EP2180250A1 - Générateur de vapeur en continu - Google Patents

Générateur de vapeur en continu Download PDF

Info

Publication number
EP2180250A1
EP2180250A1 EP08015862A EP08015862A EP2180250A1 EP 2180250 A1 EP2180250 A1 EP 2180250A1 EP 08015862 A EP08015862 A EP 08015862A EP 08015862 A EP08015862 A EP 08015862A EP 2180250 A1 EP2180250 A1 EP 2180250A1
Authority
EP
European Patent Office
Prior art keywords
tubes
steam generator
continuous
baffle plate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08015862A
Other languages
German (de)
English (en)
Inventor
Jan BRÜCKNER
Martin Effert
Joachim Dr. Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP08015862A priority Critical patent/EP2180250A1/fr
Priority to EP09782807.3A priority patent/EP2321578B1/fr
Priority to RU2011113816/06A priority patent/RU2011113816A/ru
Priority to US13/062,700 priority patent/US9267678B2/en
Priority to PCT/EP2009/061677 priority patent/WO2010029100A2/fr
Priority to CN200980126382XA priority patent/CN102089583B/zh
Publication of EP2180250A1 publication Critical patent/EP2180250A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B29/00Steam boilers of forced-flow type
    • F22B29/06Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B21/00Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
    • F22B21/34Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from water tubes grouped in panel form surrounding the combustion chamber, i.e. radiation boilers
    • F22B21/341Vertical radiation boilers with combustion in the lower part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/26Steam-separating arrangements

Definitions

  • the invention relates to a continuous steam generator having a combustion chamber with a number of burners for fossil fuel, the heating gas side in a top region via a horizontal gas is followed by a vertical gas train, the Um chargedswand the combustion chamber of gas-tight welded together, a Wasserabscheidesystem flow medium side upstream evaporator tubes and gas-tight with each other welded, the Wasserabscheidesystem flow medium side downstream superheater tubes is formed, wherein the Wasserabscheideystem comprises a number of Wasserabscheideigan, each of the Wasserabscheideetic comprises a connected to the respective upstream evaporator tubes Einströmrohr ma, seen in its longitudinal direction merges into a Wasserableitrohr voting, wherein in the transition region, a number of Abströmrohr familiaen branches off with a. Inlet collector of the respective downstream superheater pipes are connected.
  • a fossil-fueled steam generator the energy of a fossil fuel is used to generate superheated steam, which can then be supplied to power a steam turbine, for example, in a power plant.
  • Steam generators are usually designed as water tube boilers, in particular in the steam temperatures and pressures typical in a power plant environment, that is to say the supplied water flows in a number of tubes, which store the energy in the form of radiant heat of the burner flames and / or by convection and / or by heat conduction from the flue gas produced during combustion.
  • the steam generator tubes usually form the combustion chamber wall by being welded together in gas-tight fashion.
  • the combustion chamber Smoke gas side downstream areas can also be provided in the exhaust duct arranged Dampfmaschineerrohe.
  • Fossil fueled steam generators can be categorized by a variety of criteria: based on the flow direction of the gas flow, steam generators can be classified, for example, into vertical and horizontal types. In fossil-fueled steam generators in vertical construction usually a draw-in and two-pass boiler are distinguished.
  • the flue gas produced by the combustion in the combustion chamber always flows vertically from bottom to top. All arranged in the flue gas heating surfaces are flue gas side above the combustion chamber. Tower boilers offer a comparatively simple construction and easy control of the stresses caused by the thermal expansion of the tubes. Furthermore, all heating surfaces of the arranged in the flue gas duct steam generator tubes are horizontal and therefore completely drainable, which may be desirable in frost-prone environments.
  • Steam generators can continue to be designed as a natural circulation, forced circulation or continuous steam generator.
  • a continuous steam generator the heating of a number of evaporator tubes leads to a complete evaporation of the flow medium in the evaporator tubes in one pass.
  • the flow medium - usually water - is after its evaporation to the evaporator tubes downstream superheater tubes fed and overheated there.
  • the position of the evaporation end point, ie the location at which the water content of the flow is completely evaporated, is variable and mode-dependent.
  • the evaporation end point is for example in an end region of the evaporator tubes, so that the overheating of the vaporized flow medium already begins in the evaporator tubes (with the nomenclature used this description is strictly valid only at partial loads with subcritical pressure in the evaporator.) For the sake of clarity however, this representation will be used throughout the following description).
  • a continuous steam generator In contrast to a natural or forced circulation steam generator, a continuous steam generator is not subject to any pressure limitation, so that it can reach steam pressures far above the critical pressure of water (P Kri ⁇ 221 bar) - where at no temperature water and steam can occur simultaneously and therefore no phase separation is possible is - can be designed.
  • such a continuous steam generator is usually operated with a minimum flow of flow medium in the evaporator tubes in order to ensure reliable cooling of the evaporator tubes.
  • the pure mass flow through the evaporator usually no longer suffices for cooling the evaporator tubes, so that an additional throughput of flow medium is superimposed on the passage of flow medium through the evaporator in circulation.
  • the operationally provided minimum flow of flow medium in the evaporator tubes is thus not fully evaporated during startup or in low load operation in the evaporator tubes, so that in such a mode at the end of the evaporator tubes still unvaporized flow medium, in particular a water-steam mixture is present.
  • the evaporator tubes of the continuous steam generator are usually designed for a flow through unvaporised flow medium after passing through the combustion chamber walls, continuous steam generators are usually designed so that even when starting and in low load operation, a water ingress into the superheater tubes is reliably avoided.
  • the evaporator tubes are usually connected to the superheater tubes connected downstream via a Wasserabscheidesystem.
  • the water separator causes a separation of the emerging during the start or in low load operation of the evaporator tubes water-steam mixture in water and in steam.
  • the steam is supplied to the water separator downstream superheater tubes, whereas the separated water can be fed back to the evaporator tubes, for example via a circulating pump or discharged through a decompressor.
  • the Wasserabscheidesystem may include a plurality of Wasserabscheidemaschinen that are integrated directly into the tubes.
  • each of the parallel-connected evaporator tubes may be assigned a Wasserabscheideelement.
  • the Wasserabscheideetic can continue to be designed as a so-called T-piece Wasserabscheideetic.
  • each T-piece water separation element in each case comprises an inflow pipe piece connected to the upstream evaporator pipe, which, viewed in its longitudinal direction, merges into a water drainage pipe piece, wherein an outflow pipe piece connected to the downstream superheater pipe branches off in the transition region.
  • the T-piece Wasserabscheideelement is designed for a Trägheitsseparation of the flowing from the upstream evaporator tube in the Einströmrohr farming water-steam mixture. Due to its comparatively higher inertia, the water content of the flow medium flowing in the inflow pipe section flows at the transition point preferably in the axial extension of the inflow pipe section and thus passes into the Wasserableitrohr choir and from there usually further into a connected collecting container. By contrast, the vapor content of the water-steam mixture flowing in the inflow pipe section can better follow an imposed deflection due to its comparatively lower inertia and thus flows via the outflow pipe piece to the downstream superheater pipe section.
  • a continuous steam generator of this type is for example from the EP 1 701 091 known.
  • the transfer of flow medium to the superheater tubes is not only limited to steam, but now a water-steam mixture can be continued to the superheater tubes by the Wasserabscheideieri be fed.
  • the evaporation end point can be pushed into the superheater tubes as needed.
  • the live steam temperature can be controlled in comparatively large limits by influencing the feedwater quantity.
  • the invention is therefore based on the object to provide a continuous steam generator of the type mentioned above, while maintaining a particularly high operational flexibility brings a comparatively lower design and repair costs.
  • a distributor element being arranged on the steam side between the respective water separation element and the inlet collector.
  • the invention is based on the consideration that the decentralized separation of water, which takes place separately in each of the parallel-connected evaporator tubes in the construction described above, a comparatively large number of T-piece Wasserabscheideijnn can lead to design problems in large-scale application. Due to the space problems that may be associated with the necessity of accommodating such a large number of water separation elements, such a construction can also entail significant additional costs and limitations of the continuous flow steam generator due to the high design effort involved.
  • a distributor element is arranged on the steam side between the respective Wasserabscheideelement and the inlet header.
  • the geometric parameters of a number of outlet pipes are chosen such that a homogeneous flow distribution is ensured on the inlet header of the respectively downstream superheater pipes.
  • a homogeneous entry is already achieved in the inlet header, which continues accordingly in the downstream superheater tubes.
  • the outlet tubes can, for example, have the same diameter and be guided at equal intervals parallel to one another in the inlet header.
  • the distributor element is designed as a star distributor, d. H. it comprises a baffle plate, an inlet tube arranged perpendicular to the baffle plate, and a number of outlet tubes arranged in a star shape around the baffle plate in the plane thereof.
  • the inflowing water impinges on the baffle plate and is distributed in a symmetrical manner perpendicular to the inflow direction and directed into the outlet tubes.
  • the baffle plate in a particularly advantageous embodiment is circular and the exit tubes arranged concentrically to the center of the baffle plate at equal intervals to the respective adjacent outlet tubes. In this way, a particularly homogeneous distribution is ensured on the different outlet pipes.
  • the advantages achieved by the invention are in particular that a uniform distribution of the flow medium is achieved on the superheater tubes by the vapor-side arrangement of an additional distribution element between the respective Wasserabscheideelement and the inlet header of the superheater heating even at a much lower number of Wasserabscheideimplantationn.
  • These measures make it possible to reduce the number of water separation elements in the first place. This means a much lower production cost and a comparatively lower complexity of the pipe system of the continuous steam generator and it is a particularly high operational flexibility even in start-up or low load operation achievable.
  • FIG. 1 shows a continuous steam generator in Zweizugbauweise in a schematic representation.
  • the continuous steam generator 1 according to the figure comprises a combustion chamber 2 designed as a vertical gas train, which is located in an upper combustion chamber Region 4 a horizontal gas train 6 is connected downstream. At the horizontal gas train 6, another vertical gas train 8 connects.
  • a number not shown burner is provided which burn a liquid or solid fuel in the combustion chamber.
  • the surrounding wall 12 of the combustion chamber 2 is formed from steam generator tubes which are welded together in a gastight manner and into which a flow medium, usually water, is pumped in by a pump (not shown in greater detail), which is heated by the heat generated by the burners.
  • the steam generator tubes can be aligned either spirally or vertically. Due to differences in both the geometry of the individual tubes and in their heating, different mass flows and temperatures of the flow medium (imbalances) in parallel tubes set. In a helical arrangement, a comparatively higher design effort is required, but the resulting imbalances between parallel connected pipes are comparatively lower than in the case of a perpendicularly annealed combustion chamber 2.
  • the continuous steam generator 1 shown further comprises, to improve the flue gas duct, a nose 14, which merges directly into the bottom 16 of the horizontal gas flue 6 and projects into the combustion chamber 2. Furthermore, a grid 18 is arranged from further superheater tubes in the transition region from the combustion chamber 2 to the horizontal gas flue 6 in the flue gas duct.
  • the steam generator tubes in the lower part 10 of the combustion chamber 2 are designed as evaporator tubes.
  • the flow medium is first evaporated in them and fed via outlet collector 20 to the water separation system 22.
  • Wasserabscheidesystem 22 not yet evaporated water is collected and removed. This is necessary, in particular during start-up operation, when a greater amount of flow medium has to be pumped in to ensure reliable cooling of the evaporator tubes than in an evaporator tube passage can be evaporated.
  • the generated steam is conducted into the walls of the combustion chamber 2 in the upper region 4 and optionally distributed to the arranged in the walls of the horizontal gas flue 6 superheater tubes.
  • the Wasserabscheidesystem 22 includes a number of T-piece Wasserabscheide instituten 24.
  • Each number of evaporator tubes opens via an outlet header 20 into a common transition pipe piece 26, each of which a T-piece Wasserabscheideelement 24 is connected downstream.
  • the T-piece Wasserabscheideelement 24 includes an inflow pipe section 28, which, viewed in its longitudinal direction merges into a Wasserableitrohr Sea 30, wherein in the transition region a Abströmrohr lending 32 branches off.
  • the Wasserableitrohr proceedings 30 opens into a collector 34.
  • To the collector 34 is connected via connecting lines 35, a collecting container 36 (bottle) downstream.
  • an outlet valve 38 is connected, via which the separated water can either be discarded or re-fed to the evaporation cycle.
  • the outlet valve 38 can be closed and thus an overfeed of the T-piece Wasserabscheideieri 24 brought about.
  • still unevaporated water enters the superheater tubes, so that they can still be used for further evaporation, d. h.,
  • the evaporation end point can be moved into the superheater tubes, which allows a relatively higher flexibility in the operation of the continuous steam generator 1.
  • T-piece Wasserabscheideijnn 24 In order to allow a particularly simple construction of the continuous steam generator 1, a comparatively smaller number of T-piece Wasserabschreibeijnn 24 should be used. In order to compensate for the resulting inhomogeneities in terms of distribution to the superheater tubes and thus to allow such a configuration in the first place, the T-piece Wasserabschreibeijnn 24 distributor elements 42 are interposed in the manner of star distributors. These provide for a pre-distribution of the flow medium in the event of over-feeding of the T-piece Wasserabscheidemaschine 24 on the inlet header 40th
  • the flow medium strikes a circular baffle plate and bounces from there into star-shaped, concentrically-symmetrically arranged outlet tubes 44.
  • the symmetrical arrangement allocates approximately the same amount of flow medium to each outlet tube 44.
  • the flow medium in the inlet manifolds 40 would not be uniform can be distributed because they are not suitable due to their width for such a homogeneous distribution of, for example, a single supply line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
EP08015862A 2008-09-09 2008-09-09 Générateur de vapeur en continu Withdrawn EP2180250A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP08015862A EP2180250A1 (fr) 2008-09-09 2008-09-09 Générateur de vapeur en continu
EP09782807.3A EP2321578B1 (fr) 2008-09-09 2009-09-09 Générateur de vapeur en continu
RU2011113816/06A RU2011113816A (ru) 2008-09-09 2009-09-09 Парогенератор проточного типа
US13/062,700 US9267678B2 (en) 2008-09-09 2009-09-09 Continuous steam generator
PCT/EP2009/061677 WO2010029100A2 (fr) 2008-09-09 2009-09-09 Générateur de vapeur en continu
CN200980126382XA CN102089583B (zh) 2008-09-09 2009-09-09 连续蒸汽发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP08015862A EP2180250A1 (fr) 2008-09-09 2008-09-09 Générateur de vapeur en continu

Publications (1)

Publication Number Publication Date
EP2180250A1 true EP2180250A1 (fr) 2010-04-28

Family

ID=41796588

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08015862A Withdrawn EP2180250A1 (fr) 2008-09-09 2008-09-09 Générateur de vapeur en continu
EP09782807.3A Active EP2321578B1 (fr) 2008-09-09 2009-09-09 Générateur de vapeur en continu

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP09782807.3A Active EP2321578B1 (fr) 2008-09-09 2009-09-09 Générateur de vapeur en continu

Country Status (5)

Country Link
US (1) US9267678B2 (fr)
EP (2) EP2180250A1 (fr)
CN (1) CN102089583B (fr)
RU (1) RU2011113816A (fr)
WO (1) WO2010029100A2 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
EP2180251A1 (fr) * 2008-09-09 2010-04-28 Siemens Aktiengesellschaft Générateur de vapeur en continu
EP2213936A1 (fr) * 2008-11-10 2010-08-04 Siemens Aktiengesellschaft Générateur de vapeur en continu
DE102010040216A1 (de) * 2010-09-03 2012-03-08 Siemens Aktiengesellschaft Solarthermischer Druchlaufdampferzeuger mit einem Dampfabscheider und nachgeschaltetem Sternverteiler für Solarturm-Kraftwerke mit direkter Verdampfung
DE102013215457A1 (de) * 2013-08-06 2015-02-12 Siemens Aktiengesellschaft Durchlaufdampferzeuger in Zweizugkesselbauweise
CN104048105A (zh) * 2014-05-29 2014-09-17 中国五冶集团有限公司 用于300m2烧结低温余热发电系统中的低压管道安装工艺
US9920924B2 (en) * 2016-04-05 2018-03-20 The Babcock & Wilcox Company High temperature sub-critical boiler with steam cooled upper furnace and start-up methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021824A (en) * 1956-11-22 1962-02-20 Sulzer Ag Forced flow steam generating plant
GB893371A (en) * 1957-07-16 1962-04-11 Babcock & Wilcox Ltd Improvements in vapour generating and heating units and an improved method of generating and heating vapour
GB2015129A (en) * 1978-02-17 1979-09-05 Kraftwerk Union Ag Water Tube Steam Generators
EP1701091A1 (fr) 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Générateur de vapeur à passage unique
EP1710498A1 (fr) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Générateur de vapeur

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2201620A (en) * 1933-11-13 1940-05-21 W D La Mont Inc High speed steam producing apparatus
US2201618A (en) * 1933-11-13 1940-05-21 W D La Mont Inc Steam generator
US2048393A (en) * 1936-03-16 1936-07-21 Kroger Rudolf Triple service water heater and boiler
US2268559A (en) * 1938-07-15 1942-01-06 Babcock & Wilcox Co Steam boiler
US2679831A (en) * 1949-10-27 1954-06-01 Combustion Eng Water supply system for forced recirculation steam generators
US2685280A (en) * 1952-10-09 1954-08-03 Combustion Eng Superheater-reheater heat exchanger
US2952975A (en) * 1957-11-15 1960-09-20 Babcock & Wilcox Co Vapor generating and superheating unit
GB991911A (en) * 1961-12-11 1965-05-12 Foster Wheeler Ltd Improvements in and relating to water tube steam generators
FR1347938A (fr) * 1961-12-11 1964-01-04 Foster Wheeler Ltd échangeurs de chaleur perfectionnés
NL6411217A (fr) * 1963-09-26 1965-03-29
US3296779A (en) * 1964-03-06 1967-01-10 Ernest L Daman Vapor-liquid separator
US3320934A (en) * 1965-04-05 1967-05-23 Babcock & Wilcox Co Vapor generator
US3267908A (en) * 1965-08-03 1966-08-23 Sulzer Ag Steam generator with flue gas return
US3407789A (en) * 1966-06-13 1968-10-29 Stone & Webster Eng Corp Heating apparatus and process
US3403722A (en) * 1966-06-13 1968-10-01 Stone & Webster Eng Corp Cooling apparatus and process
BE791459A (fr) * 1971-11-17 1973-03-16 Siemens Ag Generateur de vapeur avec agencement pour reduire la vapeur contenue dans l'eau de circulation
US3924575A (en) * 1974-11-20 1975-12-09 Foster Wheeler Energy Corp Fluid heating and separating apparatus
US3956898A (en) * 1974-12-20 1976-05-18 Combustion Engineering, Inc. Marine vapor generator having low temperature reheater
DE2554666C3 (de) * 1975-12-05 1980-08-21 Dr. C. Otto & Comp. Gmbh, 4630 Bochum Verfahren zum Betrieb eines Hochtemperatur-Vergasers
US4075978A (en) * 1976-09-22 1978-02-28 Foster Wheeler Energy Corporation Apparatus for heating a contaminated feedwater for steam flooding
IT1095890B (it) * 1978-05-16 1985-08-17 Belleli Ind Mecc Scambiatore di calore in controcorrente a due piastre tubiere fisse
US4318441A (en) * 1978-05-19 1982-03-09 Belleli Industrie Meccaniche S.P.A. Counterflow heat exchanger
DE2851197A1 (de) * 1978-11-27 1980-06-12 Interatom Fluessigmetall-beheizter dampferzeuger mit integrierter zwischenueberhitzung
US4278050A (en) * 1979-04-24 1981-07-14 Kime Wellesley R Rapid response steam generating apparatus
FR2474648A1 (fr) * 1980-01-25 1981-07-31 Nachbaur Georges Generateur de vapeur a haut rendement, applicable notamment a l'alimentation d'une turbine a vapeur, au chauffage et aux etuves
US4484531A (en) * 1983-10-27 1984-11-27 Firey Joseph C Cyclic velox boiler
DK0639253T3 (da) * 1992-05-04 1997-06-16 Siemens Ag Dampgenerator med tvungent gennemløb
EP0595009B1 (fr) * 1992-09-30 1996-01-10 Siemens Aktiengesellschaft Procédé de fonctionnement d'une centrale et centrale fonctionnant suivant ce procédé
DE4431185A1 (de) * 1994-09-01 1996-03-07 Siemens Ag Durchlaufdampferzeuger
DE19504308C1 (de) * 1995-02-09 1996-08-08 Siemens Ag Verfahren und Vorrichtung zum Anfahren eines Durchlaufdampferzeugers
DE19528438C2 (de) * 1995-08-02 1998-01-22 Siemens Ag Verfahren und System zum Anfahren eines Durchlaufdampferzeugers
DE19717158C2 (de) * 1997-04-23 1999-11-11 Siemens Ag Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
CA2294710C (fr) * 1997-06-30 2007-05-22 Siemens Aktiengesellschaft Generateur de vapeur par recuperation de chaleur perdue
US20050120715A1 (en) * 1997-12-23 2005-06-09 Christion School Of Technology Charitable Foundation Trust Heat energy recapture and recycle and its new applications
DK1086339T3 (da) * 1998-06-10 2002-04-15 Siemens Ag Fossilt fyret gennemløbsdampgenerator
US6019070A (en) * 1998-12-03 2000-02-01 Duffy; Thomas E. Circuit assembly for once-through steam generators
DE19858780C2 (de) * 1998-12-18 2001-07-05 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19901430C2 (de) * 1999-01-18 2002-10-10 Siemens Ag Fossilbeheizter Dampferzeuger
DE19901621A1 (de) * 1999-01-18 2000-07-27 Siemens Ag Fossilbeheizter Dampferzeuger
DE19914761C1 (de) * 1999-03-31 2000-09-28 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
DE19929088C1 (de) * 1999-06-24 2000-08-24 Siemens Ag Fossilbeheizter Dampferzeuger mit einer Entstickungseinrichtung für Heizgas
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
EP1288567A1 (fr) * 2001-08-31 2003-03-05 Siemens Aktiengesellschaft Générateur de vapeur et procédé de démarrage d'un générateur de vapeur ayant un canal de gas de chauffage, celui-ci étant traversé par le gas de chauffage avec une direction sensiblement horizontale
CA2513982C (fr) * 2003-01-22 2013-12-24 David L. Hagen Reacteur
EP1443268A1 (fr) * 2003-01-31 2004-08-04 Siemens Aktiengesellschaft Générateur de vapeur
DE102004022312B4 (de) * 2004-05-04 2009-04-16 Daimler Ag Feuchtigkeitsaustauschmodul mit einem Bündel von für Feuchtigkeit durchlässigen Hohlfasermembranen
US7878157B2 (en) * 2004-09-23 2011-02-01 Siemens Aktiengesellschaft Fossil-fuel heated continuous steam generator
EP1701090A1 (fr) * 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Générateur de vapeur à construction horizontale
DE102007024934B4 (de) * 2007-05-29 2010-04-29 Man Dwe Gmbh Rohrbündelreaktoren mit Druckflüssigkeitskühlung
EP2182278A1 (fr) * 2008-09-09 2010-05-05 Siemens Aktiengesellschaft Générateur de vapeur en continu
DE102009012320A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012321A1 (de) * 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009012322B4 (de) * 2009-03-09 2017-05-18 Siemens Aktiengesellschaft Durchlaufverdampfer
DE102009024587A1 (de) * 2009-06-10 2010-12-16 Siemens Aktiengesellschaft Durchlaufverdampfer
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.
US20130312946A1 (en) * 2012-05-24 2013-11-28 Kellogg Brown & Root Llc Methods and Systems for Cooling Hot Particulates
US9528777B2 (en) * 2012-06-29 2016-12-27 Dana Canada Corporation Heat exchangers with floating headers
US20140165650A1 (en) * 2012-12-13 2014-06-19 Richard John Jibb Heat exchanger and distillation column arrangement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3021824A (en) * 1956-11-22 1962-02-20 Sulzer Ag Forced flow steam generating plant
GB893371A (en) * 1957-07-16 1962-04-11 Babcock & Wilcox Ltd Improvements in vapour generating and heating units and an improved method of generating and heating vapour
GB2015129A (en) * 1978-02-17 1979-09-05 Kraftwerk Union Ag Water Tube Steam Generators
EP1701091A1 (fr) 2005-02-16 2006-09-13 Siemens Aktiengesellschaft Générateur de vapeur à passage unique
EP1710498A1 (fr) * 2005-04-05 2006-10-11 Siemens Aktiengesellschaft Générateur de vapeur

Also Published As

Publication number Publication date
CN102089583B (zh) 2013-04-10
EP2321578A2 (fr) 2011-05-18
WO2010029100A2 (fr) 2010-03-18
US9267678B2 (en) 2016-02-23
EP2321578B1 (fr) 2016-11-02
US20110197830A1 (en) 2011-08-18
WO2010029100A3 (fr) 2010-05-14
RU2011113816A (ru) 2012-10-20
CN102089583A (zh) 2011-06-08

Similar Documents

Publication Publication Date Title
EP2321578B1 (fr) Générateur de vapeur en continu
EP1848925B1 (fr) Générateur de vapeur de type horizontal
EP2324285B1 (fr) Générateur de vapeur à récupération de chaleur
DE19717158C2 (de) Durchlaufdampferzeuger und Verfahren zum Anfahren eines Durchlaufdampferzeugers
EP1848926A2 (fr) Generateur de vapeur continu
EP1794495B1 (fr) Generateur de vapeur en continu chauffe a l'aide d'un combustible fossile
EP2324287B1 (fr) Générateur de vapeur en continu
EP2324286B1 (fr) Générateur de vapeur en continu
WO2010142495A2 (fr) Évaporateur continu
EP2601441B1 (fr) Générateur de vapeur à circulation forcée
DE102010038885B4 (de) Zwangdurchlaufdampferzeuger
EP2564117B1 (fr) Générateur de vapeur
WO2010052158A2 (fr) Générateur de vapeur en continu
EP2567151A2 (fr) Procédé de fonctionnement d'un générateur de vapeur
EP3193082B1 (fr) Procede et dispositif de production de vapeur surchauffee au moyen de chaleur produite dans la chaudiere d'une installation de combustion
DE102016111637A1 (de) Wasserrohrkesselanlage zur Erhitzung eines Mediums, Verfahren zur Erzeugung eines erhitzten Mediums und Verfahren zur Erzeugung elektrischer Energie
DE102010040216A1 (de) Solarthermischer Druchlaufdampferzeuger mit einem Dampfabscheider und nachgeschaltetem Sternverteiler für Solarturm-Kraftwerke mit direkter Verdampfung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKY No designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101029

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20110405

Ref country code: DE

Ref legal event code: 8566