EP2193566A1 - Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication - Google Patents

Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication

Info

Publication number
EP2193566A1
EP2193566A1 EP08804802A EP08804802A EP2193566A1 EP 2193566 A1 EP2193566 A1 EP 2193566A1 EP 08804802 A EP08804802 A EP 08804802A EP 08804802 A EP08804802 A EP 08804802A EP 2193566 A1 EP2193566 A1 EP 2193566A1
Authority
EP
European Patent Office
Prior art keywords
metal
adhesive tape
aid
cell
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08804802A
Other languages
German (de)
English (en)
Inventor
Ines Becker
Cora Schillig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Inc
Original Assignee
Siemens Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Energy Inc filed Critical Siemens Energy Inc
Publication of EP2193566A1 publication Critical patent/EP2193566A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2428Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0252Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form tubular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to an aid for electrical contacting of high-temperature fuel cells, according to the preamble of claim 1.
  • the invention also relates to an associated method for producing such an aid for electrical contacting, in particular of SOFC fuel cells.
  • the power of the generator should equal the sum of the power of each cell.
  • a typical SOFC generator is made up of several subunits, stacks or stacks.
  • the stacks are composed of bundles with individual SOFC cells.
  • EP 1 786 056 A1 already discloses methods and materials for electrically contacting electrodes to interconnector layers in solid electrolyte fuel cells, in which the materials are dissolved in epoxy resins and applied to the contact points. In this case, tapes or transfer films can be used.
  • US Pat. No. 6,379,831 discloses a high-temperature fuel cell in the form of an SOFC, which has tubular fuel cells which are contacted with each other via metal braids. After all, it's all about tubular fuel cells.
  • HPD High Power .Density
  • the fuel cell consists of adjacent ⁇ or triangular forms. By stacking such fuel cells a sufficient electrical contact is realized with the interposition of metallic mesh mesh or knitted fabric.
  • the invention relates to a double-sided adhesive metal strip, with which compared to the use of liquid adhesives, a significant simplification is achieved. It is particularly advantageous that a cost-effective production of the tape can be done without special tools and that can be done with the so-created contacting aid a simple application in the fuel cell stack.
  • the metal-base adhesive tape provided by the invention serves to improve the stack-up handling of a fuel cell system and to drastically reduce the cost of the connection between cell connectors and cells.
  • the material costs for the nickel adhesive used in the prior art can be lowered significantly.
  • the new nickel-based metal-based adhesive tape provides 60 to 80% cost reduction compared to the nickel epoxy.
  • the contacting agent according to the invention is therefore designed in particular as a nickel adhesive tape, which is double-sided adhesive.
  • a nickel adhesive tape which is double-sided adhesive.
  • the main advantages of the nickel adhesive tape compared to the conventional contacting methods are a better control of the layer thickness and a cleaner and more accurate application without curing time and the possibility of automation in a mass production of fuel cells.
  • HPD High Power .Density
  • Delta
  • FIG. 1 shows a detail of a stack (stack) with a plurality of SOFC fuel cells of the ⁇ design and hollow cords for contacting
  • FIG. 2 shows the structure of a bundle with ⁇ 8 fuel cells and nickel rails for current discharge
  • FIG. 3 shows an enlargement from FIG. 1 with further details of the fuel cell and clarification of the tools for contacting
  • Figure 4 is an exploded view of the stages for the preparation of the contacting agent according to the invention.
  • FIG. 5 shows a nickel-ribbon hollow-cord connection for the intended use on the flank of an ⁇ 8 fuel cell with an enlarged metallographic micrograph of the metallic connection of the hollow cord to the nickel band.
  • FIGS. 1 to 3 will be described together.
  • FIGS. 1 and 2 eight ⁇ -channels 1 to 8 each form a ⁇ -cell 10.
  • Electrolyte and anode which are applied as functional layers on a ceramic body effective as a cathode, is referred to the relevant prior art.
  • the sequence of functional layers is illustrated in the enlarged view of FIG. There, reference numeral 15 denotes an interconnector, reference numeral 16 the electrolyte on the cathode support and reference numeral 17 the anode on the electrolyte 16. Otherwise, the functional layers are not shown separately in the figures, but are defined by the respective cell.
  • Nickel bars 31, 31 ' are arranged on both sides of the outer ⁇ cells. Between the lower and upper nickel rail 31, 31 'and the first or last cell is a nickel mats 25, 25' for mechanical damping while maintaining the electrical properties.
  • the individual delta cells 10, 10 ', 10 ", ... must be electrically contacted with one another, for which purpose suitable contact arrangements between the anode and the SOFC fuel cells usually present Interconnector must be provided. Secondary condition is that the electrical connection is such that mechanical forces can be absorbed during a long-term operation of the fuel cell system at changing temperature.
  • hollow cord is meant in particular a tubular knit, wherein the fabric has a free inner lumen for gas guidance and a predetermined wall thickness.
  • Such a knitted fabric can be manufactured automatically from metallic wires of predetermined diameter. Also wire spirals made of wires of predetermined diameter fall under the term "hollow cord”.
  • the wireforms 12, 12 ',... are arranged over the entire axial length of the HPD cells in the valleys of the ⁇ cells 1, 2,.
  • nickel or copper-based contact-making elements can be used for attachment of the hollow cords 12, 12 ', ... to the associated interconnector 15 on the one hand and the cell anodes 17 on the other hand.
  • a single turn is simplified as a single wire shown, which in this case forms the hollow cord, or consists of the tubular wire mesh.
  • the hollow cord and the surface of the delta cell are contacted with one another as a cell connector, for which purpose nickel epoxide, for example, is used in the prior art.
  • the primary requirement of the nickel adhesive is to produce a uniform electrical contact between the cell connectors and the cell anode 17 on the one hand and the interconnector 15 on the other hand and to minimize the voltage loss between cell connector and cell.
  • the bands run over the entire length of the HPD cells, ie for example 750 to 1000 mm or for example 750 to 1000 m.
  • the thin metal strips which have a thickness of at least 50 microns and have suitable electrical properties must be tacky on both sides before the temperature treatment in order to allow a tailor-made application.
  • the metal bands are manufactured as double-sided adhesive tape for this purpose.
  • An essential advantage of the double-sided adhesive tape is its easy handling, a homogeneous layer thickness and the resulting simple fixation of the cell connectors with the adhesive tape, which gives the cell structure a certain stability, without curing times would be necessary.
  • Commercially available nickel adhesive tapes in most cases have alloying agents and only a one-sided adhesive effect, which does not offer any progress to the nickel-epoxy for cell assembly.
  • Custom-made (rolled) nickel tapes with double-sided adhesive effect are considerably more expensive in comparison to nickel epoxy and too thick for their intended use.
  • the metal strip used here is designed as a double-sided adhesive tape, which is formed in the required layer thicknesses and in the desired tackiness. These properties can be achieved by various transfer and dispersion adhesives.
  • FIG. 4 shows the production of the double-sided nickel adhesive tape on the basis of partial figures a, b and c.
  • step a) nickel powder is slurried in distilled water with the aid of a dispersant and homogenized. After homogeneous mixing in the tumble mixer, is a dispersion adhesive (acrylate) was added, mixed again and the resulting slip on a transfer tape preciselyräkelt.
  • a dispersion adhesive acrylate
  • a dispersion adhesive 23 or a second transfer adhesive tape is once again scratched or glued onto the upper side, if required, in order to increase the adhesive capacity on this side.
  • a higher nickel content normally leads to a reduction in the adhesiveness, which leads to the necessity of applying an additional adhesive layer in a further step.
  • Part 4c) shows the finished adhesive tape, which after firing a porous body with a porosity between 40 and 80%, for example 50% realized.
  • double-sided nickel adhesive tapes in various lengths and widths can be produced in a simple manner.
  • Such adhesive tapes are particularly suitable for application in particular in ⁇ cells.
  • the necessary sintering process can take place "in situ", after which the required electrical and mechanical properties are achieved.
  • nickel adhesive tapes 20 produced by the method described can be advantageously used to construct SOFC fuel cells which are designed as HPD cells according to the ⁇ design. It is important to establish a permanent electrical connection between the formed as a hollow cord cell connector 13 and the fuel cell anode 17, to which the metal-adhesive tape 20 serves as an aid.
  • the micrograph shows in proper magnification that after sintering at about 1000 0 C, a material connection between at least one wire of the hollow cord 12 and the porous nickel region 20 and that therewith an electrical contact is achieved. Equally, however, the elastic properties of the cell compound are maintained to the required extent.
  • a confirmation of the required properties is carried out by electrical measurements.
  • electrical resistance measurement knitted hollow cords made of nickel wire were glued between two nickel components in delta geometry with the aid of the nickel adhesive tape and heated to 1000 ° C. The resistance measurement was carried out in a four-point measurement. The results confirm the achievement of the target value of 1 m ⁇ .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une bande métallique adhésive double face s'utilisant comme moyen de mise en contact dans des piles à combustible à oxyde solide (SOFC). La nouvelle bande adhésive apporte une importante simplification par rapport à l'utilisation actuelle d'une colle liquide. Sa fabrication simple et économique sans outil particulier et son application facile dans un empilement de cellules électrochimiques offrent une bonne possibilité de production à l'échelle industrielle et de minimisation des coûts de conception. La bande métallique adhésive double face est appropriée pour simplifier la conception de groupes de cellules. Les avantages de la bande métallique adhésive par rapport aux systèmes de mise en contact classiques sont un meilleur contrôle de l'épaisseur des couches, une application propre et précise sans temps de durcissement et la possibilité d'automatisation lors d'une production à l'échelle industrielle.
EP08804802A 2007-09-28 2008-09-26 Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication Withdrawn EP2193566A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007046976 2007-09-28
PCT/EP2008/062925 WO2009043818A1 (fr) 2007-09-28 2008-09-26 Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication

Publications (1)

Publication Number Publication Date
EP2193566A1 true EP2193566A1 (fr) 2010-06-09

Family

ID=39970883

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08804802A Withdrawn EP2193566A1 (fr) 2007-09-28 2008-09-26 Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication

Country Status (7)

Country Link
US (1) US8673519B2 (fr)
EP (1) EP2193566A1 (fr)
JP (1) JP2010541146A (fr)
KR (1) KR20100098497A (fr)
CA (1) CA2700951A1 (fr)
DE (1) DE102008049463A1 (fr)
WO (1) WO2009043818A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2195869B1 (fr) * 2007-09-28 2011-10-26 Siemens Energy, Inc. Système de piles à combustible et son procédé de fabrication
KR20140053568A (ko) * 2012-10-26 2014-05-08 삼성전기주식회사 고체산화물 연료전지 모듈
JP7009317B2 (ja) 2018-06-21 2022-01-25 本田技研工業株式会社 燃料電池モジュール及び燃料電池システム
JP6960886B2 (ja) 2018-06-21 2021-11-05 本田技研工業株式会社 燃料電池モジュール及び燃料電池システム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6379831B1 (en) 2000-08-02 2002-04-30 Siemens Westinghouse Power Corporation Expanded nickel screen electrical connection supports for solid oxide fuel cells
DE10113361A1 (de) * 2001-03-20 2002-09-26 Andreas Roosen Verfahren zur Verbindung keramischer Grünkörper unter Verwendung eines Transfertapes und Überführung dieser verklebten Grünkörper in einen Keramikkörper
JP2003138231A (ja) * 2001-10-30 2003-05-14 Daikin Ind Ltd フッ素樹脂不織布貼付用テープまたはシート
US7153601B2 (en) * 2002-10-29 2006-12-26 Hewlett-Packard Development Company, L.P. Fuel cell with embedded current collector
US7157172B2 (en) * 2003-05-23 2007-01-02 Siemens Power Generation, Inc. Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells
JP2005129514A (ja) * 2003-09-30 2005-05-19 Toto Ltd 筒状燃料電池集合体
DE102005011669A1 (de) * 2004-05-28 2006-09-21 Siemens Ag Hochtemperatur-Festelektrolyt-Brennstoffzelle und damit aufgebaute Brennstoffzellenanlage
DE102004047761A1 (de) * 2004-09-30 2006-04-27 Siemens Ag Hochtemperatur-Brennstoffzellenanlage und Verfahren zur Herstellung von Kontaktierungselementen für eine derartige Brennstoffzellenanlage
US7645535B2 (en) 2005-11-14 2010-01-12 General Electric Company Method and materials for bonding electrodes to interconnect layers in solid oxide fuel cell stacks

Also Published As

Publication number Publication date
US8673519B2 (en) 2014-03-18
US20110262841A1 (en) 2011-10-27
KR20100098497A (ko) 2010-09-07
DE102008049463A1 (de) 2009-04-02
JP2010541146A (ja) 2010-12-24
WO2009043818A1 (fr) 2009-04-09
CA2700951A1 (fr) 2009-04-09

Similar Documents

Publication Publication Date Title
EP1738428B1 (fr) Liaison ceramique-acier electroconductrice et procede de production associe
EP0424732A1 (fr) Elément de conduction du courant pour des cellules à combustible empilées fonctionnant à haute température et sa méthode de fabrication
DE4016157A1 (de) Vorrichtung zur umwandlung von chemischer energie in elektrische energie mittels in serie geschalteter flacher, ebener hochtemperatur-brennstoffzellen
DE102017002736B4 (de) Verbundkörper und verfahren zur herstellung des verbundkörpers
EP2335312A1 (fr) Procédé de fabrication d'un interconnecteur pour piles à combustible à haute température, pile à combustible à haute température correspondante et système de piles à combustible constitué de piles à combustible de ce type
DE69838054T2 (de) Ultrafeines Nickelpulver
DE10060653A1 (de) Elektrischer Doppelschicht-Kondensator
EP2193566A1 (fr) Moyen permettant la mise en contact électrique de piles à combustible à haute température et son procédé de fabrication
EP1774543B1 (fr) Composant électrique et procédé pour produire un composant électrique
DE2321478A1 (de) Thermistor und verfahren zu seiner herstellung
DE10317388B4 (de) Brennstoffzelle und/oder Elektrolyseur sowie Verfahren zu deren/dessen Herstellung
DE60031943T2 (de) Verfahren zur herstellung von elektronischen bauteilen
DE202013012667U1 (de) Zelle, Zellenstapeleinheit, elektrochemisches Modul und elektrochemisches Gerät
WO2010037665A1 (fr) Cellule électrochimique haute température et dispositif de cellules électrochimiques correspondant
DE112011103324T5 (de) Kollektormaterial für Brennstoffzellen
EP1794824A2 (fr) Systeme de piles a combustible a haute temperature, et procede de production d'elements de contact pour un tel systeme de piles a combustible
DE1218072B (de) Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers
WO2008025572A1 (fr) Ensemble pile à combustible
DE102018106953A1 (de) Stapelbatterie
EP1386334A1 (fr) Composant ceramique multicouche et son procede de production
EP2195869B1 (fr) Système de piles à combustible et son procédé de fabrication
EP1790025B1 (fr) Pile a combustible haute temperature empilable
DE112004001144T5 (de) Festoxid-Brennstoffzelle
DE102022203941A1 (de) Bipolarelement, insbesondere Bipolarplatte, und Herstellungsverfahren
DE102017209960A1 (de) Verfahren zum Herstellen einer Elektrode, insbesondere für eine Batterie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100322

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHILLIG, CORA

Inventor name: BECKER, INES

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20111018