EP2167810B1 - Kraftstoffhochdruckspeicher - Google Patents

Kraftstoffhochdruckspeicher Download PDF

Info

Publication number
EP2167810B1
EP2167810B1 EP08761008.5A EP08761008A EP2167810B1 EP 2167810 B1 EP2167810 B1 EP 2167810B1 EP 08761008 A EP08761008 A EP 08761008A EP 2167810 B1 EP2167810 B1 EP 2167810B1
Authority
EP
European Patent Office
Prior art keywords
pressure
diameter
pressure accumulator
accumulator body
basic shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08761008.5A
Other languages
English (en)
French (fr)
Other versions
EP2167810A1 (de
Inventor
Arthur Eberhart
Christoffer Uhr
Johannes Edlmayr
Guenter Eisenhut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2167810A1 publication Critical patent/EP2167810A1/de
Application granted granted Critical
Publication of EP2167810B1 publication Critical patent/EP2167810B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8069Fuel injection apparatus manufacture, repair or assembly involving removal of material from the fuel apparatus, e.g. by punching, hydro-erosion or mechanical operation

Definitions

  • high-pressure accumulator injection systems In internal combustion engines, such as self-igniting internal combustion engines fuel injection systems shown, today, among other things, high-pressure accumulator injection systems (common rail) are used.
  • the high-pressure accumulator injection system comprises a high-pressure feed pump with which a system pressure level is built up and maintained in a high-pressure accumulator body (common rail).
  • Fuel is injected into the combustion chambers of the self-igniting internal combustion engine via a plurality of fuel injectors connected to the high-pressure accumulator body, which are in communication with the high-pressure accumulator body (common rail) via high-pressure lines. From the fuel injectors leakage and repelled amount via a return system usually fed back into the tank of the fuel injection system, from where it is fed again, possibly with the interposition of an electric fuel pump, the high-pressure pumping unit.
  • the high-pressure storage body is so far from a rod-shaped except for the threaded connections blank, which is a master or forming part, produced by machining.
  • the maximum voltages In the range of intersections of a introduced into the rod-shaped deep hole, which defines the fuel volume within the high-pressure accumulator body, and the radial bores in the wall of the high-pressure accumulator body to the individual high pressure connections occur in operation under pressure load of the high-pressure accumulator body, the maximum voltages. These intersections represent the point relevant to failure and determine the strength and thus the design of the high-pressure accumulator body (common rail) substantially.
  • a reduction of the stress load in the region of the points of intersection of the deep hole bore with the individual radial bores to the high pressure ports can be achieved by increasing the outer diameter of the high pressure reservoir body while maintaining the inner diameter of the high pressure reservoir body. This reduction of Stress in the intersecting areas, however, asymptotically approaches a threshold. The associated with this solution material and weight would be disproportionately large.
  • DE 199 48 338 A1 a method for processing a high-pressure fuel storage, a high-pressure fuel storage with connecting pieces and the application of the method for processing known.
  • the common rail fuel injection system according to DE 199 48 338 A1 includes a body equipped with multiple ports. The main body is deformed in the area of the connection openings. In the region of the connection openings in each case a through hole is provided which has two sections with different inner diameters.
  • the connecting pieces are designed such that the outer diameter of the connecting piece at its end facing the high-pressure fuel accumulator end substantially corresponds to the inner diameter of the portion of the through-hole in the high-pressure fuel high-pressure accumulator.
  • a high-pressure fuel storage is known, which is particularly suitable for use in a common rail fuel injection system of an internal combustion engine.
  • the high-pressure fuel accumulator comprises a tubular base body having a longitudinally extending blind hole and a plurality of terminals.
  • a sealing plug is arranged in the closed end of the blind bore.
  • DE 39 32 672 A1 refers to a blank for producing a fuel supply manifold for an injection system of an engine.
  • an axial fuel passage is formed in an tubular part.
  • Several sleeves are laterally from the tubular part. Each sleeve communicates with the axial fuel passage and forms a seat for a fuel metering and atomizing valve in its interior.
  • An extension extends radially at one end of the tubular member and forms a seat for a pressure regulator.
  • the blank is made of molten metal by injection molding.
  • DE 199 45 316 A1 refers to a high-pressure fuel storage, the interior of which is arranged eccentrically in the base body relative to the longitudinal axis of the base body is.
  • the high-pressure resistance of the high-pressure fuel accumulator is primarily limited by the intersections between the connection openings and the main body.
  • the highest forces act on the transitions between the connection openings for the high-pressure lines to the individual fuel injectors to be supplied with fuel under system pressure and the main body.
  • a relative displacement of the interior in a first plane of the base of the fracture endangered transition region of the intersections is relieved or stabilized, so that an increase in the high pressure resistance of the high-pressure fuel storage by the solution DE 199 45 316 A1 can achieve.
  • the base body is provided in cross-section with a substantially elliptical outer contour, wherein the connection openings are arranged in the longitudinal direction of the main axis of the ellipse.
  • the substantially elliptical outer contour leads under high pressure loading of the interior of the tubular base body to the fact that the interior of the tubular body expands transversely to the main axis of the ellipse. The resulting strains in the main body ensure that the fracture-prone area of the intersections is relieved.
  • the geometry of the high-pressure storage body (common rail) in such a way that, by increasing the axial elongation acting in the axial direction, a tapering of the outer diameter between the individual high-pressure connections in combination with a locally reduced reduction of the transverse expansion by a material reduction on the side the high-pressure storage body, which is opposite to the respective Verschneidungsstelle, a more uniform stress distribution in the region of the intersection is achieved.
  • the material reduction is designed as a wall thickness reduction in the form of a flat flattening.
  • the material expenditure and thus the weight of the high-pressure storage body can advantageously be reduced considerably at the same time for reducing the stress.
  • this leads to a lower weight of the high-pressure storage body with increased high-pressure resistance; on the other hand, the amount of material used is reduced, which contributes to a not insignificant reduction in material costs in mass production.
  • the inventively proposed, substantially tubular high-pressure storage body has in one-piece form high-pressure connections and between these a tapered outer diameter.
  • a suitable diameter ratio d / D is in the range between 0.4 and 0.75, where D denotes the diameter of the high-pressure storage body without a taper and d the diameter of the high-pressure storage body at the taper.
  • a width b of the dome in the region of the sections remaining in the cylindrical basic shape of the high-pressure storage body in the region of the high-pressure connections is between 0.6 and 0.85 relative to the diameter of the basic cylindrical shape, ie.
  • a transition radius r from the outer surface to the dome-shaped elevation in the region of the high-pressure ports is formed to be smaller than the difference of d, the diameter of the body at the taper point, and D, the original diameter of the high-pressure reservoir body, i. r ⁇ (D - d).
  • the essentially high-pressure storage body which is essentially cylindrical in its basic form, has flattenings in one-piece form on the cylinder half opposite the bore intersection. These flats serve the purpose of reducing the bending strength of the cross-section at the side opposite the bore intersection.
  • a flat flattening is formed which contacts the taper diameter and the circular transition from the taper diameter to the base diameter in the plane of symmetry.
  • FIG. 1 The representation according to FIG. 1 is a high pressure storage body according to the prior art can be seen.
  • FIG. 1 shows a high pressure storage body 10, on the lateral surface 14, a number of domes 12 is formed.
  • the dome 12 each represent high pressure ports 28, in which FIG. 1 not shown high-pressure lines are connected, via which the system pressure generated in the high-pressure accumulator body 10 to in FIG. 1 also not shown fuel injectors a high-pressure accumulator injection system (common rail) is applied.
  • a pressure regulating valve 16 On the end faces of the tubular high-pressure accumulator body 10 there is, on the one hand, a pressure regulating valve 16 and, on the opposite front side, a stopper identified by reference numeral 18.
  • the high-pressure storage body 10 has a constant outer diameter 20.
  • a plurality of fastening points 24 are provided, with which the high-pressure accumulator body 10 is fixed in the cylinder head area of the fuel to be supplied to the internal combustion engine.
  • Each of the attachment points 24 includes a bore 26; the dome 12 on the lateral surface 14 of the Prior art high pressure accumulator bodies 10 serve as high pressure ports 28 and typically include a threaded portion.
  • FIG. 2 shows an embodiment of the inventively proposed high-pressure storage body with regions which are formed in a tapered diameter relative to a basic shape.
  • FIG. 2 can be taken that the there reproduced in perspective view high-pressure storage body 10 (common rail) on its lateral surface 14 is also provided with a number of domes 12, which serve as high pressure ports 28.
  • Analogous to in FIG. 1 illustrated high-pressure storage body 10 includes the in FIG. 2 represented according to the invention proposed high-pressure accumulator body 10 at its end faces the control valve or the plug 18th
  • high-pressure accumulator body 10 Unlike in FIG. 1 illustrated high-pressure accumulator body 10 are located at the invention proposed high-pressure accumulator body 10 between individual high-pressure connections 28 sections 42 in which the high-pressure accumulator body 10 is formed with a tapered diameter 46, on which the lateral surface 14 compared to the diameter 44 of a basic shape 40, which corresponds to the cylindrical shape 52, returns.
  • the suitable diameter ratio of the diameters 46 to 44 is between 0.4 and 0.75.
  • FIG. 3 shows a representation of the inventively proposed high-pressure storage body in the region of a dome for a high pressure port.
  • FIG. 3 shows that the Verschneidungsstelle 56 of a transverse bore 58 which passes through the dome 12, with the longitudinal bore produced as a cavity 54 of the cylinder produced in the form of 52 high-pressure accumulator 10 is formed.
  • the dome 12 rises in the transition radius 50.
  • a width in which the dome 12 together with high pressure ports 28 on the lateral surface 14 of the invention proposed high-pressure accumulator 10 is designated by reference numeral 48.
  • a flat 64 is formed at the opposite side of the high pressure port 28 68. This results in a reduced circumferential expansion in the intersection region 56 due to the constrictions obtained.
  • the transition radius 50 of the basic shape 40, ie the cylindrical shape 52 on the sections 42 formed in tapered outer diameter 46 is preferably chosen to be smaller than the difference in the diameters of the basic body, i. of the diameter 44, and the diameter of the tapered portions 42, i. the diameter 46.
  • FIG. 4 is a cross section through a not according to the invention proposed high-pressure body in the range of a high-pressure connection can be seen.
  • the Verschneidungsstelle 56 which represents the most critical component site.
  • the transverse bore 78 extends through the dome 12, on the outside of the threaded portion 58 extends.
  • high pressure connection 28 to be connected high-pressure fuel line is connected to the high-pressure accumulator body 10.
  • this has a flattening 64 on.
  • the flattening 64 is formed on the lateral surface 14 of the high pressure storage body 10 of the Verschneidungsstelle 56 directly opposite rounded.
  • the inventively proposed high-pressure accumulator body 10 in the lateral surface 14, each having a transverse bore 78 of a high pressure port 28 opposite.
  • a reduction of the stresses can be achieved by an increased strain 60 in the axial direction and a reduced strain in the radial direction.
  • the voltage optimization in the area of the Verschneidungsstelle 76 means there a reduction of the maximum voltage and in other areas an increase in the base voltages, ie in the non-critical area outside of the Verschneidungsstellen 56 between the transverse bores 78 and the cavity 74, the ground voltage level is increased.
  • FIG. 5 shows a schematic representation of a comparison of the diameter 44 formed as a cylinder 52 basic shape 40 of the high-pressure accumulator body 10.
  • the tapered diameter 46 which on the high-pressure storage body 10 in the region of a flat 64 (see FIG FIG. 4 ) is formed, gradually from the diameter 44 of the basic mold 40 can be reduced until this on the in FIG. 5 hatched shown residual wall thickness between the lateral surface 14 and the cavity 54 (longitudinal bore) can be returned.
  • the flattening 64 is on the opposite side of the Verschneidungsstelle 56, that is formed in the bottom 68 of the high-pressure accumulator body 10.
  • FIG. 6.1 shows, for example, the Figure 6.1 the formation of a flat flattening 72 of the lateral surface 14 of the inventively proposed high-pressure storage body 10.
  • the flat flat 72 coincides with the tapered diameter 46.
  • the in Figure 6.1 schematically shown flat flattening 72 the advantage of cost-effective manufacturability by means of a machining production of the inventively proposed high-pressure storage body 10.
  • the sectional view according to Figure 6.1 It can be seen that, apart from the flattening 72, the basic shape 40 of the high-pressure accumulator body 10 is given by the cylindrical shape 52.
  • the flat flattening 72 lies in the floor area (see position 68 in FIG. 4 ) at the point of intersection 56 opposite side of the high-pressure accumulator body 10th
  • Figure 6.2 shows an alternative non-inventive geometry of a material reduction, in which on the circumference of the lateral surface 14 of the inventively proposed high-pressure storage body 10 lying in its plane of symmetry, a circular flattening 76 is formed.
  • this represents a transition from the tapered diameter 46 to the diameter 44 of the basic shape 40.
  • This lies in the plane of symmetry of the inventively proposed high-pressure storage body 10, so that a symmetrical stress distribution and in particular a reduction of the maximum stress in the Verschipungsstelle 56 between the transverse bore 78 of the high-pressure ports 28 and the longitudinal direction of the high-pressure storage body 10 extending longitudinal bore, which represents the cavity 54 adjusts.
  • Figure 6.3 shows an arc-shaped flattening 74 in the bottom region of a non-inventively proposed high-pressure storage body 10, with the reduction of the maximum stress in the Verschneidungsstelle 56 between the transverse bore 78 of the high-pressure port 28 and formed as a longitudinal bore cavity 54 of the high-pressure accumulator body 10 can be achieved.
  • FIG. 6.1 illustrated flat flattening 72 and the in Figure 6.2 shown, lying in the plane of symmetry of the high-pressure accumulator body 10, circular trained flattening 76 on the respective intersection point 56 opposite side 68 of the high-pressure accumulator body 10 reach.

Description

    Stand der Technik
  • Bei Verbrennungskraftmaschinen, so zum Beispiel selbstzündenden Verbrennungskraftmaschinen dargestellten Kraftstoffeinspritzsystemen, kommen heute unter anderem Hochdruckspeichereinspritzsysteme (Common-Rail) zum Einsatz. Das Hochdruckspeichereinspritzsystem umfasst eine Hochdruckförderpumpe, mit der in einem Hochdruckspeicherkörper (Common-Rail) ein Systemdruckniveau aufgebaut und erhalten wird. Über mehrere am Hochdruckspeicherkörper angeschlossene Kraftstoffinjektoren, die mit dem Hochdruckspeicherkörper (Common-Rail) über Hochdruckleitungen in Verbindung stehen, wird Kraftstoff in die Brennräume der selbstzündenden Verbrennungskraftmaschine eingespritzt. Von den Kraftstoffinjektoren wird Leckage und abgesteuerte Menge über ein Rücklaufsystem in der Regel in den Tank des Kraftstoffeinspritzsystems zurückgefördert, von wo es, eventuell unter Zwischenschaltung einer Elektrokraftstoffpumpe, dem Hochdruckförderaggregat erneut zugeleitet wird.
  • Der Hochdruckspeicherkörper wird bislang aus einem bis auf die Gewindeanschlüsse stabförmigen Rohling, welcher ein Ur- oder Umformteil darstellt, durch spanende Bearbeitung hergestellt. Im Bereich von Verschneidungen von einer in den stabförmigen Rohling eingebrachten Tieflochbohrung, welche das Kraftstoffvolumen innerhalb des Hochdruckspeicherkörpers definiert, und den Radialbohrungen in der Wand des Hochdruckspeicherkörpers zu den einzelnen Hochdruckanschlüssen treten im Betrieb unter Druckbelastung des Hochdruckspeicherkörpers die maximalen Spannungen auf. Diese Verschneidungen stellen die versagensrelevante Stelle dar und bestimmen die Festigkeit und damit die Auslegung des Hochdruckspeicherkörpers (Common-Rail) wesentlich. Eine Reduzierung der Spannungsbelastung im Bereich der Verschneidungsstellen der Tieflochbohrung mit den einzelnen Radialbohrungen zu den Hochdruckanschlüssen kann durch eine Vergrößerung des Außendurchmessers des Hochdruckspeicherkörpers unter Beibehaltung des Innendurchmessers des Hochdruckspeicherkörpers erreicht werden. Diese Reduzierung der Spannungsbelastung in den Verschneidungsbereichen nähert sich jedoch asymptotisch einem Grenzwert. Der mit dieser Lösung einhergehende Material- und Gewichtsaufwand wäre unverhältnismäßig groß.
  • Zur Verbesserung der Hochdruckfestigkeit von Hochdruckspeicherkörpern ist aus
    DE 199 48 338 A1 ein Verfahren zur Bearbeitung eines Kraftstoffhochdruckspeichers, ein Kraftstoffhochdruckspeicher mit Anschlussstutzen sowie die Anwendung des Verfahrens zur Bearbeitung bekannt. Das Common-Rail-Kraftstoffeinspritzsystem gemäß
    DE 199 48 338 A1 umfasst einen Grundkörper, der mit mehreren Anschlussöffnungen ausgestattet ist. Der Grundkörper wird im Bereich der Anschlussöffnungen verformt. Im Bereich der Anschlussöffnungen ist jeweils eine Durchgangsbohrung vorgesehen, die zwei Abschnitte mit unterschiedlich großen Innendurchmessern aufweist. Die Anschlussstutzen sind derart gestaltet, dass der Außendurchmesser des Anschlussstutzens an seinem zu dem Kraftstoffhochdruckspeicher gewandten Ende im Wesentlichen dem Innendurchmesser des Abschnitts der Durchgangsbohrung in dem Kraftstoffhochdruckspeicher mit dem größeren Durchmesser entspricht.
  • Aus DE 199 36 533 A1 ist ein Kraftstoffhochdruckspeicher bekannt, der insbesondere zum Einsatz für ein Common-Rail-Kraftstoffeinspritzsystem einer Brennkraftmaschine geeignet ist. Der Kraftstoffhochdruckspeicher umfasst einen rohrförmigen Grundkörper, der eine in Längsrichtung verlaufende Sacklochbohrung und mehrere Anschlüsse aufweist. Um die Hochdruckfestigkeit des Kraftstoffhochdruckspeichers zu verbessern und dessen Lebensdauer zu verlängern, ist in dem geschlossenen Ende der Sacklochbohrung ein Verschlussstopfen angeordnet.
  • DE 39 32 672 A1 bezieht sich auf einen Rohling zur Herstellung eines Kraftstoffzufuhrverteilers für eine Einspritzanlage eines Motors. In einem rohrförmigen Teil ist ein axialer Kraftstoffdurchgang gebildet. Mehrere Hülsen stehen seitlich von dem rohrförmigen Teil ab. Jede Hülse steht mit dem axialen Kraftstoffdurchgang in Verbindung und bildet in ihrem Inneren einen Sitz für ein Kraftstoffdosier- und Zerstäubungsventil. Ein Ansatz erstreckt sich in Radialrichtung an dem einen Ende des rohrförmigen Teiles und bildet einen Sitz für einen Druckregler. Es sind zwei Sacklöcher vorgesehen, deren Achse jeweils senkrecht zu dem axialen Kraftstoffdurchgang steht. Der Rohling wird aus geschmolzenem Metall im Wege des Spritzgußverfahrens hergestellt.
  • DE 199 45 316 A1 bezieht sich auf einen Kraftstoffhochdruckspeicher, dessen Innenraum bezogen auf die Längsachse des Grundkörpers exzentrisch im Grundkörper angeordnet ist. Die Hochdruckfestigkeit des Kraftstoffhochdruckspeichers wird primär durch die Verschneidungen zwischen den Anschlussöffnungen und dem Grundkörper beschränkt. Auf die Übergänge zwischen den Anschlussöffnungen für die Hochdruckleitungen zu den einzelnen, mit unter Systemdruck stehendem Kraftstoff zu versorgenden Kraftstoffinjektoren und den Grundkörper wirken im Betrieb die höchsten Kräfte. Durch eine Relativverschiebung des Innenraumes in einer ersten Ebene des Grundkörpers wird der bruchgefährdete Übergangsbereich der Verschneidungen entlastet beziehungsweise stabilisiert, so dass sich eine Steigerung der Hochdruckfestigkeit des Kraftstoffhochdruckspeichers durch die Lösung gemäß DE 199 45 316 A1 erreichen lässt. In einer besonderen Ausführungsform des Kraftstoffhochdruckspeichers gemäß DE 199 45 316 A1 ist der Grundkörper im Querschnitt mit einer im Wesentlichen ellipsenförmigen Außenkontur versehen, wobei die Anschlussöffnungen in Längsrichtung der Hauptachse der Ellipse angeordnet sind. Die im Wesentlichen ellipsenförmig ausgebildete Außenkontur führt unter Hochdruckbeaufschlagung des Innenraumes des rohrförmigen Grundkörpers dazu, dass sich der Innenraum des rohrförmigen Grundkörpers quer zur Hauptachse der Ellipse ausdehnt. Die daraus resultierenden Dehnungen im Grundkörper sorgen dafür, dass der bruchgefährdete Bereich der Verschneidungen entlastet wird.
  • Die Offentbarungen EP1811165A2 (Artikel 54(3) EPC), DE19913793A1 und FR2816668 zeigen weitere ähnliche Hochdruckspeicherkörper.
  • Offenbarung der Erfindung
  • Erfindungsgemäß wird vorgeschlagen, die Geometrie des Hochdruckspeicherkörpers (Common-Rail) derart zu modifizieren, dass durch eine Vergrößerung der in axiale Richtung wirksamen Längsdehnung eine Verjüngung des Außendurchmessers zwischen den einzelnen Hochdruckanschlüssen in Kombination mit einer lokal vorgenommenen Verringerung der Querdehnung durch eine Materialreduktion auf der Seite des Hochdruckspeicherkörpers, die der jeweiligen Verschneidungsstelle gegenüberliegt, eine gleichmäßigere Spannungsverteilung im Bereich der Verschneidung erreicht wird. Dazu ist die Materialreduktion als Wandstärkereduktion in Form einer ebenen Abflachung ausgeführt. Durch die erfindungsgemäß vorgeschlagene Lösung kann in vorteilhafter Weise erreicht werden, dass bei gleichen Anwendungsfällen, d.h. bei einem gleichen zu erzeugenden Systemdruck, ein Material mit geringer Festigkeit verwendet werden kann. Dies bietet die Möglichkeit, die Kosten dadurch zu reduzieren, indem nun bei Anwendung der erfindungsgemäß vorgeschlagenen Lösung ein kostengünstigeres Material eingesetzt werden kann sowie reduzierte Anforderungen an die Zerspanung im Bereich der Verschneidungsstelle zu richten sind. Dort können andere Oberflächengüten und Rauigkeitswerte zugelassen werden. Andererseits bietet die erfindungsgemäß vorgeschlagene Lösung unter Beibehaltung des gewählten Werkstoffes und bei ansonsten gleichen Betriebsbedingungen aufgrund der Verbesserung der Hochdruckfestigkeit die Möglichkeit, das Systemdruckniveau zu erhöhen.
  • Durch die Verjüngung des Außendurchmessers des im Wesentlichen ein rohrförmiges Aussehen aufweisenden Hochdruckspeicherkörpers kann in vorteilhafter Weise gleichzeitig zur Spannungsreduzierung auch der Materialaufwand und damit das Gewicht des Hochdruckspeicherkörpers erheblich reduziert werden. Dies führt einerseits bei erhöhter Hochdruckfestigkeit zu einem geringeren Gewicht des Hochdruckspeicherkörpers, andererseits wird die Menge des eingesetzten Materials reduziert, was in Großserienfertigung zu einer nicht unbedeutenden Senkung der Materialkosten beiträgt.
  • Der erfindungsgemäß vorgeschlagene, im Wesentlichen rohrförmige Hochdruckspeicherkörper weist in einstückiger Form Hochdruckanschlüsse und zwischen diesen einen verjüngt ausgebildeten Außendurchmesser auf. Ein geeignetes Durchmesserverhältnis d/D liegt im Bereich zwischen 0,4 und 0,75, wobei D den Durchmesser des Hochdruckspeicherkörpers ohne Verjüngung bezeichnet und d den Durchmesser des Hochdruckspeicherkörpers an der Verjüngung. Eine Breite b der Dome im Bereich der in der zylinderförmigen Grundform des Hochdruckspeicherkörpers verbleibenden Abschnitte im Bereich der Hochdruckanschlüsse liegt zwischen 0,6 und 0,85 bezogen auf den Durchmesser der zylindrischen Grundform, d.h. den Durchmesser D. Ein Übergangsradius r von der Außenmantelfläche zur domförmigen Erhebung im Bereich der Hochdruckanschlüsse wird so ausgebildet, dass dieser kleiner ist als die Differenz von d, des Durchmessers des Grundkörpers an der Verjüngungsstelle, und D, des ursprünglichen Durchmessers des Hochdruckspeicherkörpers, d.h. r < (D - d).
  • Der in der Grundform im Wesentlichen zylinderformig ausgebildete Hochdruckspeicherkörper weist in einstückiger Form an der der Bohrungsverschneidung gegenüberliegenden Zylinderhälfte Abflachungen auf. Diese Abflachungen dienen dem Ziel, die Biegefestigkeit des Querschnitts an der der Bohrungsverschneidung direkt gegenüberliegenden Seite zu reduzieren.
  • In besonders vorteilhafter Ausführung wird eine ebene Abflachung ausgebildet, die der Verjüngungsdurchmesser berührt und der kreisrunde Übergang vom Verjüngungsdurchmesser auf den Grundkörperdurchmesser in der Symmetrieebene.
  • Kurze Beschreibung der Zeichnungen
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    einen aus dem Stand der Technik bekannter Hochdruckspeicherkörper,
    Figur 2
    die Draufsicht auf den erfindungsgemäß vorgeschlagenen Speicherkörper in perspektivischer Wiedergabe,
    Figur 3
    eine schematische Wiedergabe der spannungsoptimierten Außengeometrie in Seitenansicht,
    Figur 4
    eine Schnittdarstellung einer nicht erfindungsgemäßen Außengeometrie,
    Figur 5
    eine nicht erfindungsgemäße Geometrie zur Reduktion der Biegesteifigkeit an der der Verschneidungsstelle zwischen Querbohrung und Hohlraum des Hochdruckspeicherkörpers gegenüberliegenden Seite,
    Figuren 6.1, 6.2 und 6.3
    eine Ausführungsvariante (6.1) und zwei nicht erfindungsgemäße Geometrien (6.2 und 6.3) zur Reduktion der Biegesteifigkeit des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers.
  • Der Darstellung gemäß Figur 1 ist ein Hochdruckspeicherkörper gemäß des Standes der Technik zu entnehmen.
  • Figur 1 zeigt einen Hochdruckspeicherkörper 10, an dessen Mantelfläche 14 eine Anzahl von Domen 12 ausgebildet ist. Die Dome 12 stellen jeweils Hochdruckanschlüsse 28 dar, an denen in Figur 1 nicht dargestellte Hochdruckleitungen angeschlossen werden, über welche der im Hochdruckspeicherkörper 10 erzeugte Systemdruck an in Figur 1 ebenfalls nicht dargestellten Kraftstoffinjektoren eines Hochdruckspeichereinspritzsystems (Common-Rail) anliegt. An den Stirnseiten des rohrförmig ausgebildeten Hochdruckspeicherkörpers 10 befindet sich einerseits ein Druckregelventil 16 und an der gegenüberliegenden Stirnseite ein durch Bezugszeichen 18 kenntlich gemachter Stopfen. Entlang seiner gesamten Länge 22 weist der Hochdruckspeicherkörper 10 einen konstanten Außendurchmesser 20 auf. Seitlich an der Mantelfläche 14 sind mehrere Befestigungspunkte 24 vorgesehen, mit denen der Hochdruckspeicherkörper 10 im Zylinderkopfbereich der mit Kraftstoff zu versorgenden Verbrennungskraftmaschine befestigt wird. Jeder der Befestigungspunkte 24 umfasst eine Bohrung 26; die Dome 12 an der Mantelfläche 14 des Hochdruckspeicherkörpers 10 gemäß des Standes der Technik dienen als Hochdruckanschlüsse 28 und umfassen in der Regel einen Gewindeabschnitt.
  • Ausführungsformen
  • Figur 2 zeigt eine Ausführungsform des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers mit Bereichen, die in verjüngtem Durchmesser gegenüber einer Grundform ausgebildet sind.
  • Figur 2 ist entnehmbar, dass der dort in perspektivischer Ansicht wiedergegebene Hochdruckspeicherkörper 10 (Common-Rail) an seiner Mantelfläche 14 ebenfalls mit einer Anzahl von Domen 12, die als Hochdruckanschlüsse 28 dienen, versehen ist. Analog zum in Figur 1 dargestellten Hochdruckspeicherkörper 10 umfasst der in Figur 2 dargestellte erfindungsgemäß vorgeschlagene Hochdruckspeicherkörper 10 an seinen Stirnseiten das Regelventil beziehungsweise den Stopfen 18.
  • Im Unterschied zum in Figur 1 dargestellten Hochdruckspeicherkörper 10 befinden sich am erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörper 10 zwischen einzelnen Hochdruckanschlüssen 28 Abschnitte 42, in denen der Hochdruckspeicherkörper 10 mit einem verjüngten Durchmesser 46 ausgebildet ist, auf den die Mantelfläche 14 im Vergleich zum Durchmesser 44 einer Grundform 40, die der Zylinderform 52 entspricht, zurückspringt.
  • Das geeignete Durchmesserverhältnis der Durchmesser 46 zu 44 liegt zwischen 0,4 und 0,75. Durch die Verjüngungsabschnitte 42, die sich am Hochdruckspeicherkörper 10 in axialer Richtung zwischen den Hochdruckanschlüssen 28 erstrecken, kann eine Vergrößerung einer Längsdehnung 60, vergleiche Darstellung gemäß Figur 3, erreicht werden, in Kombination mit einer lokalen Verringerung einer Querdehnung durch Materialreduktion auf der Seite des Hochdruckspeicherkörpers 10, der einer Verschneidungsstelle 56 gegenüberliegt, wie in Figur 4 dargestellt. Dies bietet den Vorteil, dass bei gleichem Anwendungsfall, so zum Beispiel bei gleichem Systemdruck, ein Material mit geringerer Festigkeit als Werkstoff für den Hochdruckspeicherkörper 10 eingesetzt werden kann, so dass die Kosten durch Wahl des kostengünstigeren Materials oder reduzierter Anforderungen im Bereich der Verschneidungsstelle 56 reduziert werden können. Andererseits kann beim erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörper 10 eine Drucksteigerung in Bezug auf den Systemdruck erreicht werden, wenn das Material beibehalten wird und nur die Außengeometrie des Hochdruckspeicherkörpers 10, wie erfindungsgemäß vorgeschlagen, verändert wird.
  • Figur 3 zeigt eine Darstellung des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers im Bereich eines Doms für einen Hochdruckanschluss.
  • Aus Figur 3 geht hervor, dass die Verschneidungsstelle 56 von einer Querbohrung 58, die den Dom 12 durchzieht, mit dem als Längsbohrung gefertigten Hohlraum 54 des in Zylinderform 52 gefertigten Hochdruckspeichers 10 entsteht. An der Mantelfläche 14 des Hochdruckspeicherkörpers 10 erhebt sich der Dom 12 im Übergangsradius 50. Eine Breite, in welcher die Dome 12 samt Hochdruckanschlüssen 28 an der Mantelfläche 14 des erfindungsgemäß vorgeschlagenen Hochdruckspeichers 10 ausgeführt sind, ist durch Bezugszeichen 48 bezeichnet.
  • An der dem Hochdruckanschluss 28 gegenüberliegenden Seite 68 wird, wie erfindungsgemäß vorgeschlagen, eine Abflachung 64 ausgebildet. Dadurch ergibt sich aufgrund der erhaltenen Einschnürstellen eine reduzierte Umfangsdehnung im Verschneidungsbereich 56. Die Breite 48, in der die in der zylinderförmigen Grundform 40, 52 verbleibenden Abschnitte des Hochdruckspeicherkörpers 10, insbesondere im Bereich der Hochdruckanschlüsse 28 ausgeführt werden, liegt zwischen 0,6 und 0,85, bezogen auf den Durchmesser der Grundform 44. Der Übergangsradius 50 von der Grundform 40, d.h. der Zylinderform 52 auf die Abschnitte 42, die in verjüngtem Außendurchmesser 46 ausgebildet sind, ist bevorzugt kleiner gewählt als die Differenz der Durchmesser des Grundkörpers, d.h. des Durchmessers 44, und dem Durchmesser der verjüngten Abschnitte 42, d.h. dem Durchmesser 46.
  • Der Darstellung gemäß Figur 4 ist ein Querschnitt durch einen nicht erfindungsgemäß vorgeschlagenen Hochdruckkörper im Bereich eines Hochdruckanschlusses zu entnehmen.
  • Wie bereits in Zusammenhang mit Figur 3 erläutert, entsteht an der Schnittstelle der Querbohrung 48 mit dem den Hochdruckspeicherkörper 10 in axialer Richtung durchziehenden Hohlraum 54 die Verschneidungsstelle 56, welche die kritischste Bauteilstelle darstellt. Die Querbohrung 78 erstreckt sich durch den Dom 12, an dessen Außenseite der Gewindeabschnitt 58 verläuft. An diesem wird die am Hochdruckanschluss 28 anzuschließende Kraftstoffhochdruckleitung mit dem Hochdruckspeicherkörper 10 verbunden. An der der Verschneidungsstelle 56 gegenüberliegenden Seite, d.h. im Bereich des Bodens 68 des Hochdruckspeicherkörpers 10, weist dieser eine Abflachung 64 auf. Durch diese wird die Biegesteifigkeit des Querschnittes des Hochdruckspeicherkörpers 10 an der der Verschneidungsstelle 56 direkt gegenüberliegenden Seite reduziert und gleichzeitig die Dehnung in Umfangsrichtung im Verschneidungsbereich 56 verringert. Aus der Darstellung gemäß Figur 4 geht hervor, dass die Abflachung 64 an der Mantelfläche 14 des Hochdruckspeicherkörpers 10 der Verschneidungsstelle 56 direkt gegenüberliegend abgerundet ausgebildet ist. Aufgrund der verringerten Dehnung 70 in Umfangsrichtung erfolgt eine durch Bezugszeichen 66 angedeutete Stützwirkung, die über die Dehnung 70 im Bereich des Railbodens 68 auf den Bereich der Querbohrung 58 oberhalb der Verschneidungsstelle 56 wirkt und die Hochdruckfestigkeit im Verschneidungsbereich 56 erheblich verbessert, erzeugt durch geringere Dehnung in Umfangsrichtung, wie in Figur 4 dargestellt. Zusammen mit der vergrößerten Axialdehnung 60 kann eine Vergleichmäßigung und damit eine signifikante Reduktion der Spannungsspitzen im Verschneidungsbereich 56 erreicht werden.
  • Aus der Darstellung gemäß Figur 4 geht zudem hervor, dass die dort dargestellte Abflachung 64 durch eine Materialreduktion im Bereich des Bodens 68 des Hochdruckspeicherkörpers 10 erreicht wird. Die sich bei Systemdruckbeaufschlagung des Hohlraumes 54 einstellende Verformung der Wandfläche des Hochdruckspeicherkörpers 10 führt zu einer reduzierten Dehnung 70 in Umfangsrichtung, die oberhalb der Verschneidungsstelle 56 von Querbohrung 78 und Hohlraum 54, der in der Regel als Längsbohrung ausgebildet ist, zu einer Reduktion der Spannungsspitzen in diesem Bereich führt. Dadurch kann eine signifikante Reduktion von Spannungsspitzen im Bereich der Verschneidungsstelle 56 vom Hohlraum 54 und Querbohrungen 78 an einem jeden der Hochdruckanschlüsse 28 eines Hochdruckspeicherkörpers 10 erreicht werden. Die in Figur 4 angedeutete, hier gerundet ausgebildete Abflachung 64 ist am erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörper 10 in dessen Mantelfläche 14, jeweils einer Querbohrung 78 eines Hochdruckanschlusses 28 gegenüberliegend, ausgebildet. Durch die in Zusammenhang mit den Figuren 3 und 4 dargestellte Optimierung der Außengeometrie des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10 kann eine Reduktion der Spannungen durch eine verstärkte Dehnung 60 in axiale Richtung und eine reduzierte Dehnung in radiale Richtung erreicht werden. Die Spannungsoptimierung im Bereich der Verschneidungsstelle 76 bedeutet dort eine Reduktion der Maximalspannung und in anderen Bereichen eine Erhöhung der Grundspannungen, d.h. im unkritischen Bereich außerhalb der Verschneidungsstellen 56 zwischen den Querbohrungen 78 und dem Hohlraum 74 wird das Grundspannungsniveau erhöht.
  • Figur 5 zeigt in schematischer Wiedergabe eine Gegenüberstellung des Durchmessers 44 der als Zylinder 52 ausgebildeten Grundform 40 des Hochdruckspeicherkörpers 10. In Figur 5 ist dargestellt, dass der verjüngte Durchmesser 46, welcher am Hochdruckspeicherkörper 10 im Bereich einer Abflachung 64 (vergleiche Figur 4) ausgebildet ist, stufenweise vom Durchmesser 44 der Grundform 40 reduziert werden kann, bis dieser auf die in Figur 5 schraffiert dargestellte Restwandstärke zwischen der Mantelfläche 14 und dem Hohlraum 54 (Längsbohrung) zurückgeführt werden kann. In der Darstellung gemäß Figur 5 ist die Abflachung 64 auf der der Verschneidungsstelle 56 gegenüberliegenden Seite, d.h. im Boden 68 des Hochdruckspeicherkörpers 10 ausgebildet. Abweichend von der als Zylinder 52 beschaffenen Grundform 40 im Bereich des Durchmessers 44 des Hochdruckspeichers 10, nimmt der Hochdruckspeicher 10 im Bereich von Abflachungen 64 aufgrund des verjüngten Durchmessers 46 ein ovales Aussehen an, wie in Zusammenhang mit Figur 5 dargestellt. Den Darstellungen gemäß der Figuren 6.1, 6.2 und 6.3 sind verschiedene Ausprägungen von Materialreduktionen zu entnehmen, die auf der einer jeweiligen Verschneidungsstelle gegenüberliegenden Seite am erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörper 10 ausgeführt sein können.
  • So zeigt zum Beispiel die Figur 6.1 die Ausbildung einer ebenen Abflachung 72 der Mantelfläche 14 des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10. Wie der schematischen Darstellung gemäß Figur 6.1 entnommen werden kann, fällt in dieser Ausführungsform die ebene Abflachung 72 mit dem verjüngten Durchmesser 46 zusammen. Des Weiteren hat die in Figur 6.1 schematisch dargestellte ebene Abflachung 72 den Vorteil einer kostengünstigen Herstellbarkeit im Wege einer spanenden Fertigung des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10. Der Schnittdarstellung gemäß Figur 6.1 ist zu entnehmen, dass, abgesehen von der Abflachung 72, die Grundform 40 des Hochdruckspeicherkörpers 10 durch die Zylinderform 52 gegeben ist. Die ebene Abflachung 72 liegt im Bodenbereich (vergleiche Position 68 in Figur 4) an der der Verschneidungsstelle 56 gegenüberliegenden Seite des Hochdruckspeicherkörpers 10.
  • Figur 6.2 zeigt eine alternative nicht erfindungsgemäße Geometrie einer Materialreduktion, bei der am Umfang der Mantelfläche 14 des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10 in dessen Symmetrieebene liegend eine kreisrunde Abflachung 76 ausgebildet ist. Bei der kreisrunden Abflachung 76 gemäß der Darstellung in Figur 6.2 stellt diese einen Übergang vom verjüngten Durchmesser 46 auf den Durchmesser 44 der Grundform 40 dar. Diese liegt in der Symmetrieebene des erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10, so dass sich eine symmetrische Spannungsverteilung und insbesondere eine Reduzierung der Maximalspannung im Bereich der Verschneidungsstelle 56 zwischen der Querbohrung 78 der Hochdruckanschlüsse 28 sowie der den Hochdruckspeicherkörper 10 in Längsrichtung durchziehenden Längsbohrung, die den Hohlraum 54 darstellt, einstellt.
  • Figur 6.3 schließlich, zeigt eine bogenförmig ausgebildete Abflachung 74 im Bodenbereich eines nicht erfindungsgemäß vorgeschlagenen Hochdruckspeicherkörpers 10, mit der ebenfalls eine Reduktion der Maximalspannung im Bereich der Verschneidungsstelle 56 zwischen der Querbohrung 78 des Hochdruckanschlusses 28 und dem als Längsbohrung ausgebildeten Hohlraum 54 des Hochdruckspeicherkörpers 10 erreicht werden kann.
  • Eine in fertigungstechnischer Hinsicht besonders einfache Form einer Materialreduktion lässt sich durch die in Figur 6.1 dargestellte ebene Abflachung 72 sowie die in Figur 6.2 dargestellte, in der Symmetrieebene des Hochdruckspeicherkörpers 10 liegende, kreisrund ausgebildete Abflachung 76 auf der der jeweiligen Verschneidungsstelle 56 gegenüberliegenden Seite 68 des Hochdruckspeicherkörpers 10 erreichen.

Claims (6)

  1. Hochdruckspeicherkörper (10) für ein Hochdruckeinspritzsystem für Kraftstoff in Brennräume von Verbrennungskraftmaschinen mit einer Anzahl von Hochdruckanschlüssen (28) in einer Mantelfläche (14), einem Hohlraum (54), der mit Querbohrungen (78) der Hochdruckanschlüsse (28) Verschneidungsstellen (56) bildet, wobei in Abschnitten (42) zwischen den Hochdruckanschlüssen (28) der Durchmesser (46) des Hochdruckspeicherkörpers (10) verjüngt ist und an diesem an der den jeweiligen Verschneidungsstellen (56) gegenüberliegenden Seite (68) eine Materialreduktion (64, 72, 74, 76) ausgeführt ist, wobei die Materialreduktion (64, 72, 74, 76) als Wandstärkereduzierung auf der Seite (68), insbesondere des Bodens des Hochdruckspeicherkörpers (10) ausgeführt ist, dadurch gekennzeichnet, dass die Materialreduktion als ebene Abflachung (72) ausgeführt ist.
  2. Hochdruckspeicherkörper (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass dieser eine im Wesentlichen zylindrisch (52) beschaffene Grundform (40) aufweist.
  3. Hochdruckspeicherkörper (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass das Verhältnis des verjüngten Durchmessers (46) zum Durchmesser (44) der Grundform (40) zwischen 0,45 und 0,75 liegt.
  4. Hochdruckspeicherkörper (10) gemäß Anspruch 2, dadurch gekennzeichnet, dass in mit zylindrischer (52) Grundform (40) verbliebenen Bereichen des Hochdruckspeicherkörpers (10) die Hochdruckanschlüsse (28) als Dome (12) in einer Breite (48) ausgeführt sind, die das 0,6- bis 0,85-fache des Durchmessers (44) der Grundform (40) beträgt.
  5. Hochdruckspeicherkörper (10) gemäß Anspruch 1, dadurch gekennzeichnet, dass ein Übergangsradius (50) vom Durchmesser (44) der Grundform (40) auf den verjüngten Durchmesser (46) kleiner ist als die Differenz aus dem Durchmesser (44) der Grundform (40) und dem verjüngten Durchmesser (46).
  6. Hochdruckspeicherkörper (10) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die ebene Abflachung (72) den verjüngten Durchmesser (46) berührt.
EP08761008.5A 2007-07-23 2008-06-13 Kraftstoffhochdruckspeicher Active EP2167810B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710034720 DE102007034720A1 (de) 2007-07-23 2007-07-23 Kraftstoffhochdruckspeicher
PCT/EP2008/057485 WO2009013070A1 (de) 2007-07-23 2008-06-13 Kraftstoffhochdruckspeicher

Publications (2)

Publication Number Publication Date
EP2167810A1 EP2167810A1 (de) 2010-03-31
EP2167810B1 true EP2167810B1 (de) 2016-10-05

Family

ID=39777015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08761008.5A Active EP2167810B1 (de) 2007-07-23 2008-06-13 Kraftstoffhochdruckspeicher

Country Status (3)

Country Link
EP (1) EP2167810B1 (de)
DE (1) DE102007034720A1 (de)
WO (1) WO2009013070A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012222448A1 (de) 2012-12-06 2014-06-26 Robert Bosch Gmbh Hochdruckspeicher für ein Kraftstoffeinspritzsystem und Verfahren zur Montage eines Hochdruckspeichers
EP3196457A4 (de) * 2014-09-17 2018-05-02 Hitachi Automotive Systems, Ltd. Kraftstoffverteiler

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT214868Z2 (it) 1988-09-30 1990-07-04 Weber Srl Semilavorato per realizzare un collettore di alimentazione del carburante per un dispositivo di alimentazione di un motore a combustione interna
DE19913793A1 (de) * 1999-03-26 2000-10-19 Daimler Chrysler Ag Verfahren zum Herstellen einer Hochdruckleitung
DE19936533A1 (de) 1999-08-03 2001-02-15 Bosch Gmbh Robert Kraftstoffhochdruckspeicher
DE19945316A1 (de) 1999-09-22 2001-04-05 Bosch Gmbh Robert Kraftstoffhochdruckspeicher
DE19948338A1 (de) 1999-10-07 2001-04-12 Bosch Gmbh Robert Verfahren zur Bearbeitung eines Kraftstoffhochdruckspeichers, Kraftstoffhochdruckspeicher und Anschlussstutzen zur Anwendung des Verfahrens
DE10056405B4 (de) * 2000-11-14 2005-06-16 Robert Bosch Gmbh Kraftstoffhochdruckspeicher für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen
DE10152261A1 (de) * 2001-10-20 2003-04-30 Bosch Gmbh Robert Hochdruckspeicher wie Kraftstoffhochdruckspeicher
JP2008095629A (ja) * 2006-10-13 2008-04-24 Bosch Corp コモンレール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2167810A1 (de) 2010-03-31
WO2009013070A1 (de) 2009-01-29
DE102007034720A1 (de) 2009-01-29

Similar Documents

Publication Publication Date Title
EP2250365B1 (de) Kraftstoffverteilerbaugruppe
EP3607197A1 (de) Kraftstoff-hochdruckspeicher
DE10056405B4 (de) Kraftstoffhochdruckspeicher für ein Kraftstoffeinspritzsystem für Brennkraftmaschinen
WO2006053812A1 (de) Kraftstoffeinspritzanlage mit mehreren druckspeichern
DE112004002560T5 (de) Eine Verbindung für ein Hochdruckkraftstoffsystem
EP1137878B1 (de) Kraftstoffhochdruckspeicher
WO2003036075A1 (de) Hochdruckspeicher wie kraftstoffhochdruckspeicher
WO2001021955A1 (de) Kraftstoffhochdruckspeicher
EP1413744B1 (de) Druckspeicher für ein Common Rail System
EP2167810B1 (de) Kraftstoffhochdruckspeicher
DE102011079075A1 (de) Innendruckbelastetes Bauteil
EP1630408B1 (de) Kraftstoffinjektor für eine Brennkraftmaschine sowie Verfahren zur Montage eines derartigen Kraftstoffinjektors
WO2001011226A1 (de) Kraftstoffhochdruckspeicher
EP1423601B1 (de) Kraftstoffhochdruckspeicher für ein speichereinspritzsystem
DE102018212282A1 (de) Fluidverteiler, insbesondere Kraftstoffverteiler für ein Kraftstoffeinspritzsystem eines Fahrzeuges, sowie Verfahren zur Herstellung eines Fluidverteilers
EP1144854A1 (de) Kraftstoffhochdruckspeicher
EP1642023B1 (de) Verbindung für hochdruckräume von kraftstoffinjektoren
DE102019218949A1 (de) Komponente für eine Einspritzanlage, insbesondere Brennstoffverteilerleiste, und Einspritzanlage mit solch einer Komponente
DE102019218986A1 (de) Komponente für eine Einspritzanlage, insbesondere Brennstoffverteilerleiste, und Einspritzanlage mit solch einer Komponente
WO2004070193A1 (de) Kraftstoffhochdruckspeicher
EP4038269A1 (de) Komponente für eine einspritzanlage, insbesondere brennstoffverteilerleiste, einspritzanlage und verfahren zur herstellung solch einer komponente
WO2021121826A1 (de) Fluidverteiler für eine einspritzanlage, insbesondere brennstoffverteilerleiste für eine brennstoffeinspritzanlage für gemischverdichtende, fremdgezündete brennkraftmaschinen
DE102020005237A1 (de) Distanzelement für einen Kraftstoffverteiler, Kraftstoffverteiler und Verfahren zur Herstellung von diesen
EP4077906A1 (de) Fluidverteiler für eine einspritzanlage, insbesondere brennstoffverteilerleiste für eine brennstoffeinspritzanlage für gemischverdichtende, fremdgezündete brennkraftmaschinen
DE102020109187A1 (de) Rollenstößel für eine Pumpe und Verfahren zur Herstellung eines Hubübertragungsteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150422

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160708

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 834896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008014687

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161005

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170106

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170205

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170206

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008014687

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170105

26N No opposition filed

Effective date: 20170706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170613

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 834896

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230619

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230630

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230817

Year of fee payment: 16