EP2189956B1 - Brandmelder und Verfahren zur Erkennung von Verschmutzungen - Google Patents

Brandmelder und Verfahren zur Erkennung von Verschmutzungen Download PDF

Info

Publication number
EP2189956B1
EP2189956B1 EP08020315.1A EP08020315A EP2189956B1 EP 2189956 B1 EP2189956 B1 EP 2189956B1 EP 08020315 A EP08020315 A EP 08020315A EP 2189956 B1 EP2189956 B1 EP 2189956B1
Authority
EP
European Patent Office
Prior art keywords
housing
openings
fire
frequency
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08020315.1A
Other languages
English (en)
French (fr)
Other versions
EP2189956A1 (de
Inventor
David Baum
Lacoste Thilo
Siegfried Roeske
Ansgar Vöhringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hekatron Vertriebs GmbH
Original Assignee
Hekatron Vertriebs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hekatron Vertriebs GmbH filed Critical Hekatron Vertriebs GmbH
Priority to EP08020315.1A priority Critical patent/EP2189956B1/de
Publication of EP2189956A1 publication Critical patent/EP2189956A1/de
Application granted granted Critical
Publication of EP2189956B1 publication Critical patent/EP2189956B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B29/00Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
    • G08B29/12Checking intermittently signalling or alarm systems
    • G08B29/14Checking intermittently signalling or alarm systems checking the detection circuits
    • G08B29/145Checking intermittently signalling or alarm systems checking the detection circuits of fire detection circuits
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to a fire detector, with a sensor that detects smoke that penetrates into a detection range of the detector, the detector has a device with which can be determined whether the ingress of smoke, other aerosols or gas in the detection area is disturbed.
  • the invention relates to a method by which disturbances of the penetration of smoke, other aerosols or gas can be detected in the Er chargedsberelch the detector.
  • the measuring light transmitter is aligned with an optical sump.
  • the optical sump is set in mechanical vibration during a smoke measurement with a frequency in the inaudible frequency range.
  • the light transmitted by the transmitter is partially reflected at the sump on a measuring receiver and generates there an alternating signal, while light that is scattered on existing (background) aerosols on the receiver, generates a DC signal.
  • no new background aerosol can penetrate into the detection area, while the existing aerosol settles. Therefore, when the aerosol-related background signal disappears, soiling of the smoke inlets is inferred.
  • a smoke detector is described, which is installed in the exhaust duct of an aircraft tollet.
  • at least two pressure sensors are used here.
  • One of the pressure sensors is located in the detector, another behind the ventilation grille of the toilet and possibly a third person in the toilet room. If z. As the detector covered, so creates a pressure difference between the pressure sensor in the detector and the sensors outside the detector. This pressure difference is detected and evaluated for the detection of a cover.
  • the EP 0 503 167 A1 and the JP 222 78 00 describe scattered light smoke detectors with a detection area in a measuring chamber, which is protected by a grid from the entry of insects. Outside the grating a test light source is mounted, which shines through the grating and whose light can be detected inside the detector at a receiver. If the grid becomes dirty, the smoke entering the detection area is disturbed and less light can pass through the grid. The resulting reduced reception of the test light inside the detector is interpreted as an indication of contamination of the insect screen.
  • a scattered light smoke detector is described with a detection area in a measuring chamber, which is surrounded by an impurity filter.
  • a light guide is laid annularly, which collects light that passes through the pollution filter and passes to a receiver. The strength of the light passing through the contaminant filter is evaluated as a measure of contamination of the contaminant filter.
  • the detector has an ultrasonic sensor that monitors the area around the scattering point (detection area).
  • the ultrasonic sensor is used to examine the area around the detector for foreign bodies, which impair the flow conditions for fire detection, thus impairing the entry of smoke into the detection area of the detector.
  • a smoke detector with a detection area in a measuring chamber and a method has become known with which the blockage of an insect protection net with openings that allow the entry of smoke into the detection area of the detector can be detected.
  • the resonance frequency of a sound body which is located in the interior of the detector, tuned to the resonant frequency of the measuring chamber with unpolluted insect grid.
  • the resonance frequency of the measuring chamber results from the volume of the measuring chamber and the area and depth of the openings by means of the Helmholtz equations.
  • a blockage of the insect net is to show that the resonant frequency of the measuring chamber relative to the resonance frequency of the sound body shifts and the vibration of the sound body stops.
  • the DE 10 2006 023 048 A1 a smoke alarm device with a sensor that optically and / or acoustically scans at least one of the openings in the housing of the detector.
  • a sensor that optically and / or acoustically scans at least one of the openings in the housing of the detector.
  • the distance sensor is mounted inside the housing and directed towards the housing opening of the smoke detector. If the monitored opening is open, the distance z. B. measured to the next wall, while in a cover of the opening, only the distance is measured to the cover. A cover of the opening can thus be detected.
  • the invention is therefore an object of the invention to provide a smoke detector and a method of the type mentioned above, with which even with a mounted directly to the housing openings protection against dirt or insects impairment of the penetration of smoke, other aerosols or gas in the detection area can be recognized, or provide alternatives to the known prior art.
  • the invention is based on the following findings: All components of a smoke detector such. As the housing, the openings, insect protection, circuit board and measuring chamber have different acoustic impedances.
  • the acoustic impedances of individual components depend on their material properties and their geometry.
  • the invention relates to a method for detecting disturbances of penetration of fire characteristics such as smoke in a detection range of a fire detector with a housing.
  • the housing has openings for the occurrence of the fire characteristics in the detection area, which in the interior of the housing z. B. is within a scattered light measuring chamber.
  • dirt or covers of the housing openings and / or insect protection are recognized by, on the one hand, a characteristic acoustic field is generated within the smoke detector by exciting a sound transducer.
  • the characteristic acoustic field is created by superposition of sound waves that are emitted directly from the transducer and sound waves that are at least partially reflected at acoustic interfaces inside and outside of the detector.
  • At least one physical variable of the acoustic field such as amplitude and / or phase, is measured at at least one location within the acoustic field and the measured value (s) is compared with at least one reference. If in this case the at least one measured value deviates from the reference by a predeterminable amount, contamination or covering of the smoke intrusion openings or of the insect protection is ascertained.
  • fire characteristics especially aerosols such.
  • smoke and gases that arise during combustion meant.
  • all other measurable phenomena which occur in the event of a fire penetrate into the housing of a detector and can be measured in its detection range are also considered fire characteristics.
  • fire characteristics means which simulate the aforementioned fire characteristics to z. B. to test a fire alarm.
  • a detection area is an area with which a fire parameter must come into contact or a room area in which a fire parameter must penetrate, so that it can be detected by the corresponding sensor system.
  • the detection area is the space in which the light beam of a measuring light transmitter and the field of view of a scattered light receiver overlap.
  • the insect screen in turn is a grid or tissue, which is permeable to the measured fire characteristic, but disturbances such. B. insects and coarse particles from the detection area keeps away.
  • the sound transducer is excited with at least one discrete frequency.
  • the frequency, the location of the transducer and the locations of one or more microphones are mutually matched.
  • the tuning can be experimental or based on a simulation of the characteristic sound field and its interference by contamination or coverage of the fire alarm, z. B. by means of a finite element simulation done. For reasons of symmetry, it may make sense that the transducer is placed in the middle of the housing.
  • a temperature dependence of the characteristic sound field can, for. B. be compensated with a frequency selected in dependence on the temperature, resulting in a reliable detection of contamination over a wide temperature range.
  • the sound transducer is excited with a plurality of different discrete frequencies, wherein for the measured values of the sound field for each frequency a comparison is made with a respective reference belonging to this frequency.
  • the additional frequencies may cause soiling or debris in areas of the housing that are at a single frequency, e.g. B. due to Schallabschattungen, less well recognized, have been detected better.
  • the different measurement frequencies can be selected depending on the temperature.
  • a variant of the method according to the invention is that the sound transducer with a frequency sweep (frequency sweep) is excited in a defined frequency interval with a sequence of frequencies and a resulting spectrum is measured at least one location in the acoustic field.
  • Deviations of the measured spectrum to a reference spectrum can, for. B. by means of a rule-based analysis and / or pattern recognition z.
  • B. by means of a fuzzy log or neural networks and / or cross-correlation of both spectra are detected. Since a measured spectrum has a characteristic pattern for each measuring location, which shifts substantially unchanged along the frequencies in the case of temperature changes, a further temperature compensation can be dispensed with here, especially if the changes in the pattern are evaluated.
  • this variant of the method, as well as the variant with a plurality of discrete frequencies allows conclusions to be drawn about the location or the respective housing opening at which there is a cover or contamination.
  • the invention also relates to a method for detecting disturbances of the penetration of fire characteristics into a detection area of a fire detector with a housing having openings for the occurrence of the fire characteristics in the detection area, the method detects soiling or covering the housing openings and / or insect protection in which it is not the effects of changes in impedance on a characteristic sound field that are measured, but the acoustic impedances themselves. Accordingly, the acoustic impedances of the complete fire detector and / or the housing openings and / or the insect protection are measured in this method. A contamination or a cover is detected when one or more of the measured acoustic impedances deviates from a reference corresponding to the respective impedance by a predeterminable amount.
  • a compensation of temperature dependencies of the measurements can be made by references selected as a function of the temperature from a table.
  • this table is completed during the operation of the detector.
  • All recorded measured values are stored in the table at the currently prevailing temperature as the reference value. Amplitudes or phases are assigned to their respective frequencies.
  • a new contamination measurement is carried out. If a plausibility check of these values shows that the detector is still not soiled or uncovered, these values are entered as reference values in the table for the respective temperature.
  • temperatures are reached that already have reference values in the table, then the values already entered are used as references for the contamination detection.
  • the values already entered are used as references for the contamination detection.
  • the rows of the table are assigned different temperatures, while the columns are assigned different frequencies.
  • a fire detector according to the invention comprises a detection area for fire parameters in a housing which has openings for penetration of the fire characteristics and means for detecting soiling or covering of the housing openings and / or an insect screen.
  • the means for detecting contaminants or covers of the housing openings and / or the insect screen comprise a sounder that generates a characteristic acoustic field preferably in a non-audible frequency range in the housing of the fire detector, at least one microphone at least one suitably chosen location, the changes in amplitude and / or the phase of the characteristic acoustic field detected at each location and a Control and evaluation unit, which closes on exceeding the changes of amplitude and / or phase by a predeterminable amount to a contamination or cover.
  • the changes in amplitude and / or the phase of the acoustic field at the location of the measurement are caused by a changed reflection behavior, ie by changes in the acoustic impedance of the housing openings and / or insect protection.
  • the means for detecting contaminants or covers of the housing openings and / or insect protection of a fire detector according to the invention comprise a unit for measuring the acoustic impedances of the complete fire detector and / or the housing openings and / or the insect protection.
  • the control and evaluation unit of this fire detector according to the invention detects a contamination or a cover when one or more of the measured acoustic impedances deviates from a corresponding reference by a predeterminable amount.
  • the acoustic impedance of the complete fire detector is determined based on at least one of the resonant frequencies of the sounder.
  • the means for detecting contaminants or covers of the housing openings and / or insect protection comprise a unit for measuring at least one resonance frequency of a sounder and a control and evaluation unit, which compares the measured resonance frequencies with a corresponding reference frequency and at Exceeding recognized deviations from a respective reference frequency by a predeterminable amount detects contamination or coverage.
  • FIG. 1 shows schematically a fire detector (1) according to the invention, whose function with the aid of FIGS. 3a-3c is explained.
  • the FIGS. 3a-3b each show, by way of example, a continuous amplitude spectrum 17 abc in the frequency range from a to t and a line spectrum formed from a plurality of discrete frequencies a-t.
  • a continuous amplitude spectrum 17abc can be measured on the microphone 15 in the fire detector 1 when the sound transducer 8 is excited with a continuous frequency sweep while a discrete line spectrum a-t is measured when the sound transducer 8 is excited at several discrete frequencies a-t.
  • the frequencies a-t are preferably located in a non-audible frequency range for measurement purposes.
  • the detector 1 has a housing 2 with openings 10a and 10b, in which a measuring chamber 3 is housed.
  • a measuring chamber 3 In the measuring chamber 3 is the detection range for Rauch18, which results from the intersection of a Messlichtkegels emitted from the measuring light transmitter 4, with the field of view of the scattered light receiver 5, the measuring chamber 3 is bounded laterally by a labyrinth 12 through which on the one hand smoke in the measuring chamber 3 and the detection area 18 can penetrate, on the other hand, extraneous light is prevented from penetrating into the measuring chamber 3.
  • Smoke that enters the measuring chamber must first pass through the housing openings 10a, 10b and the insect screen 11.
  • the smoke detector 1 Since it happens again and again that smoke detectors z. B. are masked during renovation and then forgotten to remove the cover or pollute the insect screen 11 over time and then smoke can not penetrate unhindered in the detection area 18, the smoke detector 1 has a device according to the invention with which such covers or dirt can be recognized and displayed.
  • a device comprises, in addition to a control and evaluation unit 16 and a microphone 15, a sound generator 8, which is mounted here between the housing 2 and the measuring chamber 3. In this position, he could on the one hand sound as an alarm through the sound outlet opening 7 in the housing outwardly conceivable would be an additional use as a communication interface z. B. in the ultrasonic range - and on the other hand pass through the sound inlet opening 6 inwards into the measuring chamber 3.
  • the sound entering the measuring chamber 3 is reflected therein several times and passes through the labyrinth 12 from the measuring chamber 3 in the surrounding housing 2 and there is also on housing boundaries, the boundary surfaces of the housing openings, not shown 10a 10b, the insect screen 11 is reflected and partially passes back into the measuring chamber 3 in which the microphone 15 is mounted.
  • the superimposition of sound waves which are emitted directly from the sounder with the reflected sound waves, creates a characteristic sound field, which in some places has larger and at other locations smaller amplitudes and different phase angles compared to the original signal.
  • Fig. 3a each exemplary a continuous amplitude spectrum 17a and a discrete line spectrum at, which can be measured with the microphone 15 in the unpolluted uncovered state of the smoke detector 1 with appropriate detector geometry and matching material properties.
  • Spectrum 17a and the in Fig. 3a therefore, amplitudes a - t also serve as references for the detection of soiling or covers.
  • a continuous spectrum 17 ac can be measured if the sound generator 8 is excited with a continuous frequency sweep, while the discrete spectra are absent in the Fig. 3a-c result when the sound generator 8 is excited at the discrete frequencies a-t.
  • the result of the measurement and the comparison is stored in the fire detector 1, transmitted via an interface, not shown, to an external unit and can be displayed acoustically or visually directly on the detector.
  • the frequencies o, p and q are also suitable as a single frequency or as a frequency group for detecting contamination or covering of the housing openings 10 or of the insect screen 11.
  • the arrangement of the microphone 15 in the measuring chamber as in Fig. 1 it is shown simplified the detection of contamination of the insect screen 11, if this, as is the case with some fire detectors, is mounted directly on or in the measuring chamber. Soiling of the labyrinth could be recognized as well.
  • Fig. 2 shows an alternative embodiment of a fire detector according to the invention.
  • the measuring chamber 3 with the measuring light transmitter 4 and the scattered light receiver 5 together with the sounder 8, the control and evaluation unit 16 and two opposing microphones 15 a and 15 b are arranged together on a printed circuit board 14 in the housing 2.
  • the sounder 8 preferably acts both as an alarm and as a sounder for the pollution measurement.
  • the contamination measurement is preferably carried out at inaudible frequencies.
  • the use of two microphones at different locations enhances the detection of soils or covers by better detecting sounds that are shadowed by the measuring chamber 3 or other components not shown, by the second microphone.
  • the contamination detection is otherwise performed as described above.
  • the result of the contamination measurement can then be displayed directly on the detector, transmitted via an interface, not shown, to an interrogator, a central office or the like or stored for later retrieval in a memory, not shown.
  • a fire detector 1 Since the amplitude changes described above are predominantly due to changes in the acoustic impedances Z G / I of the housing openings 10 and the insect screen 11, the impedance changes in another fire detector 1 according to the invention directly as an indication of contamination or covers of the housing openings 10 and the Insektengittrs 11 of the fire detector 1 evaluated.
  • a fire detector according to the invention has a device for measuring the acoustic impedances of the housing openings 10 or of the insect screen 11.
  • the sounder 8 emits an acoustic signal whose reflections are measured by a housing opening 10a, 10b or an insect screen 11.
  • the measured acoustic impedances Z G Z I in the control and evaluation unit 16 are compared with limit values which are determined as a function of the impedances of an unpolluted or uncovered detector. If Z G / I deviates by a predetermined amount from the value of an uncovered or unpolluted housing opening 10a, 10b or the insect screen 11, then the housing opening 10a, 10b or the insect screen 11 is considered covered or at least so heavily polluted that Smoke no longer undisturbed can penetrate into the detection range 18 of the fire alarm.
  • the acoustic impedance Z M of the complete fire detector 1 is derived in a further inventive fire detector 1, taking into account the piezoelectric basic equations of the resonant frequency of the sounder 8.
  • a piezoelectric sounder 8 is used with feedback electrode for this purpose, which is connected to the feedback input of the excitation circuit, not shown. Due to the resulting feedback of the sounder 8 is automatically excited via the excitation contacts, via which the sounder 8 is connected to the signal output of the excitation circuit, with one of its resonance frequencies. The resonance frequency is then determined by measuring the period.
  • the determination of the acoustic impedance of the detector is dispensed with.
  • the measured resonant frequency of the sounder 8 is compared with the resonant frequency of an unpolluted uncovered detector 1.
  • a contamination or cover of the housing openings 10 and the insect screen 11 is detected when the measured resonance frequency deviates by a certain amount from the reference frequency at a clean and uncovered detector 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

    Technisches Gebiet
  • Die Erfindung betrifft einen Brandmelder, mit einer Sensorik, die Rauch, der in einen Erfassungsbereich des Melders eindringt, erkennt, wobei der Melder über eine Vorrichtung verfügt, mit der festgestellt werden kann, ob das Eindringen von Rauch, weiteren Aerosolen oder Gas in den Erfassungsbereich gestört ist. Außerdem betrifft die Erfindung ein Verfahren, mit denen Störungen des Eindringens von Rauch, weiteren Aerosolen oder Gas in den Erfassungsberelch des Melders festgestellt werden kann.
  • Stand der Technik
  • Zu den Aufgaben von Rauchmeldem gehört es, Schadensfeuer zu erkennen und diese zu melden oder unmittelbar Maßnahmen gegen die Ausbreitung von Feuer und Rauch einzuleiten. Rauchmelder dienen damit der Sicherheit von Menschen, Gebäuden und Wertgegenständen. Damit sichergestellt ist, dass die Melder stets zuverlässig diese der Sicherheit dienenden Aufgabe erfüllen können, müssen die Melder regelmäßig geprüft und gewartet werden. So schreibt z. B. die DIN EN 14676 als Norm für Rauchwarnmelder eine jährliche Sichtkontrolle vor, bei welcher eine Verschmutzung der Raucheintrittsöffnungen des Melders überprüft werden soll. Eine solche Sichtkontrolle erfordert es, dass die Personen, welche diese Prüfung vornehmen, Zugang zu den Räumen haben in denen die Melder installiert sind. Mit dem Ziel, den damit verbundenen Personalaufwand und die Kosten zu reduzieren, sind bereits verschiedene Methoden bekannt geworden, um Verschmutzungen
    der Raucheintrittsöffnungen bzw. damit einhergehende Störungen des Eindringens von Rauch in den Erfassungsbereich des Melders automatisch zu erkennen.
  • In der DE 44 09 900 C1 wird ein Streulichtrauchmelder beschrieben, dessen Messlichtsender auf einen optischen Sumpf ausgerichtet ist. Der optische Sumpf wird während einer Rauchmessung mit einer Frequenz im nicht hörbaren Frequenzbereich in mechanische Schwingungen versetzt. Das vom Sender gesendete Licht wird an dem Sumpf teilweise auf einen Messempfänger reflektiert und erzeugt dort ein Wechselsignal, während Licht, das an vorhandenen (Hintergrund-) Aerosolen auf den Empfänger gestreut wird, ein Gleichsignal erzeugt. Wenn die Raucheintrittsöffnungen des Melders verstopfen, kann kein neues Hintergrundaerosol in den Erfassungsbereich eindringen, während sich das vorhandene Aerosol absetzt. Daher wird beim Verschwinden des aerosolbedingten Hintergrundsignals auf eine Verschmutzung der Raucheintrittsöffnungen geschlossen.
  • In der DE 103 1 688 A1 wird ein Rauchmelder beschrieben, der im Abluftkanal einer Flugzeugtollette installiert ist. Um zu erkennen, ob in den Rauchmelder noch Rauch eindringen kann oder ob die Raucheintrittsöffnungen verschmutzt, abgedeckt oder zugeklebt sind, werden hier mindestens zwei Drucksensoren verwendet. Einer der Drucksensoren befindet sich im Melder, ein Anderer hinter dem Lüftungsgitter der Toilette und ggf. ein Dritter im Toilettenraum. Wird z. B. der Melder abgedeckt, so entsteht ein Druckunterschied zwischen dem Drucksensor im Melder und den Sensoren außerhalb des Melders. Dieser Druckunterschied wird delektiert und für die Erkennung einer Abdeckung ausgewertet.
  • Die EP 0 503 167 A1 und die JP 222 78 00 beschreiben Streulichtrauchmelder mit einem Erfassungsbereich in einer Messkammer, welche durch ein Gitter vor dem Eintritt von Insekten geschützt ist. Außerhalb des Gitters ist eine Testlichtquelle angebracht, die durch das Gitter hindurch leuchtet und deren Licht im Inneren des Melders an einem Empfänger detektiert werden kann. Wenn das Gitter verschmutzt, wird der Raucheintritt in den Erfassungsbereich gestört und es kann weniger Licht durch das Gitter hindurch treten. Der dadurch verringerte Empfang des Testlichtes im Inneren des Melders wird als Hinweis für eine Verschmutzung des Insektengitters gewertet.
  • In der EP 1 870 866 A1 wird ein Streulichtrauchmelder mit einem Erfassungsbereich in einer Messkammer beschrieben, die von einem Verunreinigungsfilter umgeben ist. Auf der Innenseite des Verunreinigungsfilters, durch welchen Rauch in den Melder eindringen kann, ist ein Lichtleiter ringförmig verlegt, der Licht, das durch den Verunreinigungsfilter hindurch tritt sammelt und auf einen Empfänger leitet. Die Stärke des durch den Verunreinigungsfllter hindurch getretenen Lichtes wird als Maß für die Verschmutzung des Verunreinigungsfilters ausgewertet.
  • Aus der EP 1 191 496 ist ein Streulichtrauchmelder bekannt, dessen Erfassungsbereich außerhalb des Melders liegt. Der Melder weist einen Ultraschallsensor auf, mit dem das Gebiet um den Streupunkt (Erfassungsbereich) überwacht wird. Der Ultraschallsensor wird unter anderem dazu verwendet, den Bereich um den Melder auf Fremdkörper zu untersuchen, die eine Beeinträchtigung der Strömungsverhältnisse für die Branderkennung bedeuten, also den Eintritt von Rauch in den Erfassungsbereich des Melders beeinträchtigen.
  • Aus der JP 02128298 wiederum ist ein Rauchmelder mit einem Erfassungsbereich in einer Messkammer und ein Verfahren bekannt geworden, mit dem die Verstopfung eines Insektenschutznetzes mit Öffnungen, die den Eintritt von Rauch in den Erfassungsbereich des Melders erlauben, erkannt werden kann. Hierfür wird die Resonanzfrequenz eines Schallkörpers, der sich im inneren des Melders befindet, auf die Resonanzfrequenz der Messkammer bei unverschmutztem Insektengitter abgestimmt. Dabei ergibt sich die Resonanzfrequenz der Messkammer mittels der Helmholtzgleichungen aus dem Volumen der Messkammer und der Fläche und Tiefe der Öffnungen. Im Betrieb des Melders soll sich eine Verstopfung des Insektenschutznetzes daran zeigen, dass sich die Resonanzfrequenz der Messkammer gegenüber der Resonanzfrequenz des Schallkörpers verschiebt und die Schwingung des Schallkörpers stoppt.
  • Um Störungen des Eindringens von Rauch, in den Erfassungsbereich eines Rauchmelders zu erkennen, schlägt die DE 10 2006 023 048 A1 einen Rauchwarnmelder mit einem Sensor vor, der wenigstens eine der Öffnungen im Gehäuse des Melders optisch und/oder akustisch abtastet. Zur optischen Abtastung wird eine Extinktions- und/ oder Abstandsmessung vorgeschlagen, während für eine akustische 5 Abtastung nur eine Abstandsmessung vorgeschlagen wird. Der Abstandssensor ist hierfür innerhalb des Gehäuses montiert und auf die Gehäuseöffnung des Rauchwarnmelders gerichtet. Wenn die überwachte Öffnung offen ist, kann die Entfernung z. B. zur nächsten Wand gemessen werden, während bei einer Abdeckung der Öffnung nur die Entfernung bis zur Abdeckung gemessen wird. Eine Abdeckung der Öffnung kann somit erkannt werden.
  • Mit dieser Anordnung ist es aber nicht möglich, eine Verschmutzung eines Schutzgitters festzustellen, da die Entfernung zwischen Insektenschutzgitter und Abstandssensor unabhängig vom Grad der Verschmutzung des Schutzgitters ist.
  • Ebenso wenig ist es möglich, die Verschmutzung einer Öffnung im Gehäuse eines Rauchmelders zu erkennen, bei dem ein Insektengitter, gleichbedeutend mit einem Verunreinigungsfilter, unmittelbar vor den Gehäuseöffnungen innerhalb oder außerhalb des Gehäuses angebracht ist, wie es bei vielen Rauchmeldern üblich ist. Auch in diesem Fall wird der Abstandssensor immer nur die Entfernung zum Insektengitter messen, unabhängig davon, ob das Gitter verschmutzt ist, sich ein Gegenstand vor der Öffnung befindet, oder die Öffnung abgeklebt ist.
  • Aufgabe der Erfindung
  • Der Erfindung liegt daher die Aufgabe zugrunde, einen Rauchmelder und ein Verfahren der eingangs genannten Art bereit zu stellen, mit denen auch bei einem unmittelbar an den Gehäuseöffnungen angebrachten Schutz gegen Verschmutzungen oder Insekten eine Beeinträchtigung des Eindringens von Rauch, weiteren Aerosolen oder Gas in den Erfassungsbereich erkannt werden kann, bzw. Alternativen zu dem bekannten Stand der Technik bereitzustellen.
  • Beschreibung der Erfindung
  • Die Lösung der Aufgabe erfolgt, nach den Oberbegriffen und den kennzeichnenden Merkmalen der Ansprüche 1, 6, 7, 8, 10 und 12 und wird im Folgenden näher beschrieben.
  • Die Erfindung geht von folgenden Erkenntnissen aus: Alle Komponenten eines Rauchmelders wie z. B. das Gehäuse, dessen Öffnungen, Insektenschutz, Leiterplatte und Messkammer weisen unterschiedliche akustische Impedanzen auf.
  • Schall, der auf eine Grenzfläche zwischen zwei Medien trifft, die eine unterschiedliche akustische Impedanz aufweisen, wird in Abhängigkeit der Impedanzunterschiede unterschiedlich stark reflektiert.
  • Die akustischen Impedanzen einzelner Komponenten sind von deren Materialelgenschaften und deren Geometrie abhängig.
  • Basierend auf diesen Erkenntnissen betrifft die Erfindung ein Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen wie Rauch in einen Erfassungsbereich eines Brandmelders mit einem Gehäuse. Dabei weist das Gehäuse Öffnungen zum Eintritt der Brandkenngrößen in den Erfassungsbereich auf, der im Inneren des Gehäuses z. B. innerhalb einer Streulichtmesskammer liegt. Mit dem erfindungsgemäßen Verfahren werden Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und /oder eines Insektenschutzes erkannt, indem zum einen ein charakteristisches akustisches Feld innerhalb des Rauchmelders durch Anregen eines Schallwandlers erzeugt wird. Das charakteristische akustische Feld entsteht dabei durch Überlagerung von Schallwellen, die direkt vom Schallwandler abgestrahlt werden und von Schallwellen, die an akustischen Grenzflächen innerhalb und außerhalb des Melders wenigstens teilweise reflektiert werden. Zum anderen wird mindestens eine physikalische Größe des akustischen Feldes wie Amplitude und/oder Phase an wenigstens einem Ort innerhalb des akustischen Feldes gemessen und der bzw. die Messwerte mit wenigstens einer Referenz verglichen. Wenn hierbei der mindestens ein Messwert von der Referenz um einen vorbestimmbaren Betrag abweicht, wird eine Verschmutzung oder Abdeckung der Raucheindringöffnungen bzw. des Insektenschutzes festgestellt.
  • Im Zusammenhang mit der vorliegenden Erfindung sind mit Brandkenngrößen vor allem Aerosole wie z. B. Rauch und Gase, die bei einer Verbrennung entstehen, gemeint. Als Brandkenngrößen gelten hier aber auch alle anderen messbaren Phänomene, die bei einem Brand auftreten, in das Gehäuse eines Melders eindringen und in dessen Erfassungsbereich gemessen werden können. Ebenso sind als Brandkenngrößen Mittel zu verstehen, welche die zuvor genannten Brandkenngrößen simulieren um z. B. einen Brandmelder zu testen.
  • Unter einem Erfassungsbereich ist eine Fläche, mit welcher eine Brandkenngröße in Kontakt kommen muss oder ein Raumbereich zu verstehen, in den eine Brandkenngröße eindringen muss, damit sie von der entsprechenden Sensorik erfasst werden kann. Beispielsweise ist bei einem Streulichtrauchmelder der Erfassungsbereich der Raum, in dem sich der Lichtstrahl eines Messlichtsenders und das Sichtfeld eines Streulichtempfängers überschneiden.
  • Der Insektenschutz wiederum ist ein Gitter oder Gewebe, welches durchlässig für die zu messende Brandkenngröße ist, aber Störgrößen wie z. B. Insekten und grobe Partikel aus dem Erfassungsbereich fernhält.
  • In einem erfindungsgemäßen Verfahren wird der Schallwandler mit mindestens einer diskreten Frequenz angeregt. Um dabei ein möglichst optimales Messergebnis zu erzielen, werden die Frequenz, der Ort des Schallwandlers und die Orte eines oder mehrer Mikrofone gegenseitig aufeinander abgestimmt. Das Abstimmen kann dabei experimentell oder aber auch auf Basis einer Simulation des charakteristischen Schallfeldes und dessen Störung durch Verschmutzung oder Abdeckung des Brandmelders, z. B. mittels einer Finite-Elemente-Simulation, erfolgen. Aus Symmetriegründen kann es dabei sinnvoll sein, dass der Schallwandler in der Mitte des Gehäuses platziert ist. Eine Temperaturabhängigkeit des charakteristischen Schallfeldes kann z. B. mit einer in Abhängigkeit zur Temperatur gewählten Frequenz kompensiert werden, was zu einer sicheren Erkennung von Verschmutzungen über einen weiten Temperaturbereich führt.
  • In einer Weiterentwicklung des Verfahrens wird der Schallwandler mit mehreren unterschiedlichen diskreten Frequenzen angeregt, wobei für die Messwerte des Schallfeldes für jede Frequenz ein Vergleich mit einer jeweils zu dieser Frequenz gehörenden Referenz durchgeführt wird. Durch die zusätzlichen Frequenzen können Verschmutzungen oder Abdeckungen in Bereichen des Gehäuses, die bei Verwendung einer einzigen Frequenz, z. B. aufgrund von Schallabschattungen, weniger gut erkannt werden, besser detektiert worden. Auch hier können die verschiedenen Messfrequenzen in Abhängigkeit von der Temperatur gewählt werden.
  • Eine Variante des erfindungsgemäßen Verfahrens besteht darin, dass der Schallwandler mit einem Frequenzdurchlauf (Frequenzsweep) in einem definierten Frequenz-intervall mit einer Folge von Frequenzen angeregt wird und ein resultierendes Spektrum an mindestens einem Ort im akustischen Feld gemessen wird. Abweichungen des gemessenen Spektrums zu einem Referenzspektrum können z. B. mittels einer regelbasierten Analyse und/oder einer Mustererkennung z. B. mittels einer Fuzzy-Loglk oder neuronaler Netze und/oder einer Kreuzkorrelation beider Spektren erkannt werden. Da ein gemessenes Spektrum ein für jeden Messort charakteristisches Muster aufweist, das sich bei Temperaturänderungen weitgehend unverändert entlang den Frequenzen verschiebt, kann hier auf eine weitere Temperaturkompensation verzichtet werden, wenn vor allem die Änderungen in dem Muster ausgewertet werden. Zusätzlich erlaubt diese Variante des Verfahrens ebenso wie die Variante mit mehreren diskreten Frequenzen Rückschlüsse auf den Ort bzw. auf die jeweilige Gehäuseöffnung, an der eine Abdeckung oder Verschmutzung vorliegt.
  • Die Erfindung betrifft ebenso ein Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen in einen Erfassungsbereich eines Brandmelders mit einem Gehäuse, das Öffnungen zum Eintritt der Brandkenngrößen in den Erfassungsbereich aufweist, wobei mit dem Verfahren Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder eines Insektenschutzes erkannt werden, bei weichem nicht die Auswirkungen von Impedanzänderungen auf ein charakteristisches Schallfeld, sondern die akustischen Impedanzen selbst gemessen werden. Demnach werden in diesem Verfahren die akustischen Impedanzen des kompletten Brandmelders und/oder der Gehäuseöffnungen und/oder des Insektenschutzes gemessen. Eine Verschmutzung oder eine Abdeckung wird dann erkannt, wenn eine oder mehrere der gemessenen akustischen Impedanzen von einer der jeweiligen Impedanz entsprechenden Referenz um einen vorbestimmbaren Betrag abweicht. Wird z. B. eine Gehäuseöffnung abgedeckt, dann werden Schallwellen an der Abdeckung stärker reflektiert als ohne Abdeckung. Somit ändert sich die akustische Impedanz dieser Öffnung, aber auch die akustische Impedanz des gesamten Meldergehäuses, die näherungsweise als Parallelschaltung der Impedanzen aller Gehäuseöffnungen dargestellt werden kann. Ebenso ändert sich das Reflexionsverhalten eines Insektenschutzes, wenn dieser zunehmend verschmutzt.
  • Verfahren zum Messen der akustischen Impedanzen sind prinzipiell bekannt und müssen daher im Grunde nicht näher erläutert werden. Dennoch wird hier auf die DE 103 26 078 A1 verwiesen, aus der ein Verfahren zum Messen von akustischen Impedanzen beschrieben ist, bei dem die Resonanzfrequenz eines Schallwandlers gemessen wird und aus welcher dann die akustische Impedanz des Mediums abgeleitet wird, das den Schallwandler umgibt. Da in den erfindungsgemäßen Verfahren die Änderung der akustischen Impedanzen als Indiz für eine Verschmutzung oder Abdeckung der Gehäuseöffnungen bzw. eines Insektenschutzes genutzt wird, wird in einem weiteren Verfahren die Änderung der Resonanzfrequenz ausgewertet. In diesem Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen in einen Erfassungsbereich eines Brandmelders mit einem Gehäuse, das Öffnungen zum Eintritt der in den Erfassungsbereich aufweist, wird zum Nachweis von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder eines Insektenschutzes mindestens eine Resonanzfrequenz eines Schallwandlers im Inneren des Melders gemessen. Die gemessenen Resonanzfrequenzen werden mit einer der jeweiligen Resonanzfrequenz entsprechenden Referenzfrequenz verglichen. Wenn die mindestens eine gemessene Resonanzfrequenz um einen vorbestimmbaren Betrag von ihrer Referenzfrequenz abweicht, dann wird eine Verschmutzung oder Abdeckung erkannt. Ähnlich wie sich die Freiluft Resonanzfrequenz eines Lautsprechers zu einer anderen Resonanzfrequenz verschiebt, wenn der Lautsprecher in ein Lautsprechergehäuse eingebaut wird, verschiebt sich hier die Resonanzfrequenz eines Schallwandlers im Gehäuse des Brandmelders, wenn die Gehäuseöffnungen und/oder ein Insektenschutz durch Verschmutzung oder Abdeckung zunehmend verstopfen. Zur Messung der Resonanzfrequenz des Schallgebers, kann dabei auf Verfahren zurückgegriffen werden, wie sie in der DE 102 26 078 A1 oder in der EP1898377 beschrieben sind.
  • In allen oben beschriebenen Verfahren, kann eine Kompensation von Temperaturabhängigkeiten der Messungen durch Referenzen erfolgen, die in Abhängigkeit der Temperatur aus einer Tabelle gewählt werden. Bevorzugt wird diese Tabelle während des Betriebes des Melders vervollständigt. Zur Erstellung und Vervollständigung der Tabelle werden Messungen im unverschmutzten nicht abgedeckten Zustand z. B. im Werk, bei der Inbetriebnahme und während der Nutzungsphase durchgeführt. Alle dabei aufgenommenen Messwerte werden in die Tabelle bei der gerade herrschenden Temperatur als Referenzwert abgelegt. Amplituden bzw. Phasen werden Ihren jeweiligen Frequenzen zugeordnet. Sobald der Melder im Betrieb eine neue Temperatur erreicht, wird eine neue Verschmutzungsmessung durchgeführt. Wenn eine Plausibilitätsprüfung dieser Werte ergibt, dass der Melder noch unverschmutzt bzw. nicht abgedeckt ist, werden diese Werte zur jeweiligen Temperatur als Referenzwerte in die Tabelle eingetragen. Werden Temperaturen erreicht, bei denen bereits Referenzwerte in der Tabelle stehen, dann werden die bereits eingetragenen Werte als Referenz für die Verschmutzungserkennung verwendet. Für die Auswertung der Amplituden eines charakteristischen Schallfeldes können z. B. den Zeilen der Tabelle verschiedene Temperaturen zugeordnet werden, während den Spalten verschiedene Frequenzen zugeordnet sind.
  • Die Erfindung betrifft ferner auch einen Brandmelder, mit dem o. g. Verfahren durchgeführt werden können. Ein erfindungsgemäßer Brandmelder umfasst einen Erfassungsbereich für Brandkenngrößen in einem Gehäuse, das Öffnungen zum Eindringen der Brandkenngrößen aufweist und Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder eines Insektenschutzes. Die Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder des Insektenschutzes umfassen einen Schallgeber, der ein charakteristisches akustisches Feld vorzugsweise in einem nichthörbaren Frequenzbereich im Gehäuse des Brandmelders erzeugt, mindestens ein Mikrofon an mindestens einem geeignet gewählten Ort, das Änderungen der Amplitude und/oder der Phase des charakteristischen akustischen Feldes am jeweiligen Ort erfasst und eine Steuer- und Auswerteeinheit, welche beim Überschreiten der Änderungen von Amplitude und/oder der Phase um einen vorbestimmbaren Betrag auf eine Verschmutzung oder Abdeckung schließt.
  • Dabei werden die Änderungen von Amplitude und/oder der Phase des akustischen Feldes am Ort der Messung durch ein geändertes Reflexionsverhalten also durch Änderungen der akustischen Impedanz der Gehäuseöffnungen und/oder eines Insektenschutzes hervorgerufen.
  • In einer anderen Ausführungsform umfassen die Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder eines Insektenschutzes eines erfindungsgemäßen Brandmelders, eine Einheit zum Messen der akustischen Impedanzen des kompletten Brandmelders und/oder der Gehäuseöffnungen und/oder des Insektenschutzes. Die Steuer- und Auswerteeinheit dieses erfindungsgemäßen Brandmelders stellt eine Verschmutzung oder eine Abdeckung fest, wenn eine oder mehrere der gemessenen akustischen Impedanzen von einer entsprechenden Referenz um einen vorbestimmbaren Betrag abweicht. In einer Weiterentwicklung dieser Ausführungsform wird, in der Einheit zum Messen der akustischen Impedanzen, die akustische Impedanz des kompletten Brandmelders anhand mindestens einer der Resonanzfrequenzen des Schallgebers bestimmt.
  • In einer weiteren Ausführungsform des erfindungsgemäßen Brandmelders umfassen die Mitteln zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen und/oder eines Insektenschutzes eine Einheit zum Messen mindestens einer Resonanzfrequenz eines Schallgebers und eine Steuer- und Auswerteeinheit, welche die gemessenen Resonanzfrequenzen mit einer entsprechenden Referenzfrequenz vergleicht und beim Überschreiten erkannter Abweichungen von einer jeweiligen Referenzfrequenz um einen vorbestimmbaren Betrag eine Verschmutzung oder Abdeckung erkennt.
  • Kurz Beschreibung der Zeichnungen
  • Fig. 1
    zeigt einen erfindungsgemäßen Brandmelder
    Fig. 2
    zeigt einen anderen Erfindungsgemäßen Brandmelder mit einer anderen Bauform
    Fg. 3a
    zeigt Schallspektren eines unverschmutzten Brandmelders
    Fig. 3b
    zeigt Schallspektren eines Brandmelders mit einer Abdeckung an einer Stelle des Brandmelders
    Fig. 3c
    zeigt Schallspektren eines Brandmelders mit einer Abdeckung an einer anderen Stelle als in Fig. 3b
    Beschreibung der Ausführungsbeispiele
  • Fig. 1 zeigt schematisch einen erfindungsgemäßen Brandmelder (1), dessen Funktion mit Hilfe der Figuren 3a - 3c erläutert wird. Die Figuren 3a - 3b zeigen jeweils beispielhaft ein kontinuierliches Amplitudenspektrum 17 abc im Frequenzbereich von a bis t und ein aus mehreren diskreten Frequenzen a - t gebildetes Linienspektrum. Ein kontinuierliches Amplitudenspektrum 17abc kann an dem Mikrofon 15 im Brandmelder 1 gemessen werden, wenn der Schallwandler 8 mit einem kontinuierlichen Frequenzdurchlauf angeregt wird, während ein diskretes Linienspektrum a - t gemessen wird, wenn der Schallwandler 8 mit mehreren diskreten Frequenzen a - t angeregt wird. Die Frequenzen a - t liegen zu Messzwecken vorzugsweise in einem nicht hörbaren Frequenzbereich.
  • Am Beispiel eines Streulichtrauchmelders 1 wird nun ein erfindungsgemäßer Brandmelder 1 erklärt. Der Melder 1 verfügt über ein Gehäuse 2 mit Öffnungen 10a und 10b, in dem eine Messkammer 3 untergebracht ist. In der Messkammer 3 befindet sich der Erfassungsbereich für Rauch18, welcher sich aus der Überschneidung eines Messlichtkegels ergibt, der vom Messlichtsender 4 abgestrahlt wird, mit dem Sichtbereich des Streulichtempfängers 5, Die Messkammer 3 wird seitlich durch ein Labyrinth 12 begrenzt, durch welches einerseits Rauch in die Messkammer 3 und den Erfassungsbereich 18 eindringen kann, andererseits Fremdlicht vom Eindringen in die Messkammer 3 abgehalten wird. Rauch, der in die Messkammer eindringt, muss vorher die Gehäuseöffnungen 10a, 10b und das Insektengitter 11 passieren. Da es immer wieder vorkommt, dass Rauchmelder z. B. bei Renovierungsarbeiten abgeklebt werden und anschließend vergessen wird die Abdeckung zu entfernen oder die Insektengitter 11 im laufe der Zeit verschmutzen und dann Rauch nicht mehr ungehindert in den Erfassungsbereich 18 eindringen kann, verfügt der Rauchmelder 1 über eine erfindungsgemäße Vorrichtung mit welcher derartige Abdeckungen oder Verschmutzungen erkannt und angezeigt werden können. Eine solche Vorrichtung umfasst neben einer Steuer- und Auswerteeinheit 16 und einem Mikrofon 15 einen Schallerzeuger 8, der hier zwischen dem Gehäuse 2 und der Messkammer 3 angebracht ist. In dieser Position kann er einerseits Schall als Alarm durch die Schallaustrittsöffnung 7 im Gehäuse nach außen- denkbar wäre auch eine zusätzliche Verwendung als Kommunikationsschnittstelle z. B. im Ultraschallbereich - und andererseits durch die Schalleintrittsöffnung 6 nach innen in die Messkammer 3 abgeben. Der Schall der in die Messkammer 3 eintritt, wird darin mehrfach reflektiert und tritt durch das Labyrinth 12 aus der Messkammer 3 in das umgebende Gehäuse 2 und wird dort ebenfalls an Gehäusebegrenzungen, den nicht dargestellten Begrenzungeflächen der Gehäuseöffnungen 10a 10b, dem Insektengitter 11 reflektiert und gelangt teilweise zurück in die Messkammer 3 in der das Mikrofon 15 angebracht ist. Durch die Überlagerung von Schallwellen, die direkt vom Schallgeber abgegeben werden mit den reflektierten Schallwellen entsteht ein charakteristisches Schalffeld, das an manchen Orten größere und an anderen Orten kleinere Amplituden sowie unterschiedliche Phasenwinkel im Vergleich zum Ursprungssignal aufweist. Durch Veränderung des Reflexionsverhaltens z. B. durch eine Abdeckung der Gehäuseöffnungen 10a 10b oder eine Verschmutzung des Insektengitters verändert sich das Schalffeld und somit auch die Amplituden bzw. Phasenlagen an den jeweiligen Orten. So zeigt Fig. 3a jeweils exemplarisches ein kontinuierliches Amplitudenspektrum 17a und ein diskretes Linienspektrum a-t, weiche mit dem Mikrofon 15 im unverschmutzten unabgedeckten Zustand des Rauchmelders 1 bei passender Meldergeometrie und passenden Materialeigenschaften gemessen werden können. Spektrum 17a und die in Fig. 3a dargestellten Amplituden a - t dienen daher auch als Referenzen für die Erkennung von Verschmutzungen oder Abdeckungen. Ein kontinuierliches Spektrum 17 a-c kann gemessen werden, wenn der Schallerzeuger 8 mit einem kontinuierlichen Frequenzsweep angeregt wird, während sich die diskreten Spektren a- t in den Fig. 3a-c ergeben, wenn der Schallerzeuger 8 mit dem diskreten Frequenzen a - t angeregt wird.
  • Fig. 3b zeigt exemplarische Spektren 17b, a-t wie sie sich bei einer Abdeckung der Öffnung 10a ergeben können während Fig. 3c mögliche Spektren 17c, a-t bei einer Abdeckung der Öffnung 10b zeigt. Durch Vergleich der Spektren 17b und a-t aus Fig. 3b mit den Referenzspektren 17a und a-t aus Fig. 3a zeigt sich eine deutliche Verminderung der Amplituden im Frequenzbereich von h - k und eine Erhöhung der Amplituden im Frequenzbereich o - q. Demgegenüber zeigt ein Vergleich der Referenzspektren in Fig. 3a mit den Spektren 17c und a-t in Fig. 3c eine deutliche Verminderung der Amplituden im Frequenzbereich von a - c und eine Erhöhung der Amplituden im Frequenzbereich o - q. Demnach können Verschmutzungen oder Abdeckungen in der Steuer- und Auswerteeinheit 16 (Fig. 2) durch Anwendung der beispielhaften Regel:
    • "Wenn im Frequenzbereich von h - k die Amplituden deutlich kleiner und im Frequenzbereich o - q deutlich größer als im Referenzspektrum sind, dann liegt eine Verschmutzung oder Abdeckung im Bereich der Gehäuseöffnung 10a vor und wenn Im Frequenzbereich von a - c die Amplituden deutlich kleiner und im Frequenzbereich o - q größer als im Referenzspektrum sind, dann liegt eine Verschmutzung oder Abdeckung im Bereich der Gehäuseöffnung 10b vor"
    • erkannt werden.
  • Das Ergebnis der Messung und des Vergleiches wird im Brandmelder 1 gespeichert, über eine nicht gezeigte Schnittstelle an eine externe Einheit übertragen und kann direkt am Melder akustisch oder optisch angezeigt werden.
  • Vergleicht man nur den Frequenzbereich o - q in den Fig. 3a - 3c miteinander, dann erkennt man, dass die Amplituden der Frequenzen o, p und q bei einer Verschmutzung größer als im sauberen Zustand sind. Damit sind die Frequenzen o, p und q auch als einzelne Frequenz oder als Frequenzgruppe zur Detektion einer Verschmutzung oder Abdeckung der Gehäuseöffnungen 10 bzw. des Insektengitters 11 geeignet.
  • Die Anordnung des Mikrofons 15 in der Messkammer wie es in Fig. 1 gezeigt ist vereinfacht die Erkennung von Verschmutzungen des Insektengitters 11, wenn dieses, wie es bei einigen Brandmelder der Fall ist, direkt an oder in der Messkammer angebracht ist. Auch Verschmutzungen des Labyrinthes könnten so erkannt werden.
  • Fig. 2 zeigt eine alternative Ausführung eines erfindungsgemäßen Brandmelders. Hier sind die Messkammer 3 mit dem Messlichtsender 4 und dem Streulichtempfänger 5 gemeinsam mit dem Schallgeber 8, der Steuer- und Auswerteeinheit 16 und zwei einander gegenüberliegenden Mikrofonen 15a und 15b gemeinsam auf einer Leiterplatte 14 im Gehäuse 2 angeordnet. Auch hier fungiert der Schallgeber 8 bevorzugt sowohl als Alarmgeber und als Schallgeber für die Verschmutzungsmessung. Die Verschmutzungsmessung wird vorzugsweise mit nicht hörbaren Frequenzen durchgeführt. Die Verwendung von zwei Mikrofonen an unterschiedlichen Orten verbessert die Erkennung von Verschmutzungen oder Abdeckungen, indem Schall, der durch die Messkammer 3 oder andere nicht dargestellte Komponenten abgeschattet wird, durch das zweite Mikrofon besser erfasst werden kann. Die Verschmutzungserkennung wird ansonsten wie oben beschrieben durchgeführt. Das Ergebnis der Verschmutzungsmessung kann dann direkt am Melder angezeigt, über eine nicht dargestellte Schnittstelle an ein Abfragegerät, eine Zentrale oder dergleichen übertragen oder zur späteren Abfrage In einem nicht dargestellten Speicher abgelegt werden.
  • Da die oben beschriebenen Amplitudenänderungen vorwiegend auf Änderungen der akustischen Impedanzen ZG/I der Gehäuseöffnungen 10 bzw. des Insektengitters 11 zurück zuführen sind, werden die Impedanzänderungen in einem weiteren erfindungsgemäßen Brandmelder 1 direkt als Hinweis für Verschmutzungen oder Abdeckungen der Gehäuseöffnungen 10 bzw. des Insektengittrs 11 des Brandmelders 1 ausgewertet. Ein solcher erfindungsgemäßer Brandmelder verfügt über eine Einrichtung zum Messen der akustischen Impedanzen der Gehäuseöffnungen 10 bzw. des Insektengitters 11. Dazu gibt der Schallgeber 8 ein akustisches Signal ab, dessen Reflektionen von einer Gehäuseöffnung 10a, 10b bzw. eines Insektenschutzes 11 gemessen werden. Der Quotient aus dem Originalsignal und dem reflektierten Signal ergibt den Reflexionsgrad r, aus dem über die bekannte akustische Impedanz der Luft Z0 die Impedanz ZG/I der Gehäuseöffnungen 10a, 10b bzw. des Insektenschutzes 11 über nachfolgende Formel berechnet wird. Z on = Z 0 1 + r 1 - r
    Figure imgb0001
  • Anschließend werden die gemessenen akustischen Impedanzen ZG ZI in der Steuer- und Auswerteeinheit 16 mit Grenzwerten verglichen, die in Abhängigkeit der Impedanzen eines unverschmutzten bzw. nicht abgedeckten Melders bestimmt werden. Wenn ZG/I um einen vorbestimmten Betrag vom Wert einer nicht abgedeckten bzw. unverschmutzten Gehäuseöffnung 10a, 10b bzw. des Insektengitters 11 abweicht, dann gilt die Gehäuseöffnung 10a, 10b bzw. der Insektenschutz 11 als abgedeckt oder zumindest als so stark verschmutzt, dass Rauch nicht mehr ungestört in den Erfassungsbereich 18 des Brandmelders eindringen kann.
  • Die akustische Impedanz ZM des kompletten Brandmelders 1 wird in einem weiteren erfindungsgemäßen Brandmelder 1 unter Berücksichtigung der piezoelektrischen Grundgleichungen von der Resonanzfrequenz des Schallgebers 8 abgeleitet. Als Schallgeber 8 wird hierfür ein Piezoschallgeber 8 mit Feedbackelektrode eingesetzt, die mit dem Feedbackeingang des nicht dargestellten Anregungsschaltkreises verbunden ist. Durch die so entstehende Rückkopplung wird der Schallgeber 8 automatisch über die Anregungskontakte, über welche der Schallgeber 8 mit dem Signalausgang des Anregungsschaltkreises verbunden ist, mit einer seiner Resonanzfrequenzen angeregt. Die Resonanzfrequenz wird dann über die Messung der Periodendauer bestimmt.
  • In einer weiteren Ausführung eines erfindungsgemäßen Brandmelders wird auf die Bestimmung der akustischen Impedanz des Melders verzichtet. Dafür wird in der Steuer- und Auswerteeinheit 16 die gemessene Resonanzfrequenz des Schallgebers 8 mit der Resonanzfrequenz eines unverschmutzten nicht abgedeckten Melders 1 verglichen. Bei diesem Brandmelder 1 wird eine Verschmutzung oder Abdeckung der Gehäuseöffnungen 10 bzw. des Insektengitters 11 erkannt, wenn die gemessene Resonanzfrequenz um einen bestimmten Betrag von der Referenzfrequenz bei einem sauberen und nicht abgedeckten Melder 1 abweicht.

Claims (12)

  1. Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen in einen Erfassungsbereich (18) eines Brandmelders (1) innerhalb eines Gehäuses (2), das Öffnungen (10) zum Eintritt der Brandkenngrößen in den Erfassungsbereich (18) aufweist, wobei mit dem Verfahren Verschmutzungen oder Abdeckungen insbesondere der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11) erkannt werden, gekennzeichnet durch die Verfahrenschritte:
    a. Erzeugen eines charakteristischen akustischen Feldes innerhalb des Rauchmelders durch anregen eines Schallwandlers (8) und durch Überlagerung von direkt vom Schallwandler (8) abgestrahlten Schallwellen, mit deren Reflektionen an Grenzflächen innerhalb und außerhalb des Melders (1).
    b. Messen mindestens einer physikalischen Größe des akustischen Feldes insbesondere von Amplitude (a-t) und/oder Phase an wenigstens einem Ort (15) innerhalb des akustischen Feldes im Rauchmelder,
    c. Vergleichen des mindestens einen Messwertes mit einer Referenz,
    d. Erkennen einer Verschmutzung oder Abdeckung der Raucheindringöffnungen des Melders, wenn der mindestens eine Messwert von der Referenz um einen vorbestimmbaren Betrag abweicht.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der Schallwandler (8) mit mindestens einer diskreten Frequenz (a - t) angeregt wird.
  3. Verfahren nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass der Schallwandler (8) mit mehreren unterschiedlichen diskreten Frequenzen (a - t) angeregt wird und für jede Frequenz (a - t) ein Vergleich mit einer jeweiligen Referenz durchgeführt wird.
  4. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass der Schallwandler mit einem Frequenzdurchlauf (Sweep) in einem definierten Frequenz-Intervall angeregt wird und ein resultierendes Spektrum (17a/b/c) an mindestens einem Ort (15) im akustischen Feld gemessen wird.
  5. Verfahren nach Anspruch 3 oder 4 dadurch gekennzeichnet, dass Abweichungen des gemessenen kontinuierlichen oder Linienspektrums (17b 17c) zu einem Referenzspektrum (17a) mittels einer regelbasierten Analyse und/oder einer Mustererkennung z. B. mittels einer Fuzzy-Logik oder neuronaler Netze und/oder einer Kreuzkorrelation erkannt werden.
  6. Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen in einen Erfassungsbereich (18) eines Brandmelders (1) innerhalb eines Gehäuses (2), das Öffnungen (10) zum Eintritt der Brandkenngrößen in den Erfassungsbereich (18) aufweist, wobei mit dem Verfahren Verschmutzungen oder Abdeckungen insbesondere der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11) erkannt werden, gekennzeichnet durch das Messen der akustischen Impedanzen des kompletten Brandmelders (1) und/oder der Gehäuseöffnungen (10) und/oder des Insektenschutzes (11), wobei eine Verschmutzung oder eine Abdeckung erkannt wird, wenn eine oder mehrere der gemessenen akustischen Impedanzen von einer entsprechenden Referenz um einen vorbestimmbaren Betrag abweicht.
  7. Verfahren zum Erkennen von Störungen des Eindringens von Brandkenngrößen in einen Erfassungsbereich (18) eines Brandmelders (1) innerhalb eines Gehäuses (2), das Öffnungen (10) zum Eintritt der Brandkenngrößen in den Erfassungsbereich (18) aufweist, wobei mit dem Verfahren Verschmutzungen oder Abdeckungen insbesondere der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11) erkannt werden, gekennzeichnet dadurch, dass mindestens eine Resonanzfrequenz eines Schallwandlers (8) im inneren des Melders (1) gemessen und mit einer entsprechenden Referenzfrequenz verglichen wird, und wobei eine Verschmutzung oder Abdeckung erkannt wird, wenn die mindestens eine gemessene Resonanzfrequenz um einen vorbestimmbaren Betrag abweicht.
  8. Brandmelder geeignet zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 5 mit einem Erfassungsbereich (18) für Brandkenngrößen in einem Gehäuse (2), das Öffnungen (10) zum Eindringen der Brandkenngrößen aufweist, und mit Mitteln zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11), dadurch gekennzeichnet, dass die Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und/oder des Insektenschutzes (11), einen Schallgeber (8) im inneren des Gehäuses (2), der ein charakteristisches akustisches Feld im Gehäuse (2) erzeugt, mindestens ein Mikrofon (15) an mindestens einem geeignet gewählten Ort (15) im Gehäuse (2), das Änderungen der Amplitude und/oder der Phase des charakteristischen akustischen Feldes am jeweiligen Ort (15) erfasst und eine Steuer- und Auswerteeinheit (16), welche beim Überschreiten der Änderungen von Amplitude und/oder der Phase um einen vorbestimmbaren Betrag auf eine Verschmutzung oder Abdeckung schließt, umfassen.
  9. Brandmelder nach Anspruch 8 dadurch gekennzeichnet, dass die Änderungen von Amplitude und/oder der Phase des akustischen Feldes durch Änderungen der akustischen Impedanz der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11) bedingt sind.
  10. Brandmelder geeignet zur Durchführung eines Verfahrens nach Anspruch 6 mit einem Erfassungsbereich (18) für mindestens eine Brandkenngröße in einem Gehäuse(2), das Öffnungen (10) zum Eindringen der Brandkenngröße aufweist, und mit Mitteln zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und/oder eines lnsektenschutzes (11) dadurch gekennzeichnet, dass die Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und oder des Insektenschutzes (11), eine Einheit zum Messen der akustischen Impedanzen des kompletten Rauchmelders (1) und/oder der Raucheindringöffnungen (10) und/oder des Insektenschutzes (11) umfassen, wobei eine Verschmutzung oder eine Abdeckung festgestellt wird, wenn eine oder mehrere der gemessenen akustischen Impedanzen von einer entsprechenden Referenz um einen vorbestimmbaren Betrag abweicht und eine Steuer- und Auswerteeinheit (16), welche beim Überschreiten der Abweichung um einen vorbestimmbaren Betrag, eine Verschmutzung oder Abdeckung erkennt.
  11. Brandmelder nach Anspruch 10 gekennzeichnet durch eine Vorrichtung zum messen von Resonanzen, wobei die akustische Impedanz anhand mindestens einer der Resonanzfrequenz des Schallgebers (8) bestimmt wird.
  12. Brandmelder geeignet zur Durchführung eines Verfahrens nach Anspruch 7 mit einem Erfassungsbereich (18) für mindestens eine Brandkenngröße in einem Gehäuse(2), das Öffnungen (10) zum Eindringen der Brandkenngröße aufweist, und mit Mitteln zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und/oder eines Insektenschutzes (11), dadurch gekennzeichnet, dass die Mittel zum Erkennen von Verschmutzungen oder Abdeckungen der Gehäuseöffnungen (10) und/oder des Insektenschutzes (11), einen Schallgeber (8) im inneren des Gehäuses (2), der ein charakteristisches akustisches Feld im Gehäuse (2) erzeugt, eine Einheit zum Messen mindestens einer Resonanzfrequenz des Schallgebers (8) und eine Steuer- und Auswerteeinheit (16), welche die gemessenen Resonanzfrequenzen mit einer entsprechenden Referenzfrequenz vergleicht und beim Überschreiten erkannter Abweichungen von einer jeweiligen Referenzfrequenz um einen vorbestimmbaren Betrag eine Verschmutzung oder Abdeckung erkennt, umfassen.
EP08020315.1A 2008-11-21 2008-11-21 Brandmelder und Verfahren zur Erkennung von Verschmutzungen Active EP2189956B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08020315.1A EP2189956B1 (de) 2008-11-21 2008-11-21 Brandmelder und Verfahren zur Erkennung von Verschmutzungen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08020315.1A EP2189956B1 (de) 2008-11-21 2008-11-21 Brandmelder und Verfahren zur Erkennung von Verschmutzungen

Publications (2)

Publication Number Publication Date
EP2189956A1 EP2189956A1 (de) 2010-05-26
EP2189956B1 true EP2189956B1 (de) 2013-05-08

Family

ID=40751003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08020315.1A Active EP2189956B1 (de) 2008-11-21 2008-11-21 Brandmelder und Verfahren zur Erkennung von Verschmutzungen

Country Status (1)

Country Link
EP (1) EP2189956B1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014002931U1 (de) 2014-04-04 2014-05-06 Siemens Schweiz Ag Gefahrenmelder mit einer auf einem lichtemittierenden Halbleiter basierenden Projektionseinheit zur Projektion einer benutzerseitigen Information weg vom Gefahrenmelder
US10983103B2 (en) * 2018-11-23 2021-04-20 Msa Technology, Llc Detection of blockage in a porous member

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788457B2 (en) * 2016-02-05 2020-09-29 Msa Technology, Llc Detection of blockage in a porous member
DE102018000292A1 (de) * 2018-01-16 2019-02-14 Diehl Aviation Gilching Gmbh Rauchmelder und Verfahren zum Erkennen einer Verschmutzung oder Abdeckung eines Rauchmelders
US11415562B2 (en) 2019-05-14 2022-08-16 Msa Technology, Llc Detection of blockage in a porous member
DE102020206453A1 (de) * 2020-05-25 2021-11-25 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Verschmutzungserkennung eines Brandmelders, Brandmelder, Computerprogramm und maschinenlesbares Speichermedium
CN112509271B (zh) * 2020-11-25 2024-03-22 中国民用航空飞行学院 一种毫米波感烟探测装置及其探测方法
EP4057247A1 (de) 2021-03-08 2022-09-14 Carrier Corporation Verfahren zur brandmelderabdeckungsdetektion und entsprechende brandmelderdetektionsvorrichtung
DE102021214823A1 (de) 2021-12-21 2023-06-22 Robert Bosch Gesellschaft mit beschränkter Haftung Brandmelder, Verfahren zur Detektion eines Verschlusses und/oder einer Verschmutzung einer Raucheintrittsöffnung eines Brandmelders, Computerprogramm und maschinenlesbares Speichermedium
EP4246483A1 (de) 2022-03-18 2023-09-20 Siemens Schweiz AG Brandmelder mit unbeheizten thermistoren, insbesondere ntcs, zur erfassung thermischer fluktuationen im bereich der eintrittsöffnungen sowie korrespondierendes verfahren

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8210633U1 (de) * 1982-04-15 1982-09-02 Dentan K.K., Tokyo Feuermeldegeraet
JPH0644318B2 (ja) * 1988-11-09 1994-06-08 ニッタン株式会社 検出器
JPH02227800A (ja) 1989-02-28 1990-09-10 Hochiki Corp 光電式煙感知器
EP0503167B1 (de) 1991-03-12 1995-06-14 Matsushita Electric Works, Ltd. Rauchmelder und Verfahren zum Testen eines solchen Melders
DE4409900C1 (de) 1994-03-23 1995-04-13 Preussag Ag Minimax Optischer Rauchmelder
DE10046992C1 (de) 2000-09-22 2002-06-06 Bosch Gmbh Robert Streulichtrauchmelder
DE10301688B3 (de) 2003-01-17 2004-08-26 Stryker Leibinger Gmbh & Co. Kg System und Vorrichtung zum Messen von Knochenschrauben
DE10326078A1 (de) 2003-06-10 2005-01-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Messung der akustischen Impedanz einer Flüssigkeit
DE102006023048C5 (de) 2006-05-17 2014-12-11 Techem Energy Services Gmbh Brandwarnmelder und Verfahren zur Überprüfung dessen Funktionsfähigkeit
ATE464629T1 (de) 2006-06-24 2010-04-15 Brunata Waermemesser Hagen Gmb Rauchwarnmelder
EP1898377A1 (de) 2006-09-08 2008-03-12 Hekatron Vertriebs GmbH Melder und Verfahren zum Testen dieses Melders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014002931U1 (de) 2014-04-04 2014-05-06 Siemens Schweiz Ag Gefahrenmelder mit einer auf einem lichtemittierenden Halbleiter basierenden Projektionseinheit zur Projektion einer benutzerseitigen Information weg vom Gefahrenmelder
DE102014223111A1 (de) 2014-04-04 2015-10-08 Siemens Schweiz Ag Gefahrenmelder mit einer auf einem lichtemittierenden Halbleiter basierenden Projektionseinheit zur Projektion einer benutzerseitigen Information weg vom Gefahrenmelder
US10983103B2 (en) * 2018-11-23 2021-04-20 Msa Technology, Llc Detection of blockage in a porous member

Also Published As

Publication number Publication date
EP2189956A1 (de) 2010-05-26

Similar Documents

Publication Publication Date Title
EP2189956B1 (de) Brandmelder und Verfahren zur Erkennung von Verschmutzungen
EP1857989B1 (de) Brandwarnmelder und Verfahren zur Überprüfung dessen Funktionsfähigkeit
DE69821671T2 (de) Brandmeldeanlagen
EP2730906B1 (de) Vorrichtung und Verfahren zur Zustandsüberwachung eines Wälzlagers
DE19781749B4 (de) System zur Überwachung der Funktionsfähigkeit eines Filters
DE2900444C2 (de)
WO2005069242A1 (de) Brandmelder mit mehreren untersuchungsvolumina
DE60025466T2 (de) Methode und messgerät zur untersuchung eines gebietes auf präsenz/absenz einer bestimmten geophysikalischen eigenschaft
EP2690611A2 (de) Brandüberwachungssystem
EP0345798A1 (de) Brandmeldeanlage
EP0338218A1 (de) Verfahren zur Brandfrüherkennung
DE102008014991B3 (de) Verfahren und Warnmelder, insbesondere Rauchmelder
WO2013056826A1 (de) Verschmutzungsprüfung des fensters einer messvorrichtung
EP3113133B1 (de) Rauchmelder mit kombinierter abdeckungs- und partikeldetektion der raucheingangsöffnung
EP1039426A2 (de) Vorrichtung zur Erkennung von Rauch
DE102011082069A1 (de) Verfahren zur Kalibrierung eines Streulichtphotometers
EP3096130B1 (de) Vorrichtung zur identifikation von aerosolen
DE102018000292A1 (de) Rauchmelder und Verfahren zum Erkennen einer Verschmutzung oder Abdeckung eines Rauchmelders
DE19941917C2 (de) Verfahren zur Überwachung und Regelung von Feuerungsanlagen
CH686914A5 (de) Brandmeldesystem zur Frueherkennung von Braenden.
DE102014009642A1 (de) Verfahren zur Erfassung einer physikalischen Größe zur Detektion und Charakterisierung von Gasen, Nebel und Rauch, insbesondere einer Vorrichtung zur Messung der Partikelkonzentration
DE102021124628A1 (de) Vorrichtung zum Messen von Raman-Streuung und Vorrichtung und Verfahren zum Bestimmen eines echten Feuers unter Verwendung der Vorrichtung
DE102017217280A1 (de) Messeinrichtung zur Partikelmessung
EP2053574B1 (de) Rauchmelder mit Teilchenunterdrückung
DE3123279A1 (de) Verfahren zur frueherkennung eines brandes sowie brandmelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 611404

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008009861

Country of ref document: DE

Effective date: 20130704

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130809

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130908

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130819

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130808

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20140211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008009861

Country of ref document: DE

Effective date: 20140211

BERE Be: lapsed

Owner name: HEKATRON VERTRIEBS G.M.B.H.

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131121

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20081121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130508

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20181022

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191121

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 16

Ref country code: IE

Payment date: 20231117

Year of fee payment: 16

Ref country code: FR

Payment date: 20231123

Year of fee payment: 16

Ref country code: DE

Payment date: 20231120

Year of fee payment: 16

Ref country code: CH

Payment date: 20231202

Year of fee payment: 16

Ref country code: AT

Payment date: 20231117

Year of fee payment: 16