrical piece gas-tight connected by an annular disc Rohgas textbook with the first hollow cylindrical piece is.
  • This forms the collector for the gas flowing in from the ionization stages, from where the gas stream recombined therein exits as clean gas stream on the off-gas side, open end.
  • the raw gas channel flanges on the second hollow cylinder on the front side.
  • the second hollow cylinder is connected to the first hollow cylinder on the side facing away from the raw gas stream via a gas-tight annular disk, while the first hollow cylindrical piece is closed at the end facing the raw gas stream.
  • the raw gas channel flanges on the second hollow cylinder shell wall side and forms with the first hollow cylinder a front side gas-tight closed, annular cavity.
  • in the frontal and shell wall side inflow of the raw gas opens the entire Raw gas stream through the ion stages radially inward into the clear area of the first hollow cylinder.
  • the partial flows redirect there and continue to flow as a total flow from the first hollow cylinder through the collector device.
  • the clear cross-section of the first hollow cylinder is closed gas-tight at the end facing away from the further flow.
  • the gas channel cross-section seen from the outside convex round or convex polygonal.
  • the situation is thus improved by changing the way in which a gas stream flows into the inlet area of a collector device.
  • the improvement relates to electrostatic precipitators without collecting chamber between the charging / ionizing device and the collector device, in which the gas in the input of the collector device only through an opening in a side wall of the collector device, in which the gas flow within the collector changes direction.
  • the space charge separators known from the prior art ( U.S. 4,072,477 Fig. 1 , and DE 10 2006 055 543 , Fign.13 and 14) are presented here as a juxtaposition in Fig. 1 presented.
  • the output of the charging / ionizing device is coupled to a grounded collector device constructed of electrically conductive packing material, for example tower packing elements.
  • the gas flow changes its flow direction in the input region of the collector device. In FIG. 2a If the gas stream enters the inlet area of the collector device only from the one left-hand opening in the picture, it is roughly and divided by two parallel vertical lines into the areas following one another in the entrance area over the clear width: entrance, central and opposite.
  • FIG. 2b shows the course of the decrease of the space charge or the space charge density curve qualitatively with one-sided inflow from the ionization stage: the space charge density is initially maximum in the entrance area, decreases rapidly towards the center and is minimal on the opposite wall. The course of the space charge density decreases from the inflow opening to the opposite wall, ie over the clear diameter there, monotonously or obliquely.
  • the entrance area of the collector means is used inefficiently for particle deposition / collection.
  • the loaded with charged particles / aerosols gas penetrates via opposing openings in the collector. Therefore, more charged particles penetrate into the central entrance area, where they increase the space charge density. This increases the deposition efficiency and makes more intensive use of the entry area for particle collection.
  • the turbulence increases the space charge distribution and thus the collector efficiency.
  • the separator in which the gas stream with charged particles / aerosols from at least two mutually opposite openings in the side walls enters the inlet region of the collector 3, is schematically shown in FIGS FIGS. 3a ) in the side view and in FIG. 3b ) shown in plan view.
  • the separator includes the charging / ionizing device consisting of these, for example, two channels / ionization stages 1 and 2. The direction of gas flow is indicated by arrow.
  • the charging / ionizing device can consist of two but also more than two channels / ionization stages. An even number of ionization stages is preferable because then, with equal distribution about the axis of the separator, there are always two openings of ionization stages in the entry region axially facing each other and the space charge densities in the two successive gas flows over the clear cross section of the collector entry region as desired , hump-shaped superimpose, provided that the inflows are equally strong. With 3 or more odd-numbered, high-flow inflows into the collector inlet area, an asymmetrical space charge density distribution over the clear cross-section with increasing number of inflows is always weaker, ie becomes more symmetrical. Unequal strong Inflows into the inlet region result in an asymmetry of the space charge profile over the clear cross section with respect to the separator axis, which is dependent on the inflow intensities.
  • FIG. 4 shows the structure of a separator, in which the four ionization stages 1, 2, 4, 5 of the ionization lie in a plane perpendicular to the axis of the separator, evenly distributed sit around this axis and always two such ionization stages 1, 2 and 4, 5 with their inlet opening in the central collector means 3 are opposite, that is, the respective two gas flows from the ionization stages 1 and 2 and 4 and 5 are directed towards each other or the axes of these inlet openings coincide in pairs.
  • the respective gas flow through the ionization stages 1, 2, 4, 5 flows radially to the axis of the separator, as indicated by the arrows.
  • the ionization device consists of at least four ionization stages, these can be distributed on at least two levels arranged one after the other in a deposition-axial manner. Seen in Abscheideraxialer direction, congruent or rotated by an angle ⁇ against each other, if the planes are identical. Otherwise, the uniform distribution of the ionization stages around the separator axis applies, so that the required space charge density distribution in the entry region of the central collector device is more easily achieved.
  • FIGS. 5a and 5b show a congruent two-level construction of the separator with each radially inwardly directed to the separator axis flow through the ionization stages 1, 2 and 4, 5 (claim 3).
  • FIG. 5a shows the side view of the separator assembly with the respective indicated High voltage connection HV per ionization stage.
  • FIG. 5b shows the top view and the view in Abscheideraxialer direction.
  • a construction of the space charge separator such that the ionization device with its inflow openings in the collector device form part of the same is in a convex round, here especially circular cylindrical design in the FIGS. 7a and 7b shown.
  • the gas stream enters the charging / ionizing device 7 through the shell wall side flange 9 for the raw gas channel in the comprehensive annular channel 6 and radially inwardly through the ionizing 8 therethrough.
  • the ionizing nozzles 8 are located in several parallel successive planes in the circular hollow cylinder wall, or the ionizing device 7 is formed here.
  • the plane-wise radial inflow therefrom into the central collector device causes per plane the distribution of the space charge density over the clear cross-section of the inlet region and is rotationally symmetrical with at least planar flow equality from the ionizing nozzles 8 to the separator axis.
  • the hollow cylindrical wall section with the ionizing nozzles 8 in the inlet region of the collector device with a circular light cross section can be used as a circular curved, grounded nozzle plate, as shown in DE 10 2006 055 543 , ( DE 10 2005 4045 010 and DE 10 2005 023 521 and DE 102 44 051 Be known, to be directly to the central collector device in the flow direction frontally, here in the picture above the Figure 7a , is grown.
  • FIGS. 8a and 8b show a convex polygonal, specially quadrangular construction of the separator (claim 6) in the way as the convex round, specially circular separator according to FIGS.
  • Its ionization device consists of four flat nozzle plates approximately according to DE 10 2006 055 0543 , which form a rectangular clear cross-section. Rohgaseinströmung and clean gas outflow are as in Figure 7a displayed. Here, too, several levels of ionization stages are strung together in a separator-like manner.
  • FIG. 9 illustrates how the embodiment according to claim 4 can be realized by way of example.
  • the raw gas shown in the picture (arrow) enters vertically centrally into the separator, the channel leading to the raw gas, he is not shown flanges with its tail on the end face closed in channel piece 11, from which the raw gas flow to the left and on the right in the picture, that is under direction change, in the respective charge / ionization stage 1 and 2 divides, preferably evenly.
  • Both partial gas streams flow through their ionization stage 1, 2 with respect to the Abscheiderachse radially outward, in which in each case the ionization of the particles / aerosols via high voltage HV.
  • the gas streams enter the outside, directly mounted collector 10, the outer collector 10, and are forcibly deflected upward in the image.
  • a front side down closed pipe section which is closed at its lowest point and there has a discharge device, see indicated small flange.
  • the flanged wall side flanks to the associated ionization.
  • the initially vertically upwardly flowing partial gas flow thus enters with deflection into the following ionization stage 4 or 5 and flows therein radially inwardly towards the separator axis.
  • the gas flow with particles / aerosols passes through the charging / ionizing device, which is not presented in detail here in writing or in the drawing. For example, she is from the DE 10 2006 055 546 refer to.
  • the particles in the gas stream are electrically charged in the field of a corona discharge.
  • the aerosol-laden gas stream passes through the ionization stages 1 and 2 or 1, 2, 4, 5, depending on the construction of the separator into the inlet region of the collector device 3.
  • the advantage of the separator according to the invention is the process-supporting use of the inlet region of the collector device. As a result, the size of the collector device can be significantly reduced and the collector housing can be made smaller. Thus, a compact design of the separator is given, in particular, this jumps to the exemplary embodiment according to the FIGS. 7a to 8b out. This leads to the cost reduction for the construction of the space charge separator and thus investment costs.

Landscapes

  • Electrostatic Separation (AREA)

Description

  • Die Erfindung betrifft die Struktur von Abgasreinigungsanlagen zum Reinigen von mit Aerosolen belasteten Gasen oder Atmosphären und Bauformen von Abgasreinigungsanlagen mit einer solchen Struktur. Die Erfindung ist in die Technologie der elektrostatischen Partikelabscheidung einzubetten, insbesondere eines raumladungsbehafteten elektrostatischen Partikelabscheiders. In einem Raumladungsabscheider werden unipolar geladene Partikel entsprechend des Feldes Ihrer eigenen Raumladung abgeschieden [1].
  • Abhängig von der baulichen Gestaltung des Abscheiders läuft die Selbstabscheidung in einem Nasswäscher innerhalb der röhrenförmigen Elektroden in einem Filter ab. Nasswäscher haben eine nützliche Verbesserung in der Effizienz ergeben, in dem die Partikel/Aerosole vor dem Eintritt in den Wäscher geladen werden. Geladene Partikel werden durch den Nasswäscheprozess und die elektrostatische Abscheidung unter dem Einfluss der Raumladung abgeschieden.
  • Ein elektrostatischer Abscheider arbeitet auch auf dem Prinzip der gegenseitigen Abstoßung der geladenen Partikel an einer Wand auf Bezugspotential, vorzugsweise Erdpotential. Da die geladenen Partikel durch den geerdeten Abschnitt eines Abscheiders gehen, wird ein Teil der geladenen Partikel zu der geerdeten Wand durch das durch die Raumladung erzeugte elektrische Feld gezwungen. Abgeschiedene Partikel werden in dem zusammen laufenden Wasser, das die Wände der geerdeten Röhrenelektroden hinab fließt, mitgerissen und ausgeleitet.
  • In einem ionisierenden Nasswäscher (siehe beispielsweise DE 22 35 531 ) wird ein zu prozessierender Gasstrom vor seinem Durchgang durch den Nasswäscher ionisiert, um die Partikel/Aerosole in dem Gasstrom mit einer elektrischen Ladung vorgegebener Polarität zu versehen. Während der Strömung des Gasstroms werden die geladenen Partikel/Aerosole nahe an die Wäscherflüssigkeit und/oder Packungselemente als Wirkung der Anziehungskräfte zwischen den geladenen Partikel und den elektrisch neutralen Packungselementen und der Flüssigkeit getragen. Die Partikel werden aus dem Gasstrom durch die Wäscherflüssigkeit entfernt.
  • Ein Partikel ionisierender Wäscher (siehe beispielsweise US-Apl. Publ. 2006/0236858 A1 besteht aus einem Ladungs- und Kollektorabschnitt. Der Kollektor besteht entweder aus einem fest- oder flüssigbettgepacktem Abschnitt, der kontinuierlich von oben bewässert wird. Der Gasstrom und die geladenen Partikel werden direkt von der Ladungseinrichtung zur Kollektoreinrichtung transportiert und das Reingas passiert dann einen Flüssigkeitsabscheider, um Flüssigkeitströpfchen zu entfernen.
  • Die erläuterten Abscheider haben eine Sammelkammer zwischen der Ladeeinrichtung und der Kollektoreinrichtung, deshalb ist die Raumladungsverteilung am Kollektoreingang homogen. Die Richtung des Gasstroms am Eingang und am Ausgang des Kollektors ist die gleiche.
  • Es gibt elektrostatische Raumladungsabscheider ohne Sammelkammer zwischen der Ladeeinrichtung und der Kollektoreinrichtung (siehe beispielsweise US 4,072,477 oder DE 10 2006 055 543 ). Dabei ist der Ausgang der Ladeeinrichtung an eine Kammer angebaut, die elektrisch leitendes Packungsmaterial hat, z. B. Turmpackungselemente. Die Richtung des Gasstroms am Eingang und Ausgang ist entweder dieselbe oder der Gasstrom wechselt seine Richtung innerhalb der Kollektoreinrichtung. Im letzteren Fall ist die Raumladungsverteilung im Eingangsbereich des Kollektors nicht homogen. Sie ist maximal im Bereich, wo der Gasstrom den Kollektor betritt, und ist gegenüber dem Eintrittsbereich an der Wand minimal. Es tritt eine nicht homogene Raumladungsverteilung auf. Wenn Partikel abgeschieden werden, nimmt das Raumladungsfeld ab und die Aerosolaufsammlung verschlechtert sich im zentralen und dem Strömungseintritt gegenüber liegenden Bereich. Deshalb ist der Eingangsbereich des Kollektors oft ineffektiv für die Partikelaufsammlung.
  • Der Erfindung liegt die Aufgabe zugrunde, die Abscheidung elektrisch geladener Partikel im Eintrittsbereich eines Kollektors einer elektrostatischen Abgasreinigungsanlage effektiver zu machen. Eine solche Abgasreinigungsanlage zum Reinigen von mit Aerosolen belasteten Gasen oder Atmosphären besteht bekanntermaßen aus mindestens einer Baugruppe aus einer Ionisierungseinrichtung und daran sich in Strömungsrichtung anschließender Kollektoreinrichtung. Die Abgasreinigungsanlage ist mit ihrem Eingang an einen Rohgaskanal oder an Rohgaskanäle angebaut. Sie strömt an ihrem Ausgang Reingas in die Umgebung strömt oder in einen weiterführenden Abgaskanal ein.
  • Die Aufgabe der effektiveren Partikelabscheidung wird durch eine bauliche Struktur der Abgasreinigungsanlage gemäß den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.
  • Die Ionisierungseinrichtung einer Baugruppe besteht aus mindestens einer senkrecht zur Kanalachse stehenden Ebene mit mindestens zwei gleichartigen, in einer Ebene liegenden, um die Kanalachse gleichverteilten Ionisierungsstufen, durch die das Gas radial bezüglich der Kanalachse strömt. Bei einer Gasströmung durch die Ionisierungsstufen entweder radial nach innen ändern die Gasströme in die zugehörige, bezüglich der Kanalachse zentral sitzende Kollektoreinrichtung ihre Strömungsrichtung, sie werden nach der Einmündung in den Kollektor in eine gemeinsame Strömungsrichtung umgelenkt, so dass sich im Kollektorbereich über den lichten Querschnitt im Verlaufe der Gasströmung ein bezüglich der Kanalachse nicht schräges, nicht einseitiges Strömungsprofil einstellt.
  • Oder bei einer Gasströmung durch die Ionisierungsstufen radial nach außen besteht die Kollektoreinrichtung aus Kollektorstufen, die sich jeweils an eine Ionisierungsstufe der Ionisierungseinrichtung anschließt, in der der radiale Gasstrom von der zugehörigen Ionisierungsstufe mündet und schwenkt im Verlaufe der Gasströmung parallel zur Kanalachse um (Anspruch 1).
  • Daraus ist gemäß Anspruch 2 eine Abgasreinigungsanlage folgendermaßen spezifizierbar, nämlich die Abgasreinigungsanlage besteht aus mindestens zwei, kanalaxial aneinander gereihten Baugruppen aus jeweils einer Ionisierungs- und zentralen Kollektoreinrichtung, bei der die zentralen Kollektoreinrichtungen unmittelbar aufeinander folgen und anfänglicher Bestandteil den das Gas weiterführenden Kanals sind. Die gasstromaufwärts erste zentrale Kollektoreinrichtung lässt die in sie einmündenden Gasströme nur zur folgenden zentralen Kollektoreinrichtung weiter- und durchströmen. Schließlich tritt aus der gasstromabwärts letzten Kollektoreinrichtung ein additiver, aus Strömungen zusammengesetzter Gasstrom aus. Nach Anspruch 3 reihen sich die Baugruppen bezüglich der Kanalachse gleichartig oder verdreht zueinander aneinander.
  • In Anspruch 4 ist auf der strukturellen Basis von Anspruch 1 die Abgasreinigungsanlage folgendermaßen spezifiziert:
  • Die Abgasreinigungsanlage besteht jetzt aus mindestens zwei kanalaxial aneinander gereihten Baugruppen aus jeweils einer Ionisierungs- und Kollektoreinrichtung. Dabei ist die Anzahl Ionisierungsstufen pro Baugruppe gleich und die Gasströmung in den Ionisierungsstufen aufeinander folgender Baugruppen ist radial entgegensetzt. Der das Rohgas heranführende Kanal mit seinem endenden, stirnseitig verschlossenen Kanalstück fächert entweder den Rohgasstrom über Öffnungen in seiner Mantelwand zu der angebauten Ionisierungseinrichtung der ersten angeströmten Baugruppe in Teilgasströme zu je einer Ionisierungsstufe auf, um darin radial nach außen zu der jeweils angebauten Kollektorstufe zu strömen. Von dieser aus führt ein Kanalstück zu zugeordneten Ionisierungsstufe der folgenden Baugruppe, in der der Teilgasstrom radial nach innen strömt. Alle Teilgasströme durch diese Baugruppe münden in die zugehörige zentrale Kollektoreinrichtung, lenken dort um und strömen axial zusammen zum Ausleiten oder erneuten Prozessieren weiter.
  • Oder der das Rohgas heranführende Kanal fächert sich an seinem Ende in Kanäle auf, die jeweils in eine Ionisierungsstufe der folgenden Baugruppe münden, um darin radial nach innen zur zentralen Kollektoreinrichtung zu strömen. Von dort aus strömt der aus den Teilgasströmen zusammengesetzte Gasstrom in das axial anschließende, stirnseitig verschlossene Kanalstück ein und fächert darin über Öffnungen in der Mantelwand wieder in die angebauten Ionisierungsstufen der folgenden Baugruppe auf. Jetzt strömen sie darin radial nach außen zu der jeweiligen Kollektorstufe, um von dort aus zum jeweiligen oder zusammengefassten Ausleiten oder erneuten Prozessieren in einer folgenden Baugruppe weiter zu strömen.
  • Eine weitere Spezifizierung auf der Basis von Anspruch 1 ist in Anspruch 5 beschrieben. Danach besteht die Abgasreinigungsanlage aus einem ersten gaskanalquerschnittsähnlichen Hohlzylinderstück als Ionisierungseinrichtung, dessen Wand mindestens eine Ebene senkrecht zur Kanalachse schneidet. In dieser sitzen die Ionisierungsstufen durch die Hohlzylinderwand um den Umfang gleichverteilt. Sie sind von einem zweiten gaskanalquerschnittsähnlichen Hohlzylinderstück mantelartig über mindestens die Länge des ersten Hohlzylinders umgeben. Dabei mündet entweder der Rohgaskanal stirnseitig in das erste Hohlzylinderstück, das auf der gegenüberliegenden Stirn verschlossen ist, und zwar so dass das Rohgas radial nach außen durch die Ionisierungsstufen strömen muss, und das zweite, umgebende Hohlzylinderstück durch eine Ringscheibe rohgasseitig mit dem ersten Hohlzylinderstück gasdicht verbunden ist. Das bildet für das von den Ionisierungsstufen einströmende Gas den Kollektor, von wo aus der darin wieder zusammengeführte Gasstrom auf der rohgasabseitigen, offenen Stirn als Reingasstrom austritt.
  • Oder der Rohgaskanal flanscht an dem zweiten Hohlzylinder stirnseitig an. Der zweite Hohlzylinder ist mit dem ersten Hohlzylinder auf der dem Rohgasstrom abgewandten Seite über eine gasdichte Ringscheibe verbunden, dabei ist das erste Hohlzylinderstück an der dem Rohgasstrom zugewandten Stirn verschlossen.
  • Oder der Rohgaskanal flanscht an dem zweiten Hohlzylinder mantelwandseitig an und bildet mit dem ersten Hohlzylinder einen stirnseitig gasdicht verschlossenen, ringförmigen Hohlraum. So mündet bei der stirnseitigen und mantelwandseitigen Einströmung des Rohgases der gesamte Rohgasstrom durch die Ionenstufen radial nach innen in den lichten Bereich des ersten Hohlzylinders. Die Teilströme lenken dort um und strömen als Gesamtsrom aus dem ersten Hohlzylinder durch die Kollektoreinrichtung weiter. Jetzt ist der lichte Querschnitt des ersten Hohlzylinders an der zu der Weiterströmung abgewandten Stirn gasdicht verschlossen. Geometrisch ist nach Anspruch 6 der Gaskanalquerschnitt von außen gesehen konvex rund oder konvex polygonal.
  • Die Situation wird also verbessert, indem die Art des Einströmens eines Gasstromes in den Eingangsbereich einer Kollektoreinrichtung geändert wird. Die Verbesserung bezieht sich auf elektrostatische Abscheider ohne Sammelkammer zwischen der Lade-/Ionisierungseinrichtung und der Kollektoreinrichtung, in welchem das Gas in den Eingang der Kollektoreinrichtung nur durch eine Öffnung in einer Seitenwand der Kollektoreinrichtung, in welcher der Gasstrom innerhalb des Kollektors seine Richtung ändert.
  • Zur Verbesserung der Raumladungsverteilung im Eintrittsbereich der Kollektoreinrichtung wird deshalb vorgeschlagen, den Gasstrom mit geladenen Partikeln durch mindestens zwei einander in einer Ebene gegenüberstehende Öffnungen in der Seitenwand des Kollektors einzuströmen. Die Verteilung der Raumladung kann also auch dadurch verbessert werden, dass der Gasstrom mit geladenen Partikel gleichartig und gleichmäßig durch mehrere Öffnungen in der Seitenwand des Kollektorgehäuses einströmt, die in einer Ebene oder mehreren, aufeinander folgenden Ebenen sitzen.
  • Unzulänglichkeiten herkömmlicher Abgasreinigungsanlagen werden so behoben. Verantwortlich ist das baulich unmittelbare Aufeinanderfolgen von Lade-/Ionisierungsstufe und Kollektor sowie die bezüglich der Kollektorachse gewissermaßen symmetrische Raumladungsverteilung über den lichten Querschnitt des Eintrittsbereichs am Kollektor. Durch eine solche bauliche Struktur der Abgasreinigungsanlage besteht auch ein technisch einfach und leicht handhabbarer Aufbau.
  • Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Es zeigen:
  • Figur 1a
    Abscheider ohne Sammelkammer nach dem Stand der Technik;
    Figur 1b
    Abscheider ohne Sammelkammer nach dem Stand der Technik;
    Figur 2a
    Kollektoreinrichtung mit drei Gebieten im Eintrittsbereich;
    Figur 2b
    Raumladungsdichteverlauf bei einseitiger Einströmung;
    Figur 2c
    Raumladungsdichteverlauf bei beidseitiger Einströmung;
    Figur 3a
    Seitenansicht des Abscheiders mit zwei einander gegenüberliegenden Ionisierungsstufen;
    Figur 3a
    Draufsicht des Abscheiders mit zwei einander gegenüberliegenden Ionisierungsstufen
    Figur 4
    Draufsicht des Abscheiders mit vier einander paarweise gegenüberliegenden Ionisierungsstufen;
    Figur 5a
    Seitenansicht eines Abscheiders aus zwei Abscheiderebenen;
    Figur 5a
    Draufsicht eines Abscheiders aus zwei Abscheiderebenen;
    Figur 6
    Draufsicht eines Abscheiders aus zwei zueinander verdrehten Abscheiderebenen;
    Figur 7a
    kreiszylindrische Kollektoreinrichtung in Seitenansicht mit einem Wandabschnitt als Ionisierungseinrichtung;
    Figur 7b
    kreiszylindrische Kollektoreinrichtung in Draufsicht mit einem Wandabschnitt als Ionisierungseinrichtung;
    Figur 8
    prismatische Kollektoreinrichtung in Seitenan- und Draufsicht mit einem Wandabschnitt als Ionisierungseinrichtung;
    Figur 9
    Seitenansicht eines Abscheiders aus zwei Abscheiderebenen mit ebenenweise radial entgegengesetzter Gasströmung in den Ionisierungseinrichtungen
  • Die Raumladungsabscheider, aus dem Stand der Technik bekannt ( US 4,072,477 Fig. 1, und DE 10 2006 055 543 , Fign.13 und 14) werden als Gegenüberstellung hier in Fig. 1 vorgestellt. In den Abscheidern ist der Ausgang der Lade- / Ionisierungseinrichtung an eine geerdete, aus elektrisch leitendem Packungsmaterial gebaute Kollektoreinrichtung angekoppelt, beispielsweise Turmpackungselemente. Der Gasstrom wechselt seine Strömungsrichtung im Eingangsbereich der Kollektoreinrichtung. In Figur 2a tritt der Gasstrom in den Eintrittsbereich der Kollektoreinrichtung nur von der einen vorhandenen, im Bild linken Öffnung her ein, er ist grob und durch zwei parallele senkrechte Striche in die über die lichte Weite im Eintrittsbereich aufeinander folgenden Gebiete: Eingang, zentral und gegenüber, unterteilt. Die Raumladungsdichte nimmt dort in axialer Verlängerung der Öffnungsachse zur gegenüberliegenden Wand der Kollektoreinrichtung hin ab. Figur 2b zeigt den Verlauf der Abnahme der Raumladung bzw. den Raumladungsdichteverlauf qualitativ bei einseitiger Einströmung aus der Ionisierungsstufe: die Raumladungsdichte ist zunächst maximal im Eingangsbereich, nimmt zum Zentrum hin schnell ab und wird minimal an der gegenüberliegenden Wand. Der Verlauf der Raumladungsdichte nimmt von der Einströmöffnung her bis zur gegenüberliegenden Wand, also über den lichten Durchmesser dort, monoton oder schräg ab. Bei einer solchen baulichen Anordnung wird der Eintrittsbereich der Kollektoreinrichtung ineffektiv für die Partikelablagerung/-aufsammlung genutzt.
  • Durch die Einströmung des Gasstroms mit geladenen Partikel durch die Wand der Kollektoreinrichtung in den Eintrittsbereich aus einander entgegen gesetzten Richtungen durch mindesten zwei einander gegenüberliegende Öffnungen wird die Raumladungsverteilung dort entscheidend verbessert, weil sich zwei Raumladungsdichteverläufe entgegengesetzt überlagern. Dieses Ergebnis ist qualitativ in Figur 2c über den lichten Durchmesser des Eintrittsbereichs der Kollektoreinrichtung dargestellt. Es gibt keinen raumladungsarmen Bereich an der gegenüberliegenden Wand mehr. Allenfalls besteht zentral eine Senke der Raumladungsverteilung bzw. des Raumladungsdichteverlaufs. Zwei Einströmöffnungen müssen dazu mindestens vorhanden sein.
  • Das mit geladenen Partikeln/Aerosolen belastete Gas dringt über einander gegenüber liegende Öffnungen in den Kollektor ein. Deshalb dringen mehr geladenen Partikel in den zentralen Eintrittsbereich vor und erhöhen dort die Raumladungsdichte. Dadurch wird die Ablagerungseffizienz erhöht und der Eintrittsbereich intensiver für die Partikelaufsammlung genutzt. Wenn Gasströme aus einander entgegen gesetzten Richtungen/Öffnungen sich im zentralen Bereich vermischen, verstärkt sich die Turbulenz die Raumladungsverteilung und damit die Kollektoreffizienz.
  • Der Abscheider, in dem der Gasstrom mit geladenen Partikeln/Aerosolen aus mindestens zwei einander entgegen gesetzten Öffnungen in den Seitenwänden in den Eintrittsbereich des Kollektors 3 eintritt, ist schematisch in den Figuren 3a) in der Seitenansicht und in Figur 3b) in der Draufsicht dargestellt. Der Abscheider schließt die Lade-/Ionisierungseinrichtung ein, die aus diesen beispielsweise zwei Kanälen/Ionisierungsstufen 1 und 2 besteht. Die Richtung der Gasströmung ist durch Pfeil angezeigt.
  • Die Lade-/Ionisierungseinrichtung kann aus zwei aber auch aus mehr als zwei Kanälen/Ionisierungsstufen bestehen. Eine geradzahlige Anzahl an Ionisierungsstufen ist zu bevorzugen, weil dann bei Gleichverteilung um die Achse des Abscheiders sich immer zwei Öffnungen von Ionisierungsstufen im Eintrittsbereich in die Kollektoreinrichtung axial gegenüberstehen und sich die Raumladungsdichten in den beiden aufeinander gerichteten Gasströmungen über den lichten Querschnitt des Kollektoreintrittsbereichs, wie gewollt, höckerförmig überlagern, sofern die Einströmungen gleich stark sind. Bei 3 und mehr ungeradzahligen, gleich strömungsstarken Einströmungen in den Kollektoreintrittsbereich bildet sich eine unsymmetrische Raumladungsdichteverteilung über den lichten Querschnitt mit steigender Anzahl Einströmungen immer schwächer aus, d. h. wird symmetrischer. Ungleich starke Einströmungen in den Eintrittsbereich ergeben eine von den Einströmungsstärken abhängige Asymmetrierung des Raumladungsprofils über den lichten Querschnitt bezüglich der Abscheiderachse.
  • Figur 4 zeigt den Aufbau eines Abscheiders, bei dem die vier Ionisierungsstufen 1, 2, 4, 5 der Ionisierungseinrichtung in einer Ebene senkrecht zur Achse des Abscheiders liegen, gleichverteilt um diese Achse sitzen und sich stets zwei solche Ionisierungsstufen 1, 2 bzw. 4, 5 mit ihrer Eintrittsöffnung in die zentrale Kollektoreinrichtung 3 gegenüber stehen, d. h. die jeweils beiden Gasströmungen aus den Ionisierungsstufen 1 und 2 sowie 4 und 5 sind aufeinander gerichtet oder die Achsen dieser Eintrittsöffnungen fallen paarweise zusammen. Der jeweilige Gasstrom durch die Ionisierungsstufen 1, 2, 4, 5 strömt radial auf die Achse des Abscheiders zu, wie durch die Pfeile angedeutet ist.
  • Besteht die Ionisierungseinrichtung aus mindestens vier Ionisierungsstufen, können diese auf mindestens zwei, abscheideraxial aufeinander folgenden Ebenen verteilt sein. In abscheideraxialer Richtung gesehen, deckungsgleich oder um eine Winkel α gegeneinander verdreht, falls die Ebenen baugleich sind. Ansonsten gilt die Gleichverteilung der Ionisierungsstufen um die Abscheiderachse, damit die geforderte Raumladungsdichteverteilung im Eintrittsbereich der zentralen Kollektoreinrichtung leichter erreicht wird. Figuren 5a und 5b zeigen einen deckungsgleichen Zweiebenenaufbau des Abscheiders mit jeweils radial nach innen auf die Abscheiderachse gerichteter Strömung durch die Ionisierungsstufen 1, 2 und 4, 5 (Anspruch 3). Die beiden zentralen Kollektoreinrichtungen sind zusammen gebaut, sie folgen durchgängig aufeinander und bilden deshalb die gesamte zentrale Kollektoreinrichtung 3. Die beiden Einströmungen pro Ebene sind beim Austritt aus der jeweiligen Ionisierungsstufe aufeinander gerichtet, knicken nach oben ab und strömen als ein Gasstrom aus dieser Ebene in der Kollektoreinrichtung weiter, um sich mit dem Gasstrom der folgenden Ebene zum gesamten Gastrom aus dem Abscheider zu vereinigen. Figur 5a zeigt die Seitenansicht des Abscheideraufbaus mit dem jeweils angedeuteten Hochspannungsanschluss HV pro Ionisierungsstufe. Figur 5b zeigt die Draufsicht bzw. die Ansicht in abscheideraxialer Richtung. Figur 6 zeigt beispielsweise die Verdrehung der zwei baugleichen Ebenen der Ionisierungseinrichtung, die um die Abscheiderachse um den Winkel α, der hier spitz angedeutet ist, gegeneinander verdreht sind. Eine Verdrehung aufeinander folgender Ebenen der Ionisierungseinrichtung von 0 <= α <= 90° ist realisierbar (Anspruch 3).
  • Eine Bauweise des Raumladungsabscheiders derart, dass die Ionisierungseinrichtung mit ihren Einströmöffnungen in die Kollektoreinrichtung ein Bestandteil derselben bilden, ist in konvex runder, hier speziell kreiszylindrischer Bauweise in den Figuren 7a und 7b dargestellt. Der Gasstrom tritt in die Lade-/Ionisierungseinrichtung 7 durch den mantelwandseitigen Flansch 9 für den Rohgaskanal in den umfassenden Ringkanal 6 ein und radial nach innen durch die Ionisierungsdüsen 8 hindurch. Die Ionisierungsdüsen 8 befinden sich in mehreren, parallel aufeinander folgenden Ebenen in der kreisförmigen Hohlzylinderwand, bzw. die Ionisierungseinrichtung 7 ist hier so ausgebildet. Die ebenenweise radiale Einströmung daraus in die zentrale Kollektoreinrichtung, bewirkt pro Ebene die Verteilung der Raumladungsdichte über den lichten Querschnitt des Eintrittsbereichs und ist bei zumindest ebenenweiser Strömungsstärkegleichheit aus den Ionisierungsdüsen 8 zur Abscheiderachse rotationssymmetrisch. Es gibt also in diesem Eintrittsbereich keine ladungstoten Verteilungsbereiche der Raumladung und damit eine umfängliche Gleichattraktion der geerdeten Innenwand der Kollektoreinrichtung auf die geladenen Partikel/Aerosole aus dem vorbeiziehenden Gasstrom, wobei die auf der geerdeten Wand auftreffenden Partikel/Aerosole elektrisch neutralisiert, mit daran runter laufender Spülflüssigkeit mitgerissen und aus dem Abscheider ausgeströmt werden.
  • Der hohlzylindrische Wandabschnitt mit den Ionisierungsdüsen 8 in den Eintrittsbereich der Kollektoreinrichtung mit kreisförmig lichtem Querschnitt (Anspruch 6) kann als kreisförmig gekrümmte, geerdete Düsenplatte, wie aus der DE 10 2006 055 543 , ( DE 10 2005 4045 010 und DE 10 2005 023 521 und DE 102 44 051 ) bekannt, hergestellt sein, an die unmittelbar die zentrale Kollektoreinrichtung in Strömungsrichtung stirnseitig, hier oben im Bild der Figur 7a, angebaut ist. Figuren 8a und 8b zeigen eine konvex polygonale, speziell viereckige Bauweise des Abscheiders (Anspruch 6) in der Art wie der konvex runde, speziell kreisförmige Abscheider gemäß Figuren 7a und 7b. Seine Ionisierungseinrichtung besteht aus vier eben Düsenplatten etwa gemäß DE 10 2006 055 0543 , die einen rechteckig lichten Querschnitt bilden. Rohgaseinströmung und Reingasausströmung sind wie in Figur 7a angezeigt. Auch hier sind mehrere Ebenen an Ionisierungsstufen abscheideraxial aneinander gereiht.
  • Zur Erzwingung der Gasströmung ist der Abscheider an einer Stirnseite durch eine Platte wie bei dem Aufbau nach den Figuren 7a und 8a verschlossen, das ist durch den dicken Strich im Bild unten jeweils angedeutet.
  • Figur 9 stellt dar, wie die Ausgestaltung gemäß Anspruch 4 beispielhaft realisiert werden kann. Das im Bild herangeführte Rohgas (Pfeil) tritt vertikal zentral in den Abscheider ein, der das Rohgas führende Kanal, er ist nicht eingezeichnet, flanscht mit seinem Endstück an dem in Verlängerung stirnseitig verschlossenen Kanalstück 11 an, von dem aus sich die Rohgasströmung nach links und rechts im Bild, also unter Richtungsänderung, in die jeweilige Lade-/Ionisierungsstufe 1 und 2 aufteilt, vorzugsweise gleichmäßig. Beide Gasteilströme strömen durch ihre Ionisierungsstufe 1, 2 bezüglich der Abscheiderachse radial nach außen, in welcher jeweils die Ionisierung der Partikel/Aerosole über Hochspannung HV erfolgt. Aus den beiden Ionisierungsstufen 1 und 2 treten die Gasströme in den jeweils außen, direkt angebauten Kollektor 10, den Außenkollektor 10, ein und werden darin nach oben im Bild zwangsweise umgelenkt. In Verlängerung nach unten flanscht ein stirnseitig unten verschlossenes Rohrstück an, das an seiner tiefsten Stelle verschlossen ist und dort ein Ablasseinrichtung, siehe angedeuteten kleinen Flansch, hat. Am Ausgang beider Außenkollektoren 11 flanscht jeweils wieder ein stirnseitig in Verlängerung verschlossenes Rohrstück an, das mantelwandseitig an der zugehörigen Ionisierungsstufe anflanscht. Der zunächst vertikal nach oben strömende Gasteilstrom tritt somit unter Umlenkung in die folgende Ionisierungsstufe 4 bzw. 5 ein und strömt darin radial nach innen auf die Abscheiderachse zu. In diesen beiden Ionisierungsstufen 4 und 5 ist eine Ionisierung der verbliebenen, elektrisch neutralen Partikel/Aerosole im jeweiligen Gasteilstrom über Hochspannung HV gegeben. Die Gasteilströme treten aus der Öffnung ihrer jeweiligen Ionisierungsstufe 4, 5 aus und in den Eintrittsbereich der mantelwandseitig angeflanschten, zentralen Kollektoreinrichtung 3 ein. In diesem Eintrittsbereich treffen die beiden Gasteilströme wieder aufeinander, schwenken in die gleiche Richtung, im Bild nach oben als wieder vereinigter Gastrom um und treten schließlich aus der zentralen Kollektoreinrichtung 3 als Reingasstrom aus. Im Eintrittsbereich des zentralen Kollektors 3 wird wieder die nicht schräge, eventuell zweihöckerige, bevorzugt zur Abscheiderachse symmetrische Raumladungsverteilung erreicht, die die effektive Ablagerung der Partikel/Aerosole am Kollektor bewirkt.
  • Die hohe Effektivität der Partikelabscheidung in einem solchermaßen strukturierten Abscheider wird im Folgenden an dem Prozess im Innern des elektrostatischen Raumladungsabscheiders zusammengefasst beschrieben:
  • Der Gasstrom mit Partikeln/Aerosolen gelangt durch die Lade-/Ionisierungseinrichtung, die hier schriftlich oder zeichnerisch nicht im Detail vorgestellt wird. Beispielsweise ist sie aus der DE 10 2006 055 546 zu entnehmen. Die Partikel im Gasstrom werden im Feld einer Koronaentladung elektrisch geladen. In dem elektrostatischen "Einfeld"-Abscheider gelangt der aerosolbeladene Gasstrom durch die Ionisierungsstufen 1 und 2 oder 1, 2, 4, 5, abhängig von der Bauweise des Abscheiders in den Eintrittsbereich der Kollektoreinrichtung 3.
  • Da beim Eintritt in die Kollektoreinrichtung, über den lichten Querschnitt gesehen, nicht mehr eine einseitige, zur gegenüber liegenden Wand hin abnehmende Raumladungsdichteverteilung vorliegt, tritt im Kollektor eine viel wirkungsvollere Sammlung der elektrisch geladenen Partikel ein. Diese über den lichten Querschnitt vorteilhafte, vorzugsweise zur Abscheiderachse symmetrische, also nicht mehr einseitig abnehmende Verteilung der Raumladung führt zu der wesentlich effektiveren Ablagerung, die nur durch die Entgegenströmung und gleichgerichtete Umlenkung zweier Gasteilströme zustande kommt.
  • Zur Bauweise des Kollektors wird auf den Stand der Technik verwiesen, beispielsweise auf DE 102 59 410 , in der auch ein Sprühsystem zur Wäsche vorgestellt wird.
  • Der Vorteil des erfindungsgemäßen Abscheiders ist die prozessunterstützende Nutzung des Eintrittsbereichs der Kollektoreinrichtung. Dadurch kann die Baugröße der Kollektoreinrichtung erheblich reduziert werden und das Kollektorgehäuse kleiner gebaut werden. So ist eine kompakte Bauweise des Abscheiders gegeben, insbesondere springt das an der beispielsweisen Ausgestaltung gemäß den Figuren 7a bis 8b hervor. Einher damit geht die Kostenreduzierung zum Bau des Raumladungsabscheiders und damit Investitionskosten.
  • Bezugszeichenliste nur für die Figuren 2a bis 9:
  • 1
    Ionisierungsstufe
    2
    Ionisierungsstufe
    3
    Kollektoreinrichtung
    4
    Ionisierungsstufe
    5
    Ionisierungsstufe
    6
    Ringkanal
    7
    Ionisierungsstufe/n
    8
    Düse
    9
    Flansch
    10
    Kollektor, Außenkollektor
    11
    Kanalstück

Claims (6)

  1. Bauliche Struktur von Abgasreinigungsanlagen zum Reinigen von mit Aerosolen belasteten Gasen oder Atmosphären,
    bestehend aus mindestens einer Baugruppe aus einer Ionisierungseinrichtung und daran sich in Strömungsrichtung anschließender Kollektoreinrichtung,
    wobei die Abgasreinigungsanlage mit ihrem Eingang an einen Rohgaskanal oder Rohgaskanäle angebaut ist und mit ihrem Ausgang Reingas in die Umgebung strömt oder in einen angebauten Kanal einströmt,
    dadurch gekennzeichnet, dass
    die Ionisierungseinrichtung einer Baugruppe aus mindestens einer senkrecht zur Kanalachse stehenden Ebene mit mindestens zwei gleichartigen, in einer Ebene liegenden, um die Kanalachse gleichverteilten Ionisierungsstufen besteht, durch die das Gas radial bezüglich der Kanalachse strömt,
    bei einer Gasströmung durch die Ionisierungsstufen radial nach innen die Gasströme in die zugehörige, bezüglich der Kanalachse zentral sitzende Kollektoreinrichtung münden und dort alle gleichartig umlenken, so dass sich im Kollektorbereich über den lichten Querschnitt im verlaufe der Gasströmung ein bezüglich der Kanalachse nicht schräges Strömungsprofil einstellt,
    oder
    bei einer Gasströmung durch die Ionisierungsstufen radial nach außen die Kollektoreinrichtung aus Kollektorstufen besteht, die sich jeweils an eine Ionisierungsstufe der Ionisierungseinrichtung anschließen, in der der radiale Gasstrom von der zugehörigen Ionisierungsstufe mündet und im Verlaufe der Gasströmung parallel zur Kanalachse umschwenkt.
  2. Abgasreinigungsanlage mit einer baulichen Struktur nach Anspruch 1, dadurch gekennzeichnet, dass die Abgasreinigungsanlage aus mindestens zwei, kanalaxial aneinander gereihten Baugruppen aus jeweils einer Ionisierungs- und zentralen Kollektoreinrichtung besteht, die zentralen Kollektoreinrichtungen unmittelbar aufeinander folgen, und anfänglicher Bestandteil den das Gas weiterführenden Kanals sind,
    wobei die gasstromaufwärts erste zentrale Kollektoreinrichtung die in sie einmündenden Gasströme nur zur folgenden zentralen Kollektoreinrichtung weiterströmen und dort durchströmen lässt, so dass aus der gasstromabwärts letzten Kollektoreinrichtung ein additiver Gasstrom austritt.
  3. Abgasreinigungsanlage nach Anspruch 2, dadurch gekennzeichnet, dass sich die Baugruppen bezüglich der Kanalachse gleichartig oder verdreht zueinander aneinander reihen.
  4. Abgasreinigungsanlage mit einer baulichen Struktur nach Anspruch 1, dadurch gekennzeichnet, dass die Abgasreinigungsanlage aus mindestens zwei kanalaxial aneinander gereihten Baugruppen aus jeweils einer Ionisierungs- und Kollektoreinrichtung besteht, wobei die Anzahl Ionisierungsstufen pro Baugruppe gleich ist und die Gasströmung in den Ionisierungsstufen aufeinander folgender Baugruppen radial entgegensetzt ist,
    wobei
    entweder der das Rohgas heranführende Kanal mit seinem endenden, stirnseitig verschlossenen Kanalstück den Rohgasstrom über Öffnungen in seiner Mantelwand zu der angebauten Ionisierungseinrichtung der ersten angeströmten Baugruppe in Teilgasströme zu je einer Ionisierungsstufe auffächert, um darin radial nach außen zu der jeweils angebauten Kollektorstufe zu strömen, von der aus ein Kanalstück zu zugeordneten Ionisierungsstufe der folgende Baugruppe führt, in der der Teilgasstrom radial nach innen strömt und alle Teilgasströme durch diese Baugruppe in die zugehörige zentrale Kollektoreinrichtung münden, umlenken und axial zusammen zum Ausleiten oder erneuten Prozessieren weiterströmen,
    oder der das Rohgas heranführende Kanal sich an seinem Ende in Kanäle auffächert, die jeweils in eine Ionisierungsstufe der folgenden Baugruppe münden, um darin radial nach innen zur zentralen Kollektoreinrichtung zu strömen, von wo aus der aus den Teilgasströmen zusammengesetzte Gasstrom in das axial anschließende, stirnseitig verschlossene Kanalstück einströmt und darin über Öffnungen in der Mantelwand wieder in die angebauten Ionisierungsstufen der folgenden Baugruppe auffächert, um in diesen radial nach außen zu der jeweiligen Kollektorstufe zu strömen, um von dort aus zum jeweiligen oder zusammengefassten Ausleiten oder erneuten Prozessieren in einer folgenden Baugruppe weiter zu strömen.
  5. Abgasreinigungsanlage mit einer baulichen Struktur nach Anspruch 1, dadurch gekennzeichnet, dass die Abgasreinigungsanlage aus einem ersten gaskanalquerschnittsähnlichen Hohlzylinderstück als Ionisierungseinrichtung besteht, dessen Wand mindestens eine Ebene senkrecht zur Kanalachse schneidet, in der Ionisierungsstufen durch die Hohlzylinderwand um den Umfang gleichverteilt sitzen, und von einem zweiten gaskanalquerschnittsähnlichen Hohlzylinderstück mantelartig über mindestens die Länge des ersten Hohlzylinders umgeben ist,
    entweder der Rohgaskanal stirnseitig in das erste Hohlzylinderstück mündet, das auf der gegenüberliegenden Stirn verschlossen ist, so dass das Rohgas radial nach außen durch die Ionisierungsstufen strömen muss, und das zweite, umgebende Hohlzylinderstück durch eine Ringscheibe rohgasseitig mit dem ersten Hohlzylinderstück gasdicht verbunden ist, und für das von den Ionisierungsstufen einströmende Gas den Kollektor bildet, von wo aus der darin wieder zusammengeführte Gasstrom auf der rohgasabseitigen, offenen Stirn als Reingasstrom austritt,
    oder der Rohgaskanal an dem zweiten Hohlzylinder stirnseitig anflanscht, der zweite Hohlzylinder mit dem ersten Hohlzylinder auf der dem Rohgasstrom abgewandten Seite über eine gasdichte Ringscheibe verbunden ist, das erste Hohlzylinderstück an der dem Rohgasstrom zugewandten Stirn verschlossen ist,
    oder der Rohgaskanal an dem zweiten Hohlzylinder mantelwandseitig anflanscht und mit dem ersten Hohlzylinder einen stirnseitig gasdicht verschlossenen, ringförmigen Hohlraum bildet, so dass bei der stirnseitigen und mantelwandseitigen Einströmung des Rohgases der gesamte Rohgasstrom durch die Ionenstufen radial nach innen in den lichten Bereich des ersten Hohlzylinders mündet, die Teilströme sich dort umlenken und als Gesamtsrom aus dem ersten Hohlzylinder durch die Kollektoreinrichtung weiterströmen, wobei der lichte Querschnitt des ersten Hohlzylinders an der der Weiterströmung abgewandten Stirn gasdicht verschlossen ist.
  6. Abgasreinigungsanlage nach Anspruch 5, dadurch gekennzeichnet, dass der Gaskanalquerschnitt von außen gesehen konvex rund oder konvex polygonal ist.
EP08785630A 2007-10-02 2008-08-20 Bauliche struktur von abgasreinigungsanlagen Not-in-force EP2195115B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007047250A DE102007047250B8 (de) 2007-10-02 2007-10-02 Bauliche Struktur von Abgasreinigungsanlagen
PCT/EP2008/006817 WO2009046787A2 (de) 2007-10-02 2008-08-20 Bauliche struktur von abgasreinigungsanlagen

Publications (2)

Publication Number Publication Date
EP2195115A2 EP2195115A2 (de) 2010-06-16
EP2195115B1 true EP2195115B1 (de) 2012-02-15

Family

ID=40384715

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08785630A Not-in-force EP2195115B1 (de) 2007-10-02 2008-08-20 Bauliche struktur von abgasreinigungsanlagen

Country Status (6)

Country Link
US (1) US8500873B2 (de)
EP (1) EP2195115B1 (de)
JP (1) JP5193306B2 (de)
AT (1) ATE545465T1 (de)
DE (1) DE102007047250B8 (de)
WO (1) WO2009046787A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10864526B2 (en) * 2017-05-03 2020-12-15 Airgard, Inc. Electrode for electrostatic precipitator gas scrubbing apparatus

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2114682A (en) * 1935-06-28 1938-04-19 Percy W Gumaer Method and apparatus for electrical precipitation of dust
GB704054A (en) * 1951-08-28 1954-02-17 Research Corp Improvements in or relating to electrostatic precipitators
GB740646A (en) * 1952-07-16 1955-11-16 Research Corp Improvements in or relating to the separation of suspended materials from gases by electrostatic precipitation
CA1006446A (en) 1971-07-22 1977-03-08 Ceilcote Company (The) Method and apparatus for removal of particulate matter from a gas stream
BE795150A (fr) * 1972-02-14 1973-05-29 Braun Ag Ventilateur deplacable
US4072477A (en) * 1972-05-11 1978-02-07 The Regents Of The University Of California Electrostatic precipitation process
US4283205A (en) * 1979-04-06 1981-08-11 Schumann John L Inlet flue system for banks of electrostatic precipitator chambers
US4248162A (en) * 1979-07-26 1981-02-03 Spellman High Voltage Electronics Corporation Table with electrostatic air purifier/cleaner
JPH0231152Y2 (de) * 1985-09-12 1990-08-22
DE3844141C1 (de) * 1988-12-28 1990-06-07 Voest-Alpine Automotive Ges.M.B.H., Linz, At
US5591253A (en) * 1995-03-07 1997-01-07 Electric Power Research Institute, Inc. Electrostatically enhanced separator (EES)
US6482253B1 (en) * 1999-09-29 2002-11-19 John P. Dunn Powder charging apparatus
WO2001069065A1 (en) * 2000-03-15 2001-09-20 Fortum Oyj Method and arrangement for cleaning the intake air of a gas turbine
JP2002263523A (ja) * 2001-03-12 2002-09-17 Yamatake Corp 二段式電気集塵装置
US6585809B1 (en) * 2002-07-12 2003-07-01 Komad Parsa Continuous gas separation in an open system
US20090071328A1 (en) * 2002-08-21 2009-03-19 Dunn John P Grid type electrostatic separator/collector and method of using same
US6773489B2 (en) * 2002-08-21 2004-08-10 John P. Dunn Grid type electrostatic separator/collector and method of using same
US6797035B2 (en) * 2002-08-30 2004-09-28 Ada Environmental Solutions, Llc Oxidizing additives for control of particulate emissions
DE10244051C1 (de) 2002-09-21 2003-11-20 Karlsruhe Forschzent Ionisator und seine Verwendung in einer Abgasreinigungsanlage für tropfenbeladene und/oder kondensierende Feuchtgase
DE10259410B4 (de) 2002-12-19 2005-08-25 Forschungszentrum Karlsruhe Gmbh Aerosolabscheider
US7112236B2 (en) * 2004-04-08 2006-09-26 Fleetguard, Inc. Multistage space-efficient electrostatic collector
US7267708B2 (en) 2005-04-20 2007-09-11 Air-Cure Dynamics, Inc. Rigid electrode ionization for packed bed scrubbers
DE102005023521B3 (de) 2005-05-21 2006-06-29 Forschungszentrum Karlsruhe Gmbh Nasselektrostatische Ionisierungsstufe in einer elektrostatischen Abscheideeinrichtung
DE102005045010B3 (de) 2005-09-21 2006-11-16 Forschungszentrum Karlsruhe Gmbh Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
DE102006055543B3 (de) * 2006-11-24 2008-01-24 Forschungszentrum Karlsruhe Gmbh Ionisierungsstufe und Kollektor einer Abgasreinigungsanlage

Also Published As

Publication number Publication date
EP2195115A2 (de) 2010-06-16
ATE545465T1 (de) 2012-03-15
US20110000375A1 (en) 2011-01-06
WO2009046787A3 (de) 2009-06-25
DE102007047250B8 (de) 2009-09-03
JP5193306B2 (ja) 2013-05-08
JP2010540231A (ja) 2010-12-24
DE102007047250B3 (de) 2009-04-02
US8500873B2 (en) 2013-08-06
WO2009046787A2 (de) 2009-04-16

Similar Documents

Publication Publication Date Title
EP2244834B1 (de) Elektrostatischer abscheider
DE3529057C2 (de)
DE69318655T2 (de) Venturi Isolator für einen elektrostatischen Abscheider
DE102005045010B3 (de) Elektrostatische Ionisierungsstufe in einer Abscheidungseinrichtung
DE102012020134A1 (de) Zyklonabscheider
EP2195115B1 (de) Bauliche struktur von abgasreinigungsanlagen
DE102006055543B3 (de) Ionisierungsstufe und Kollektor einer Abgasreinigungsanlage
EP0558873A1 (de) Vorrichtung zum Entfernen von Aerosolen aus der Luft eines Kernreaktor-Containments
DE19528286A1 (de) Abscheider für mit Feststoff- oder Flüssigpartikeln beladene Gasströme
WO1989004724A1 (en) Electrostatic filter for continuous separation of solid or liquid particles suspended in a gas stream
DE19651857C1 (de) Vorrichtung zur Abscheidung von Feststoffen aus staubbeladenen Abgasen, insbesondere von Verbrennungsanlagen
DE3625547C2 (de)
DE2460962C3 (de) Elektrostatischer Staubabscheider
DE102019101885A1 (de) Elektroabscheider in Stufenform
WO2008049925A1 (de) Trennvorrichtung für elektrostatische teilchen
DE2134165C3 (de) Naßelektroabscheider
WO1990006181A1 (de) Vorrichtung zum elektrostatischen abscheiden von festen teilchen und aerosolen aus gasen
DE2014524A1 (de) Vorrichtung zum Abschneiden von festen Partikeln aus Gasen
DD234802A1 (de) Verfahren und vorrichtung zur erhoehung der abscheideleistung von elektroabscheidern
DE1557008A1 (de) Elektrofilter mit Beipassablenkung
WO2004076029A1 (de) Tropfenabscheidereinheit und hiermit versehener rauchgaswäscher
DE102004058699A1 (de) Anordung zum Abschneiden von Aerosolen und Partikeln aus Gasen
DE10027884A1 (de) Elektrostatischer Staubabscheider
CH692416A5 (de) Elektrostatischer Filter.
DE3709553A1 (de) Umlenkeinrichtungen fuer rauchgase in kuehltuermen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 545465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120315

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008006425

Country of ref document: DE

Effective date: 20120419

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120516

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20121116

BERE Be: lapsed

Owner name: KARLSRUHER INSTITUT FUR TECHNOLOGIE

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008006425

Country of ref document: DE

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120820

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080820

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: NEW ADDRESS: GARTENSTRASSE 28 A, 5400 BADEN (CH)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180920

Year of fee payment: 11

Ref country code: NL

Payment date: 20180822

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180827

Year of fee payment: 11

Ref country code: AT

Payment date: 20180821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 12

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190901

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 545465

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008006425

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302