EP2170495A1 - Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation - Google Patents
Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidationInfo
- Publication number
- EP2170495A1 EP2170495A1 EP08784551A EP08784551A EP2170495A1 EP 2170495 A1 EP2170495 A1 EP 2170495A1 EP 08784551 A EP08784551 A EP 08784551A EP 08784551 A EP08784551 A EP 08784551A EP 2170495 A1 EP2170495 A1 EP 2170495A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- oxygen
- hydrogen chloride
- catalyst beds
- beds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 24
- 239000000460 chlorine Substances 0.000 title claims abstract description 23
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 22
- 230000003647 oxidation Effects 0.000 title claims abstract description 15
- 238000007254 oxidation reaction Methods 0.000 title claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 title abstract description 12
- 239000003054 catalyst Substances 0.000 claims abstract description 200
- 238000000034 method Methods 0.000 claims abstract description 104
- 239000007789 gas Substances 0.000 claims abstract description 77
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 58
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 claims abstract description 55
- 229910000041 hydrogen chloride Inorganic materials 0.000 claims abstract description 55
- 238000006243 chemical reaction Methods 0.000 claims abstract description 50
- 239000001301 oxygen Substances 0.000 claims abstract description 35
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 35
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 34
- 230000003197 catalytic effect Effects 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims description 45
- 230000000694 effects Effects 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 8
- 229910052707 ruthenium Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- 229910052684 Cerium Inorganic materials 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 229910052770 Uranium Inorganic materials 0.000 claims description 5
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- DNYWZCXLKNTFFI-UHFFFAOYSA-N uranium Chemical compound [U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U][U] DNYWZCXLKNTFFI-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052708 sodium Inorganic materials 0.000 claims description 4
- 239000011734 sodium Substances 0.000 claims description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 4
- 229910000439 uranium oxide Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 3
- 239000002041 carbon nanotube Substances 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 claims description 3
- 229910001887 tin oxide Inorganic materials 0.000 claims description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000011651 chromium Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 239000010931 gold Substances 0.000 claims description 2
- 230000000737 periodic effect Effects 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 239000010948 rhodium Substances 0.000 claims description 2
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 claims description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 230000000630 rising effect Effects 0.000 claims 1
- 150000003671 uranium compounds Chemical class 0.000 claims 1
- 239000000047 product Substances 0.000 description 14
- 238000001816 cooling Methods 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910001868 water Inorganic materials 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 5
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000007138 Deacon process reaction Methods 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005868 electrolysis reaction Methods 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012495 reaction gas Substances 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- -1 UO 3 Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001805 chlorine compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 150000002513 isocyanates Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 150000003303 ruthenium Chemical class 0.000 description 2
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910052727 yttrium Inorganic materials 0.000 description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 2
- IYWJIYWFPADQAN-LNTINUHCSA-N (z)-4-hydroxypent-3-en-2-one;ruthenium Chemical class [Ru].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O IYWJIYWFPADQAN-LNTINUHCSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- PCBMYXLJUKBODW-UHFFFAOYSA-N [Ru].ClOCl Chemical compound [Ru].ClOCl PCBMYXLJUKBODW-UHFFFAOYSA-N 0.000 description 1
- YAIQCYZCSGLAAN-UHFFFAOYSA-N [Si+4].[O-2].[Al+3] Chemical class [Si+4].[O-2].[Al+3] YAIQCYZCSGLAAN-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- NQZFAUXPNWSLBI-UHFFFAOYSA-N carbon monoxide;ruthenium Chemical group [Ru].[Ru].[Ru].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-].[O+]#[C-] NQZFAUXPNWSLBI-UHFFFAOYSA-N 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 208000012839 conversion disease Diseases 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- 125000005442 diisocyanate group Chemical group 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- SJLOMQIUPFZJAN-UHFFFAOYSA-N oxorhodium Chemical compound [Rh]=O SJLOMQIUPFZJAN-UHFFFAOYSA-N 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920001228 polyisocyanate Polymers 0.000 description 1
- 239000005056 polyisocyanate Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 229910003450 rhodium oxide Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 150000003304 ruthenium compounds Chemical class 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0496—Heating or cooling the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/02—Apparatus characterised by being constructed of material selected for its chemically-resistant properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0403—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal
- B01J8/0423—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds
- B01J8/0438—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the fluid flow within the beds being predominantly horizontal through two or more otherwise shaped beds the beds being placed next to each other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0449—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
- B01J8/0453—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being superimposed one above the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0446—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
- B01J8/0476—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds
- B01J8/048—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more otherwise shaped beds the beds being superimposed one above the other
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/03—Preparation from chlorides
- C01B7/04—Preparation of chlorine from hydrogen chloride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00017—Controlling the temperature
- B01J2208/00106—Controlling the temperature by indirect heat exchange
- B01J2208/00168—Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
- B01J2208/00212—Plates; Jackets; Cylinders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00548—Flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00548—Flow
- B01J2208/00557—Flow controlling the residence time inside the reactor vessel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00008—Controlling the process
- B01J2208/00628—Controlling the composition of the reactive mixture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
- B01J2208/023—Details
- B01J2208/024—Particulate material
- B01J2208/025—Two or more types of catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/0204—Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
- B01J2219/0236—Metal based
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/025—Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
- B01J2219/0277—Metal based
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/025—Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
- B01J2219/0277—Metal based
- B01J2219/0286—Steel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/02—Apparatus characterised by their chemically-resistant properties
- B01J2219/025—Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
- B01J2219/0277—Metal based
- B01J2219/029—Non-ferrous metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/12—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of actinides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
Definitions
- the present invention relates to a process for the production of chlorine by catalytic gas phase oxidation of hydrogen chloride with oxygen, wherein the reaction is carried out on 18 to 60 catalyst beds connected in series under adiabatic conditions, and a reactor system for carrying out the process.
- the catalyst bed is tempered via the outer wall, and according to DE 10 2004 006 610 A1, the fluidized bed is heated by means of a heat exchanger arranged in the bed.
- the effective heat removal of this process faces problems of non-uniform residence time distribution and catalyst wear, both of which result in a loss of revenue.
- thermostated tube bundle reactors are used which, especially in the case of large reactors, have a very complicated cooling circuit (WO 2004/052776 A1).
- EP 1 170 250 A1 has proposed the use of catalyst fillings in tube bundle reactors which have different activities in different regions of the cooled contact tubes. As a result, the progress of the reaction is slowed down so much that the resulting heat of reaction can be more easily removed via the wall of the catalyst tubes. A similar result should be achieved by the targeted dilution of the catalyst bed with inert material.
- a disadvantage of these solutions is that two or more catalyst systems must be developed and used in the catalyst tubes or that by using inert material, the reactor capacity is impaired.
- the catalysts used initially for the Deacon process for example supported catalysts with the active composition CuCl 2 , had only a low activity. Although the activity could be increased by increasing the reaction temperature, it was disadvantageous that the volatility of the active components at high temperature led to rapid deactivation of the catalyst.
- the oxidation of hydrogen chloride to chlorine is also an equilibrium reaction. The position of the equilibrium shifts with increasing temperature to the detriment of the desired end product.
- catalysts with the highest possible activity are used, which allow the reaction to proceed at low temperature.
- Known highly active catalysts are based on ruthenium.
- DE-A 197 48 299 describes supported catalysts with the active material ruthenium oxide or ruthenium mixed oxide.
- the content of ruthenium oxide is 0.1 wt .-% to 20 wt .-% and the average Particle diameter of ruthenium oxide 1.0 nra to 10.0 nm.
- the reaction is carried out at a temperature between 90 ° C and 150 ° C.
- ruthenium chloride catalysts containing at least one compound of titanium oxide or zirconium oxide, ruthenium-carbonyl complexes, ruthenium salts of inorganic acids, ruthenium-nitosyl complexes, ruthenium-amine complexes , Ruthenium complexes of organic amines or ruthenium-acetylacetonate complexes.
- the reaction is carried out at a temperature between 100 ° C and 500 ° C, preferably 200 ° C and 380 ° C.
- the catalyst is used in a fixed bed or in a fluidized bed.
- the oxygen source used is air or pure oxygen.
- the Deacon reaction remains an exothermic reaction and temperature control is also required in the application of such highly active catalysts.
- the inventors of the present invention have surprisingly found that it is possible to achieve the objects described above by carrying out the reaction on 18 to 60 catalyst beds arranged in series under adiabatic conditions.
- the process gas may in addition to oxygen and hydrogen chloride still have minor components, eg. As nitrogen, carbon dioxide, carbon monoxide or water.
- the hydrogen chloride can upstream production process, eg. As for the production of polyisocyanates, originate and other impurities, eg. B. phosgene.
- carrying out the process under adiabatic conditions on the catalyst beds means that substantially no heat is supplied to the catalyst from the outside in the respective catalyst beds nor is heat removed (with the exception of the heat which is supplied or removed by the reaction gas entering or leaving). , Technically, this is achieved by insulating the catalyst beds in a conventional manner.
- the individual catalyst beds are operated adiabatically, so they are in particular no means of heat dissipation in them are provided.
- the invention also includes the case in which the heat of reaction is removed, for example, by means of heat exchangers connected between the individual catalyst beds.
- catalyst bed is here an arrangement of the catalyst in all known forms, e.g. Fixed bed, fluidized bed or fluidized bed understood. Preferred is a fixed bed arrangement. This comprises a catalyst bed in the true sense, d. H. loose, supported or unsupported catalyst in any form and in the form of suitable packings:
- catalyst bed as used herein also encompasses contiguous areas of suitable packages on a support material or structured catalyst supports. These would be e.g. to be coated ceramic honeycomb carrier with comparatively high geometric surfaces or corrugated layers of metal wire mesh on which, for example, catalyst granules is immobilized.
- Stationary catalyst beds are preferably used in the new process.
- the reaction is carried out at 20 to 40, preferably 22 to 30 consecutive Katal ysatorbetten.
- a preferred further embodiment of the method is characterized in that the process gas mixture emerging from at least one catalyst bed is subsequently passed over at least one heat exchanger arranged downstream of the catalyst bed.
- the method is located after each catalyst bed at least one, preferably a heat exchanger, through which the exiting process gas mixture is passed.
- at least one heat exchanger is located behind at least one catalyst bed.
- at least one, more preferably in each case exactly one heat exchanger is located behind each of the catalyst beds, via which the gas mixture emerging from the catalyst bed is passed.
- the catalyst beds can either be arranged in a reactor or arranged divided into several reactors.
- the arrangement of the catalyst beds in a reactor leads to a reduction in the number of apparatuses used.
- individual ones of the series catalyst beds can be independently replaced or supplemented by one or more catalyst beds in parallel.
- the use of catalyst beds connected in parallel allows in particular their replacement or supplementation during ongoing continuous operation of the process.
- the process according to the invention preferably has 18 to 60 catalyst beds connected in series. Parallel and successively connected catalyst beds can in particular also be combined with one another. However, the process according to the invention particularly preferably has exclusively catalyst beds connected in series.
- the reactors which are preferably used in the process according to the invention can consist of simple containers with one or more thermally insulated catalyst beds, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry (Fifth, Completely Revised Edition, VoI B4, pages 95-104, pages 210-216) become. This means that it is possible, for example, to use single-stage or multistage fixed-bed reactors, radial-flow reactors or even shallow-bed reactors., However, tube bundle reactors are preferably not used because of the disadvantages described above, since heat is removed from the catalyst beds according to the invention , Such reactor types for receiving the catalyst beds are also unnecessary.
- the catalysts or the catalyst beds thereof are applied in a manner known per se to or between gas-permeable walls of the reactor.
- the empty tube velocity of the gas in the catalyst bed is preferably from 0.1 to 10 m / s in the case of the embodiment using a fixed bed.
- a molar ratio of between 0.25 and 10 equivalents of oxygen per equivalent of hydrogen chloride before entry into the catalyst bed is preferably used.
- the inlet temperature of the material entering a first catalyst bed gas mixture from 150 to 630 ° C, preferably 200-480 0 C.
- the hydrogen chloride and oxygen-containing feed gas stream can also be fed preferably only in front of the first catalyst bed. This has the advantage that the entire feed gas stream can be used for the absorption and removal of the heat of reaction in all catalyst beds. However, it is also possible to meter in hydrogen chloride and / or oxygen into the gas stream before one or more of the catalyst beds following the first catalyst bed as required. In addition, the temperature of the reaction can be controlled via the supply of gas between the catalyst beds used.
- the reaction gas is cooled after at least one of the catalyst beds used, more preferably after each of the catalyst beds used. This is what leads you to that
- Reaction gas through one or more heat exchangers which are behind the respective Catalyst beds are located.
- These may be the heat exchanger known to those skilled in the art, such as, for example, tube bundle, plate ring groove, spiral, finned tube, micro heat exchanger.
- steam is generated on cooling the product gas at the heat exchangers.
- the catalyst beds connected in series are operated at increasing or decreasing average temperature from catalyst bed to catalyst bed.
- the chlorine formed is separated off.
- the separation step usually comprises several stages, namely the separation and, if appropriate, recycling of unreacted hydrogen chloride from the product gas stream of the catalytic hydrogen chloride oxidation, drying of the obtained, essentially chlorine and oxygen-containing stream and the separation of chlorine from the dried stream.
- the separation of unreacted hydrogen chloride and water vapor formed can be carried out by condensation of aqueous hydrochloric acid from the product gas stream of hydrogen chloride oxidation by cooling. Hydrogen chloride can also be absorbed in dilute hydrochloric acid or water.
- the z. T. be entrained with the starting materials, the reaction again fed.
- the recirculated hydrogen chloride and / or oxygen are recycled in front of one or more of the catalyst beds and before, if necessary brought back to the inlet temperature by means of a heat exchanger.
- the cooling of the product gas and the warming-up of the recirculated hydrogen chloride and / or oxygen are carried out by passing the gas streams in counterflow through heat exchangers to one another.
- the new process is preferably operated at a pressure of 1 to 30 bar, preferably from 1 to 20 bar, more preferably from 1 to 15 bar.
- the temperature of the educt gas mixture is preferably before each of the catalyst beds of 150 to 630 ° C, preferably from 200 to 480 0 C, more preferably from 250 to 470 ° C.
- the gas mixture is preferably homogenized before entering the individual catalyst bed.
- the thickness of the flow-through catalyst beds can be chosen the same or different, and is suitably 1 cm to 8 m, preferably 5 cm to 5 m, particularly preferably 30 cm to 2.5 m.
- the catalyst is preferably used immobilized on a support.
- the catalyst preferably contains at least one of the following elements: copper, potassium, sodium, chromium, cerium, gold, bismuth, uranium, ruthenium, rhodium, platinum, and the elements of VIII. Subgroup of the Periodic Table of the Elements. These are preferably used as oxides, halides, or mixed oxides / halides, in particular chlorides or oxides / chlorides. These elements or compounds thereof can be used alone or in any combination.
- Preferred compounds of these elements include copper chloride, copper oxide, potassium chloride, sodium chloride, chromium oxide, bismuth oxide, uranium oxide, ruthenium oxide, ruthenium chloride, ruthenium oxychloride, rhodium oxide.
- the catalyst portion consists completely or partially of ruthenium and / or uranium or compounds thereof, more preferably the catalyst consists of halide and / or oxygen-containing uranium and / or ruthenium compounds.
- all or part of the catalyst portion is uranium oxides such as UO 3 , UO 2 , UO or the non-stoichiometric phases resulting from mixtures of these species such as U 3 O 5 , U 2 O 5 , U 3 O 7 , U 3 O 8 , U 4 ⁇ 9 .
- the carrier fraction may be wholly or partly composed of: titanium oxide, tin oxide, aluminum oxide, zirconium oxide, uranium oxide, vanadium oxide, ceria, chromium oxide, uranium oxide, silicon oxide, silica, carbon nanotubes or a mixture or compound of said substances, in particular mixed oxides such as silicon-aluminum oxides.
- Particularly preferred support materials are tin oxide, carbon nanotubes, uranium oxides such as UO 3 , UO 2 , UO or the non-stoichiometric phases resulting from mixtures of these species, such as U 3 O 5 , U 2 O 5 , U 3 O 7 , U 3 O 8 , U 4 O 9 ..
- the ruthenium-supported catalysts can be obtained, for example, by impregnation of the support material with aqueous solutions of RuCl 3 and optionally a promoter for doping.
- the shaping of the catalyst can take place after or preferably before the impregnation of the support material.
- the catalysts are suitable as promoters alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yttrium, lanthanum and cerium, more preferably lanthanum and cerium, or mixtures thereof.
- alkali metals such as lithium, sodium, potassium, rubidium and cesium, preferably lithium, sodium and potassium, more preferably potassium, alkaline earth metals such as magnesium, calcium, strontium and barium, preferably magnesium and calcium, particularly preferably magnesium, Rare earth metals such as scandium, yttrium, lanthanum, cerium, praseodymium and neodymium, preferably scandium, yt
- the shaped bodies can then be dried at a temperature of 100 to 400 ° C., preferably 100 to 300 ° C., for example under a nitrogen, argon or air atmosphere, and optionally calcined.
- the moldings are first dried at 100 to 150 ° C and then calcined at 200 to 400 ° C.
- the temperature of the catalyst in the catalyst beds is suitably in a range of 150 ° C to 800 ° C, preferably 200 0 C to 450 ° C, more preferably 250 ° C to 400 ° C.
- the control of the temperature in the catalyst beds is preferably carried out by at least one of the following measures:
- the catalysts or the supported catalysts may have any desired form, for. As balls, rods, Raschig rings or granules or tablets.
- composition of the catalysts in the catalyst beds used according to the invention may be identical or different. In a preferred embodiment, the same catalysts are used in each catalyst bed. However, it is also advantageous to use different catalysts in the individual catalyst beds. Thus, in particular in the first catalyst bed, when the concentration of the reaction products is still high, a less active catalyst can be used and in the further catalyst beds the activity of the catalyst can be increased from catalyst bed to catalyst bed.
- the control of the catalyst activity can also be carried out by dilution with inert materials or carrier material.
- 0.1 g / h to 10 g / h of chlorine preferably 0.5 g / h to 5 g / h of chlorine, can be prepared per 1 g of catalyst.
- the inventive method is thus characterized by high space-time yields, combined with a reduction of the apparatus sizes and a simplification of the apparatus or reactors.
- the educt for the process according to the invention is hydrogen chloride, which is e.g. is produced and adopted as by-product from the phosgenation of organic amines, especially diamines to isocyanates, in particular diisocyanates or the gas phase phosgenation of phenol to diphenyl carbonate.
- Oxygen can be supplied as pure oxygen or preferably in the form of an oxygen-containing gas, in particular air.
- the produced chlorine can be used, for example, for the production of phosgene and possibly recycled into connected production processes.
- the process is conducted such that a continuous exchange of a fixed bed catalyst takes place.
- unreacted educt gases are recycled back to the process.
- Unreacted educt gases are in particular hydrogen chloride and oxygen. The process is therefore operated as a cyclic process.
- the invention further provides a reactor system for reacting a gas containing hydrogen chloride and oxygen, at least containing feed lines for hydrogen chloride and oxygen or for a mixture of hydrogen chloride and oxygen and 18 to 60 thermally insulated catalyst beds connected in series.
- the reactor system may also comprise 20 to 40 or 22 to 30 catalyst beds.
- FIG. 2 shows a process according to the invention with 18 catalyst beds in an integrated reactor
- FIG. 1 shows a method according to the invention with 18 catalyst beds divided into separate reactors.
- the educt gases (1, 2) are mixed to gas mixture (3) and fed to the reactor.
- the reactors each comprise a catalyst bed (20).
- the product gases of the reactors (4) are passed through heat exchangers (30).
- the heat exchanger (30) comprises feeds (5) and discharges (6) of cooling medium.
- Fig. 1 it is symbolized that a repeat unit of reactor with catalyst bed (20) and heat exchanger (30) repeated 16 times in total, so that a total of 18 units are shown.
- the product gas mixture is finally subjected to a separation of substances (40) and separated into hydrogen chloride (7), oxygen (8), chlorine (9) and water (10). It is also possible to return unreacted hydrogen chloride gas (7) and oxygen gas (8) back to the reactors. This is not shown here.
- FIG. 2 shows a process according to the invention with 18 catalyst beds in an integrated reactor.
- the reactors each comprise a catalyst bed (20).
- the product gases of the reactors (4) are passed through heat exchangers (30).
- the heat exchanger (30) comprises feeds (5) and discharges (6) of cooling medium.
- FIG. 2 symbolizes that a repeat unit of reactor with catalyst bed (20) and heat exchanger (30) is repeated a total of 16 times, so that a total of 18 units are shown.
- the product gas mixture is finally subjected to a separation of substances (40) and separated into hydrogen chloride (7), oxygen (8), chlorine (9) and water (10). It is also possible to return unreacted hydrogen chloride gas (7) and oxygen gas (8) back to the reactors. This is not shown here.
- Examples 1 and 2 relate to the number of catalyst beds and the temperature profile of the process gas mixture when it reacts in the reaction zones according to the inventive method and is cooled again in downstream heat exchangers. Furthermore, the examples relate to the conversion of HCl obtained.
- the process gas mixture flowed through a total of 24 catalyst stages, ie through 24 reaction zones. After each catalyst stage there was a heat exchanger which cooled the process gas mixture before entering the next catalyst stage.
- the process gas used at the outset was a mixture of HCl (38.5 mol%), O 2 (38.5 mol%) and inert gases (Ar, Cl 2 , N 2 , CO 2 , totaling 23 mol%).
- the inlet pressure of the process gas mixture was 5 bar.
- the length of the catalyst stages, ie the reaction zones was uniformly 7.5 cm.
- the activity of the catalyst was adjusted to be the same in all catalyst stages. The procedure was carried out so that a load of 1, 2 kg of HCl per kg of catalyst and hour was achieved. There was no replenishment of process gas components before the individual catalyst stages.
- the total residence time in the plant was 2.3 seconds.
- the results are shown in FIG.
- the individual catalyst stages are listed on the x-axis, so that a spatial course of developments in the process is visible.
- the temperature of the process gas mixture is indicated on the left y-axis.
- the temperature profile over the individual catalyst stages is shown as a solid line.
- On the right y-axis the total conversion of HCl is indicated.
- the course of the conversion over the individual catalyst stages is shown as a dashed line.
- the inlet temperature of the process gas mixture before the first catalyst stage is about 340 ° C. Due to the exothermic reaction to chlorine gas under adiabatic conditions, the temperature rises to about 370 ° C, before the process gas mixture is cooled by the downstream heat exchanger again. The inlet temperature before the next catalyst stage is about 344 ° C. By exothermic adiabatic reaction, it rises again to about 370 0 C. The sequence of heating and cooling continues.
- the inlet temperatures of the process gas mixture upstream of the individual catalyst stages increase with increasing number of stages. This is possible since the amount of reactants capable of reacting in the later stages of the reaction is lower and accordingly the danger of a through exothermic reaction conditional leaving the optimum temperature range of the process decreases. Consequently, the temperature of the process gas mixture can be kept closer to optimal for the respective composition.
- the process gas mixture flowed through a total of 18 catalyst stages, ie through 18 reaction zones. After each catalyst stage there was a heat exchanger which cooled the process gas mixture before entering the next catalyst stage.
- the process gas used at the outset was a mixture of HCl (38.5 mol%), O 2 (38.5 mol%) and inert gases (Ar, Cl 2 , N 2 , CO 2 , totaling 23 mol%)
- the inlet pressure of the process gas mixture was 5 bar.
- the length of the catalyst stages, ie the reaction zones, was uniformly 15 cm in each case.
- the activity of the catalyst was adjusted to increase with the number of catalyst stages.
- the relative catalyst activities were as follows:
- the procedure was carried out to achieve a load of 1.12 kg of HCl per kg of catalyst per hour. There was no replenishment of process gas components before the individual catalyst calls. The total residence time in the plant was 3.5 seconds.
- On the left y-axis is the temperature of the Process gas mixture specified. The temperature profile over the individual catalyst stages is shown as a solid line.
- On the right y-axis the total conversion of HCl is indicated. The course of the conversion over the individual catalyst stages is shown as a dashed line.
- the inlet temperature of the process gas mixture before the first catalyst stage is about 350 ° C. Due to the exothermic reaction to chlorine gas under adiabatic conditions, the temperature rises to about 370 ° C, before the process gas mixture is cooled by the downstream heat exchanger again. The inlet temperature before the next catalyst stage is again about 350 ° C. By exothermic adiabatic reaction, it rises again to about 370 0 C. The sequence of heating and cooling continues.
- the inlet temperatures of the process gas mixture upstream of the individual catalyst stages increase more slowly with increasing number of stages than in the case of Example 1. Overall, the fluctuation range of the process gas temperatures is even lower.
- the desired lower activity of the catalyst in the early stages makes it possible to introduce the process gas mixture with a higher inlet temperature, without fear of undesired overheating. Consequently, the temperature of the process gas mixture can be kept closer to optimal for the respective composition.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE200710033113 DE102007033113A1 (de) | 2007-07-13 | 2007-07-13 | Temperaturstabiler Katalysator für die Chlorwasserstoffgasphasenoxidation |
| DE200710033107 DE102007033107A1 (de) | 2007-07-13 | 2007-07-13 | Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation |
| DE102007033114A DE102007033114A1 (de) | 2007-07-13 | 2007-07-13 | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff |
| PCT/EP2008/005184 WO2009010168A1 (de) | 2007-07-13 | 2008-06-26 | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| EP2170495A1 true EP2170495A1 (de) | 2010-04-07 |
Family
ID=39809172
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP08784551A Withdrawn EP2170495A1 (de) | 2007-07-13 | 2008-06-26 | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20100260660A1 (enExample) |
| EP (1) | EP2170495A1 (enExample) |
| JP (1) | JP2010533113A (enExample) |
| CN (1) | CN101687160A (enExample) |
| WO (1) | WO2009010168A1 (enExample) |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102008050975A1 (de) * | 2008-10-09 | 2010-04-15 | Bayer Technology Services Gmbh | Mehrstufiges Verfahren zur Herstellung von Chlor |
| DE102009021675A1 (de) * | 2009-05-16 | 2010-11-18 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Gegenwart eines Ceroxid-Katalysators |
| DE102009033640A1 (de) * | 2009-07-17 | 2011-03-03 | Bayer Technology Services Gmbh | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff in Anwesenheit von Schwefeloxiden |
| JP5636601B2 (ja) * | 2010-03-11 | 2014-12-10 | 住友化学株式会社 | 固定床反応器による塩素の製造方法 |
| US20140205533A1 (en) * | 2011-07-05 | 2014-07-24 | Bayer Intellectual Property Gmbh | Process for the production of chlorine using a cerium oxide catalyst in an adiabatic reaction cascade |
| DE102011081074A1 (de) * | 2011-08-17 | 2013-02-21 | Areva Np Gmbh | Verfahren zur Herstellung eines Uranoxid als aktive Komponente enthaltenden Katalysators |
| CN104437268B (zh) * | 2014-11-06 | 2017-07-14 | 南京大学 | 多级并联强化固定床反应器及其使用方法 |
| CN104591090B (zh) | 2014-12-22 | 2016-09-07 | 上海方纶新材料科技有限公司 | 一种氯化氢催化氧化制备氯气的方法 |
| CN105776141B (zh) * | 2016-01-27 | 2018-03-09 | 烟台大学 | 一种氯化氢催化氧化制氯气新型固定床反应器 |
| JP2020019687A (ja) * | 2018-08-02 | 2020-02-06 | 住友化学株式会社 | 臭素の製造方法 |
| KR102709295B1 (ko) | 2019-12-31 | 2024-09-23 | 한화솔루션 주식회사 | 염화수소 산화반응용 성형촉매 및 이의 제조방법 |
| CN118284576A (zh) * | 2021-11-23 | 2024-07-02 | 巴斯夫欧洲公司 | 用于制备包含氯气的气体流的方法 |
| CN119386781A (zh) * | 2025-01-06 | 2025-02-07 | 西北民族大学 | 一种氯化氢制氯气的多级催化氧化反应器 |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA1260229A (en) * | 1986-06-30 | 1989-09-26 | Mitsui Chemicals, Inc. | Production process of chlorine |
| CN1475434A (zh) * | 1996-08-08 | 2004-02-18 | ס�ѻ�ѧ��ҵ��ʽ���� | 氯的生产方法 |
| CN1182717A (zh) * | 1996-10-31 | 1998-05-27 | 住友化学工业株式会社 | 氯气的生产方法 |
| EP1170250B1 (en) * | 1999-01-22 | 2008-01-09 | Sumitomo Chemical Company, Limited | Method for producing chlorine |
| US7033553B2 (en) * | 2000-01-25 | 2006-04-25 | Meggitt (Uk) Limited | Chemical reactor |
| WO2001054806A1 (en) * | 2000-01-25 | 2001-08-02 | Meggitt (Uk) Ltd | Chemical reactor with heat exchanger |
| DE10235476A1 (de) * | 2002-08-02 | 2004-02-12 | Basf Ag | Integriertes Verfahren zur Herstellung von Isocyanaten |
| DE10250131A1 (de) * | 2002-10-28 | 2004-05-06 | Basf Ag | Verfahren zur Herstellung von Chlor aus Salzsäure |
| DE10258153A1 (de) * | 2002-12-12 | 2004-06-24 | Basf Ag | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff |
| DE10361519A1 (de) * | 2003-12-23 | 2005-07-28 | Basf Ag | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation von Chlorwasserstoff |
| DE102004006610A1 (de) * | 2004-02-11 | 2005-09-01 | Basf Ag | Reaktor und Verfahren zur Herstellung von Chlor aus HCI |
| US7772447B2 (en) * | 2004-12-22 | 2010-08-10 | Exxonmobil Chemical Patents Inc. | Production of liquid hydrocarbons from methane |
| DE102007020140A1 (de) * | 2006-05-23 | 2007-11-29 | Bayer Materialscience Ag | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation |
-
2008
- 2008-06-26 EP EP08784551A patent/EP2170495A1/de not_active Withdrawn
- 2008-06-26 US US12/668,972 patent/US20100260660A1/en not_active Abandoned
- 2008-06-26 CN CN200880024532A patent/CN101687160A/zh active Pending
- 2008-06-26 JP JP2010515373A patent/JP2010533113A/ja not_active Withdrawn
- 2008-06-26 WO PCT/EP2008/005184 patent/WO2009010168A1/de not_active Ceased
Non-Patent Citations (1)
| Title |
|---|
| See references of WO2009010168A1 * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2010533113A (ja) | 2010-10-21 |
| CN101687160A (zh) | 2010-03-31 |
| US20100260660A1 (en) | 2010-10-14 |
| WO2009010168A1 (de) | 2009-01-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2027063B1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
| EP2170495A1 (de) | Verfahren zur herstellung von chlor durch vielstufige adiabatische gasphasenoxidation | |
| EP1882681B1 (de) | Verfahren zur Herstellung von aromatischen Aminen | |
| WO2009010181A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation | |
| EP1699734A1 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation von chlorwasserstoff | |
| EP2771108A1 (de) | Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation | |
| WO2009010167A1 (de) | Temperaturstabiler katalysator für die chlorwasserstoffgasphasenoxidation | |
| WO2011012226A2 (de) | Verfahren zur herstellung von chlor durch gasphasenoxidation an nanostrukturierten rutheniumträgerkatalysatoren | |
| WO2007134775A1 (de) | Verfahren zur oxidation eines chlorwasserstoff enthaltenden gases | |
| EP1542923A1 (de) | Festbettverfahren zur herstellung von chlor durch katalytische gasphasen-oxidation von chlorwasserstoff | |
| EP1656322A1 (de) | Verfahren zur herstellung von chlor | |
| EP2334593A1 (de) | Mehrstufiges verfahren zur herstellung von chlor | |
| EP2246320A1 (de) | Verfahren zur Herstellung von aromatischen Aminen | |
| DE102008051694A1 (de) | Verfahren zur Abtrennung von Kohlenmonoxid aus einem HCI-Rohgas | |
| DE102007033107A1 (de) | Verfahren zur Herstellung von Chlor durch vielstufige adiabatische Gasphasenoxidation | |
| WO2009143971A1 (de) | Verfahren zur herstellung von phosgen | |
| EP2142469B1 (de) | Prozess zur herstellung von chlor aus hcl | |
| WO2017134230A1 (de) | Katalysator und verfahren zur herstellung von chlor durch gasphasenoxidation | |
| WO2009149809A1 (de) | Verfahren zur herstellung von formaldehyd | |
| DE102007033106A1 (de) | Verfahren zur Herstellung von Chlor durch Gasphasenoxidation | |
| EP1996511A1 (de) | Verfahren und vorrichtung zur herstellung von chlor durch gasphasenoxidation in einem gekühlten wandreaktor | |
| DE102011005897A1 (de) | Verfahren zur Bereitstellung von Chlor für chemische Umsetzungen | |
| WO2009146794A1 (de) | Verfahren und vorrichtung zur herstellung von cyclohexanon | |
| WO2010069482A1 (de) | Verfahren zur herstellung von schwefeltrioxid | |
| WO2009149808A1 (de) | Verfahren zur herstellung von maleinsäureanhydrid |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| 17P | Request for examination filed |
Effective date: 20100215 |
|
| AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
| DAX | Request for extension of the european patent (deleted) | ||
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BAYER INTELLECTUAL PROPERTY GMBH |
|
| 17Q | First examination report despatched |
Effective date: 20140924 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
| 18D | Application deemed to be withdrawn |
Effective date: 20150106 |