EP2166178A2 - Ecarteur - Google Patents

Ecarteur Download PDF

Info

Publication number
EP2166178A2
EP2166178A2 EP09011922A EP09011922A EP2166178A2 EP 2166178 A2 EP2166178 A2 EP 2166178A2 EP 09011922 A EP09011922 A EP 09011922A EP 09011922 A EP09011922 A EP 09011922A EP 2166178 A2 EP2166178 A2 EP 2166178A2
Authority
EP
European Patent Office
Prior art keywords
rods
spacer
bars
spacer according
wall elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09011922A
Other languages
German (de)
English (en)
Other versions
EP2166178A3 (fr
EP2166178B1 (fr
Inventor
Felix Von Limburg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BT Innovation GmbH
Original Assignee
BT Innovation GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BT Innovation GmbH filed Critical BT Innovation GmbH
Publication of EP2166178A2 publication Critical patent/EP2166178A2/fr
Publication of EP2166178A3 publication Critical patent/EP2166178A3/fr
Application granted granted Critical
Publication of EP2166178B1 publication Critical patent/EP2166178B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G11/00Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs
    • E04G11/06Forms, shutterings, or falsework for making walls, floors, ceilings, or roofs for walls, e.g. curved end panels for wall shutterings; filler elements for wall shutterings; shutterings for vertical ducts
    • E04G11/08Forms, which are completely dismantled after setting of the concrete and re-built for next pouring
    • E04G11/18Forms, which are completely dismantled after setting of the concrete and re-built for next pouring for double walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/02Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members
    • B28B23/028Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects wherein the elements are reinforcing members for double - wall articles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/044Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete
    • E04C2002/045Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres of concrete with two parallel leaves connected by tie anchors
    • E04C2002/047Pin or rod shaped anchors

Definitions

  • the present invention relates to a spacer, preferably for the manufacture of hollow wall elements or multi-layer wall elements.
  • spacers are well known in the art and are also referred to as anchors. They usually consist of a substantially U-shaped metal rod which extends between two spaced-apart wall elements of a hollow wall element or multi-layer wall element. In hollow wall elements, the wall elements are spaced from each other. In multi-layer wall elements, there is an insulating layer between the wall elements. Such multi-layer wall elements are also referred to as sandwich wall. In addition, there are also mixed forms, in which a hollow wall element also has insulation between the wall elements.
  • the wall elements are usually made of concrete. The hollow wall element is produced in a known manner. First, a formwork is placed on a formwork support, then possibly inserted the reinforcing bars of steel or the like and then filled the formwork with concrete.
  • the U-shaped spacer is inserted and positioned with one leg in the concrete.
  • a plurality of spacers are provided to thereby realize a stable bond between the wall elements.
  • the formwork is removed, so that a finished wall element is formed, from which the spacer, preferably a plurality of spacers, at least partially protrude.
  • a second formwork is placed on a formwork support. Reinforcement mats, reinforcing bars and the like can also be introduced into this formwork if necessary for reinforcing the wall element.
  • the second mold is also filled with concrete.
  • the already completed first wall element is raised and turned and positioned in such a way that it is located above and at a distance from the second wall element to be manufactured, with the other leg of the U-shaped spacer in the Concrete of the second wall element to be produced dips.
  • This process is also known as objection.
  • the second formwork can be removed.
  • a hollow wall element was created, which consists of two spaced, substantially mutually parallel wall elements, which are connected via the spacers are.
  • an insulating layer is applied after the production of the first wall element, which is pierced by the spacer.
  • the spacers can serve not only to position the wall elements at a distance, but also to raise the cavity wall element on the site.
  • a lifting device for. As a crane, can act on one or more of the spacers, so that the hollow wall element can be raised and brought to the desired location on the site.
  • the advantage of such hollow wall elements is their ease of use and the relatively low weight.
  • the construction of walls on the construction site is simplified, since the hollow wall elements at the same time as formwork for the filling materials attached between the wall elements, such. In-situ concrete serve.
  • these hollow wall elements allow a very cost-effective industrial prefabrication. This can significantly reduce the cost of building construction.
  • the object of the invention is therefore to improve spacers of the type mentioned, so that on the one hand the strength of the hollow wall elements or multilayer wall elements to be produced can be improved and on the other hand, the manufacturing accuracy can be increased.
  • a spacer of the type mentioned above with at least three rods which are interconnected and each rod has at least one support portion and the support portions of the three rods are spaced from each other, thereby forming a support plane.
  • This solution is simple and has the advantage that by forming a support plane, the spacers can be used to more accurately position the wall elements to one another.
  • the spacers When producing the first wall element z. B. the spacers are so far immersed in the liquid concrete until it touches the formwork support. After curing and applying the first wall element in the formwork of the second wall element, the exact distance of the first wall element to the second wall element can be determined based on the spacer.
  • a spacer now has at least three bars, it is also possible to significantly improve the pull-out strength compared to known spacers. For example, the number of required spacers for producing a hollow wall element can be reduced thereby.
  • forces can be better absorbed parallel to the wall elements by the novel spacer. This is particularly advantageous in the case of multi-layer wall elements in which a facade can be formed from the wall elements.
  • a particularly simple spacer can be achieved when the three bars are substantially straight.
  • the three rods preferably the three rods, include a preferably acute angle ⁇ .
  • the pull-out strength of the spacer can be significantly increased.
  • a simple design of the spacer can be achieved if the support portions of the rods are formed by the end portions.
  • At least one rod preferably all rods
  • the support planes are parallel to each other.
  • the spacer can be used more universally. In particular, this allows the distance between two wall elements set exactly because the spacer can be used on both sides in liquid concrete until it on the Shuttering pad meets. As a result, an exact positioning of the two wall elements to each other can be realized with little effort.
  • connection arrangement which connects the three bars together.
  • the connecting device has a ring through which the rods extend. This makes it possible to realize a stable unit in a particularly simple manner.
  • the ring may also have a different shape from the geometry of an exact ring, but should completely surround the bars.
  • the ring is arranged approximately centrally in the longitudinal direction of the rods on the rods. Through the ring can create a bottleneck, which allows in particular to position a crane hook approximately in the middle between the wall elements when the hollow wall elements to be raised. To increase the strength, the ring can be firmly connected to the rods.
  • the rods can be made of stainless steel.
  • Stainless steel has the advantage of not rusting. This makes it possible to press the spacer in liquid concrete down to the formwork underlay. Although the spacer is then visible on the finished wall element, on the other hand there is no risk of rusting compared to conventional spacers.
  • the ring comprises metal, preferably consists thereof.
  • the rods and / or the ring made of plastic preferably glass fiber reinforced plastic (GRP) exist.
  • GRP glass fiber reinforced plastic
  • carbon fiber materials are also conceivable.
  • the advantage of a plastic spacer is that it can also be pushed so far into the liquid concrete until it touches the formwork with the support sections. Although the spacer is then visible on the finished hollow or multi-layer wall element from the outside, on the other hand caused by the use of plastic no cold bridges. In addition, there is no risk of rust.
  • the spacer may have at least four bars. As a result, the strength of the spacer can be further increased.
  • the connecting means may extend between the bars.
  • the connecting element can be placed between the bars, thereby spacing the bars as far as possible from one another.
  • the connector may preferably extend substantially crosswise between the rods and connect the rods together.
  • the connecting device can be offset in the longitudinal direction of the rods to the middle of the rod, but be arranged between the end portions of the rods. In this way it is possible to move the connecting device into one of the wall elements, so that the connecting device is not or only partially visible on the finished hollow or multi-layer wall element. As a result, the pull-out strength of the spacers from a wall element can be increased in a targeted manner.
  • the distance of the end portions of the rod on one side of the connecting device may be greater than on the other side.
  • the distance between the end sections which are closer to the connection device can be smaller than the distance between the end sections which are further away from the connection device.
  • hollow wall elements whose wall elements have different thicknesses such an embodiment may prove advantageous.
  • the rods are arranged substantially on a truncated pyramid mantle. It is advantageously possible to make the spacers symmetrical, as a result of which the force profile can be introduced symmetrically into the spacer, so that the strength of the hollow or multilayer wall elements can be increased.
  • a geometric embodiment can be realized, the two aligned pyramids or Tetrahedron corresponds, the tip of which are arranged substantially in the region of the connecting device. In such embodiments, it may be beneficial to produce such geometric arrangements if the bars are all the same length.
  • the spacer can be made in one piece with rods and connecting device, preferably by injection molding.
  • the bars may prove advantageous if the bars have holding profiles or whose surface is profiled. This also increases the pull-out strength.
  • rods are sharpened or beveled at the end portions. This can improve the positioning accuracy.
  • a hollow or multi-layer wall element is provided under protection, which have at least two spaced-apart wall elements, of which at least one preferably has concrete, and between which extends at least in sections, an inventive spacer.
  • the connecting device can be arranged between the wall elements.
  • the connecting device is arranged at least in sections in one of the wall elements. It may also prove to be advantageous if at least one support plane is arranged in a plane of an outer wall of a wall element.
  • a method for the production of a hollow or multi-layer wall element having at least two spaced-apart wall elements, between which extends at least one inventive spacer, wherein the spacer in the manufacture of at least one of the wall elements with a formwork base on which the produced Wall element is located, at least indirectly or preferably brought directly into contact.
  • Fig. 1 shows a spacer 1 according to the invention, which has three bars 2.
  • the rods extend through a connecting device 3 embodied as a ring.
  • the rods 2 are arranged relative to one another such that all three rods touch each other in the region of the connecting device 3.
  • the connecting device 3 is fixedly connected to the rods 2.
  • Each rod has two end portions 4 at opposite ends forming support portions 5.
  • the end sections 4 are each slightly conically converging, that is sharpened, with circular-face-shaped end faces 6.
  • the bars each have a spirally running profiling 7.
  • the connecting device 3 is arranged substantially centrally in the longitudinal direction of one of the rods.
  • Fig. 5 an embodiment is shown in which the connecting means is offset to an end portion of a rod.
  • All rods are essentially the same length and each two of the rods include an acute angle ⁇ of about 10-30 ° to each other.
  • the support portions 5 of the bars are each spaced from each other, so that support levels 8 form.
  • the support elements 8 are shown in dashed lines. In the presentation in the Fig. 1 resulting from three support sections 5 on each side of the connecting device 3, the support levels.
  • the spacer 1 As materials for the spacer 1 are stainless steels, z. B. stainless steel. Particularly preferred are rods made of plastic, preferably made of glass fiber reinforced plastic. Alternatively, carbon fiber reinforcements are conceivable. In particular, plastics are suitable which can be processed by means of an injection molding process.
  • the annular connecting device 3 may be made of any metal. Preferably, however, the same materials as for the rods 2 can be used.
  • the Fig. 3 shows a spacer according to the invention in the installed state.
  • a hollow wall element 10 is shown schematically in a sectional view, wherein the spacer is also shown schematically.
  • the not visible in the sectional view part is shown in dashed lines.
  • the hollow wall element 10 consists of two wall elements 11, which are spaced apart and between which a cavity is arranged. In this cavity is z. B. attached to one of the wall elements insulation. While the wall elements 11 are preferably made of concrete, the insulation z. B. from Styrofoam, foam or glass wool and the like. Exist.
  • the spacer 1 is fixedly connected to the wall elements 11, in particular it is cast.
  • a formwork 13 on the formwork support 9 which is designed substantially frame-shaped with an internal dimension of about 2.5, x 2.5 m.
  • this formwork 13 first - as far as necessary - reinforcing mats and reinforcing bars inserted in a known manner crossing each other.
  • the formwork 13 is filled with concrete, as it is in Fig. 7 is shown.
  • the spacer 1 is adjusted, wherein it rests with its support portions 5 on the formwork support 9.
  • the spacer 1 stands upright on the formwork support 9, wherein the corresponding support plane substantially coincides with the outside of the wall element after its completion.
  • the formwork 13 is removed.
  • a second wall element 11 is prepared, in which on the shuttering pad 9, a further formwork 13, or the same formwork 13, is placed. Reinforcing bars or reinforcing mats are inserted in the usual manner - as far as necessary.
  • the concrete is added.
  • the first wall element is turned into the second wall element, as in Fig. 8 is shown raised on the spacers and transferred to a suction reverser, not shown, which holds the wall element on the short side.
  • the first wall element 11 is rotated and the protruding spacer 1 is pressed with the remaining support sections in the concrete so that it comes into contact with the shuttering pad 9. Then the configuration is like in Fig. 8 given.
  • the formwork 13 is removed, so that a hollow wall element according to Fig. 9 is present.
  • a plurality of spacers are provided, so that a solid bond between the opposing wall elements 11 is formed.
  • the hollow wall element can now be positioned at the desired location. Subsequently, the cavity is filled with concrete or the like.
  • the spacer By using the spacer according to the invention, on the one hand, a high pull-out strength is ensured since it is not possible to pull out the spacer 1 due to the bars 2 arranged at an angle to one another. Due to the large immersion depth, a solid bond is achieved. At the same time, it is possible to press the spacer into the still liquid concrete of the second wall element, especially when invoking, wherein the reinforcing mats, reinforcing bars can be slightly displaced.
  • the spacer is designed so that it positions the two wall elements exactly to each other after the objection, wherein the support surfaces are located substantially in the plane of the outer surfaces 14 of the wall elements. If one uses a plurality of spaced apart spacers 1, this simultaneously ensures a large parallelism of the wall elements 11 to each other.
  • the connecting device is substantially visible between the wall elements. This makes it readily possible to attach a hook there to lift the hollow wall element can.
  • the spacer 1 is in Fig. 3 thinnest in the region of the connecting device 3.
  • FIG. 5 an alternative embodiment is described, in which the connecting device is arranged offset to one side of the spacer 1. This makes it possible that the connecting device disappears completely in the concrete of one of the wall elements.
  • one of the wall elements has a greater thickness than the other wall element.
  • the cavity between the wall elements 11 is filled with insulating material.
  • Such hollow wall elements are referred to as so-called multi-layer or sandwich wall.
  • For the preparation of an insulating material is applied to the first wall element.
  • the spacer is pushed through the insulating material and pressed into the liquid concrete. Subsequently, the second wall element is poured. There is no objection.
  • the thick wall element serves as a wall and the thin wall element as a facade.
  • the spacer 1 of the second embodiment has four bars 2. In principle, it is also conceivable to carry out such a spacer with three bars or with a plurality of bars.
  • the connecting device 3 is arranged between the bars.
  • the connecting device 3 is designed substantially cross-shaped and connects the rods 2 together. Also, the connecting device 3 is clearly offset to one side of the rods, so that the distance from the end portion to the connecting device on one side of a rod is greater than on the other side.
  • the arrangement of the rods takes place in the manner of a truncated pyramid. That is, the end portions on one side of the rods are closer together than on the other side.
  • the end sections or the support sections 5 are closer to one another on the side of the connection device, which are arranged closer to the connection device than on the side of the rods which is farther away from the connection device 3.
  • rods are not round, but formed with a rectangular or square cross-section. In the area of the end sections they are bevelled. Furthermore, they have jagged profiles 7 on the outside.
  • the rods 2 and the connecting device 3 are formed substantially in one piece and are made in particular of plastic.
  • plastic glass fiber reinforced plastic or carbon fiber reinforced plastic can be used as a suitable plastic glass fiber reinforced plastic or carbon fiber reinforced plastic.
  • the Fig. 4 shows a hollow wall element 10 and the Fig. 6 a multi-layer wall element (sandwich wall) with spacers according to the second embodiment.
  • a multi-layer wall element spacers according to the second embodiment.
  • the connecting device 3 between the wall elements 11 and in the case of Fig. 6 is the connecting device 3 within the thicker wall element.
  • a hollow wall element 10 takes place in the same manner as in the FIGS. 7, 8 and 9 was realized in connection with the first embodiment. Also arise with the spacer according to the second embodiment, the same advantages, namely simple and cost-effective production of the spacer, high pull-out strength and accurate positioning. Also in the second embodiment, the support planes are each positioned substantially in the plane of the outer surface of the wall elements.
  • the support sections 5 are arranged within the wall elements 11, so that they are not visible from the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
  • Panels For Use In Building Construction (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Cell Separators (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Reinforcement Elements For Buildings (AREA)
EP09011922.3A 2008-09-23 2009-09-18 Mur creux ou multicouche Not-in-force EP2166178B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008048425A DE102008048425A1 (de) 2008-09-23 2008-09-23 Abstandhalter

Publications (3)

Publication Number Publication Date
EP2166178A2 true EP2166178A2 (fr) 2010-03-24
EP2166178A3 EP2166178A3 (fr) 2013-08-28
EP2166178B1 EP2166178B1 (fr) 2017-08-30

Family

ID=41385208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09011922.3A Not-in-force EP2166178B1 (fr) 2008-09-23 2009-09-18 Mur creux ou multicouche

Country Status (5)

Country Link
US (1) US8276339B2 (fr)
EP (1) EP2166178B1 (fr)
DE (1) DE102008048425A1 (fr)
DK (1) DK2166178T3 (fr)
RU (1) RU2533784C2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2522788A3 (fr) * 2011-05-11 2014-08-13 Composite Technologies Corporation Dispositif de transfert de charge
DE102013005470A1 (de) * 2013-03-28 2014-10-02 B.T. Innovation Gmbh Schalungssystem
CN106696076A (zh) * 2016-12-19 2017-05-24 中交路桥建设有限公司 一种先张法预制空心板内模支撑方法
EP3068962A4 (fr) * 2013-12-13 2017-11-15 Iconx, Llc Système de chaînage pour panneaux de béton isolés
US9957713B2 (en) 2011-05-11 2018-05-01 Composite Technologies Corporation Load transfer device
WO2018128613A1 (fr) * 2017-01-05 2018-07-12 Composite Technologies Corporation Dispositif de transfert de charge
US10167633B2 (en) 2013-12-13 2019-01-01 Iconx, Llc Tie system for insulated concrete panels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3940162B1 (fr) 2016-05-11 2023-08-16 Joel Foderberg Système pour panneaux muraux composites en béton isolés
EP3795763B1 (fr) * 2019-09-17 2024-01-24 CRH Nederland B.V. Paroi

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29803561U1 (de) * 1998-03-02 1998-06-04 Ruede Gmbh Beton-Abstandhalter
US5791095A (en) * 1995-01-12 1998-08-11 Sorkin; Felix L. Chair for use in construction
US5809723A (en) * 1997-07-17 1998-09-22 H.K. Composites, Inc. Multi-prong connectors used in making highly insulated composite wall structures
WO2007127806A2 (fr) * 2006-04-28 2007-11-08 Frederick Park Encadrement de support pliant pour meuble

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE7239182U (de) * 1973-01-18 Michel R Abstandhalterungs- und Verbindungsvorrichtung
DE7139594U (de) * 1972-04-13 Haeussler E Verbundanker
US2842145A (en) * 1953-12-14 1958-07-08 Lawrence F Peeler Tepee
US3042052A (en) * 1959-12-08 1962-07-03 Rosier James S Des Portable tepee
US3215097A (en) * 1964-07-01 1965-11-02 Marshallan Mfg Company Collapsible table
DE1943592U (de) * 1966-04-15 1966-08-04 Illyas Oezpolar Fa Dipl Ing Abstandhalter fuer die sicherung der oberen bewehrungsauflagen bei betonierarbeiten.
DE7632166U1 (de) * 1976-10-14 1977-01-27 Ek Edelstahl + Kunststoff Von Glasenapp Gmbh & Co Kg, 8000 Muenchen Verbundanker fuer mehrschichtenverbundelemente
CH630436A5 (fr) * 1978-04-26 1982-06-15 Michel Vercelletto Paroi prefabriquee, notamment pour la construction de maisons d'habitation.
US4483119A (en) * 1981-04-01 1984-11-20 Ernest Hernandez Bar support for use with reinforced concrete
US4705250A (en) * 1982-01-26 1987-11-10 Eastman Jerome K Support structure for tabletops, chair seats and the like
US4423849A (en) * 1982-06-14 1984-01-03 Henry M. Kramer Self-supporting structure
US4742659A (en) * 1987-04-01 1988-05-10 Le Groupe Maxifact Inc. Module sections, modules and formwork for making insulated concrete walls
DE3803214A1 (de) * 1988-02-04 1989-08-17 Siegfried Dreizler Vorrichtung zum verbinden der einzelnen schichten einer mehrschichtigen betonplatte
SU1761903A1 (ru) * 1989-12-07 1992-09-15 Днепродзержинский Индустриальный Институт Им.М.И.Арсеничева Стержень дл армировани бетона и способ его изготовлени
DE4105337A1 (de) * 1991-02-21 1992-08-27 Siegfried Fricker Flachstahlbetonanker fuer betonfertigteile
US5390459A (en) * 1993-03-31 1995-02-21 Aab Building System Inc. Concrete form walls
RU2033504C1 (ru) * 1993-05-24 1995-04-20 Владимир Андреевич Лобков Трехслойная строительная панель и способ ее изготовления
US5606832A (en) * 1994-04-08 1997-03-04 H. K. Composites, Inc. Connectors used in making highly insulated composite wall structures
US5570552A (en) * 1995-02-03 1996-11-05 Nehring Alexander T Universal wall forming system
US5876091A (en) * 1997-03-15 1999-03-02 Chernomashentsev; Alan Collapsible tripod stool
CA2260492C (fr) * 1998-01-29 2003-11-11 Alexander Charles Marshall Methode et appareil de raccordement rotatif et de montage de trepieds de tipi
US6182650B1 (en) * 1999-06-18 2001-02-06 Ted A. Tuttle Dutch oven stand and lid holder
US6308484B1 (en) * 1999-08-05 2001-10-30 Thermalite, Inc. Insulated concrete forming system
US7266931B2 (en) * 2002-07-22 2007-09-11 Composite Technologies Corporation Concrete sandwich wall panels and a connector system for use therein
US20040177580A1 (en) * 2003-03-10 2004-09-16 Innovative Construction Technologies, Inc. Reinforced foam articles
WO2006098800A1 (fr) * 2005-01-14 2006-09-21 Airlite Plastics Co. Coffrage constitue de panneaux en mousse isolante
DE102007014366A1 (de) * 2007-03-26 2008-10-02 Gerhard Maier Bewehrungsvorrichtung für Fertigbau-Teile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5791095A (en) * 1995-01-12 1998-08-11 Sorkin; Felix L. Chair for use in construction
US5809723A (en) * 1997-07-17 1998-09-22 H.K. Composites, Inc. Multi-prong connectors used in making highly insulated composite wall structures
DE29803561U1 (de) * 1998-03-02 1998-06-04 Ruede Gmbh Beton-Abstandhalter
WO2007127806A2 (fr) * 2006-04-28 2007-11-08 Frederick Park Encadrement de support pliant pour meuble

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2522788A3 (fr) * 2011-05-11 2014-08-13 Composite Technologies Corporation Dispositif de transfert de charge
US9885180B2 (en) 2011-05-11 2018-02-06 Composite Technologies Llc Load transfer device
US9957713B2 (en) 2011-05-11 2018-05-01 Composite Technologies Corporation Load transfer device
DE102013005470A1 (de) * 2013-03-28 2014-10-02 B.T. Innovation Gmbh Schalungssystem
DE102013005470B4 (de) * 2013-03-28 2020-06-18 B.T. Innovation Gmbh Schalungssystem
EP3068962A4 (fr) * 2013-12-13 2017-11-15 Iconx, Llc Système de chaînage pour panneaux de béton isolés
US10167633B2 (en) 2013-12-13 2019-01-01 Iconx, Llc Tie system for insulated concrete panels
US10704260B2 (en) 2013-12-13 2020-07-07 Iconx, Llc Tie system for insulated concrete panels
CN106696076A (zh) * 2016-12-19 2017-05-24 中交路桥建设有限公司 一种先张法预制空心板内模支撑方法
WO2018128613A1 (fr) * 2017-01-05 2018-07-12 Composite Technologies Corporation Dispositif de transfert de charge

Also Published As

Publication number Publication date
DK2166178T3 (da) 2017-11-20
EP2166178A3 (fr) 2013-08-28
RU2009135671A (ru) 2011-03-27
DE102008048425A1 (de) 2010-04-01
EP2166178B1 (fr) 2017-08-30
US20100071314A1 (en) 2010-03-25
RU2533784C2 (ru) 2014-11-20
US8276339B2 (en) 2012-10-02

Similar Documents

Publication Publication Date Title
EP2166178B1 (fr) Mur creux ou multicouche
EP1760208B1 (fr) Système et procédé pour fabriquer des murs creux isolés
EP3085843B1 (fr) Dispositif et procédé de couplage thermique de parties betonnées de bâtiment
DE102011111318A1 (de) Verfahren und Vorrichtung zur Herstellung eines lichtdurchlässigen Mehrschicht-Verbundbauelementes mit integrierter Fassadenplatte
EP3519641B1 (fr) Dispositif de raccordement destiné à relier des éléments préfabriqués minces, éléments préfabriqués équipés de celui-ci, procédé de fabrication de tels éléments préfabriqués équipés d'un tel dispositif de raccordement
DE202009004195U1 (de) Bewehrungsvorrichtung zur Herstellung eines Fertigbauteils
DE2522018A1 (de) Abstandshalter fuer armierungselemente im betonbau oder in betonfertigteilen
EP2993279A1 (fr) Construction dotée d'un élément de renfort en béton très résistant destiné à augmenter la résistance au perçage de l'estampage
EP2775063A1 (fr) Agencement de liaison destiné à la formation de produits finis en béton à double paroi
EP0933482A2 (fr) Elément préfabriqué pour dalle de balcon en porte-à-faux
EP3299524B1 (fr) Mur en elements prefabriques et son procede de fabrication
EP3492665A1 (fr) Pièce préfabriquée de béton dotée d'au moins un composant recevant la charge ainsi que plaque de raccordement destinée à être agencée dans le joint de raccordement entre une telle pièce préfabriquée de béton et le composant recevant la charge
EP1676684B1 (fr) Procédé de production d'un bloc de construction
EP1211035A2 (fr) Elément de coffrage perdu et article fabriqué muni de cet élément
CH713190A2 (de) Vorrichtung und Verfahren zur Verbindung von zwei Bauteilen in einer bestimmten relativen Ausrichtung sowie damit erstelltes Betonbauwerk.
EP2113352B1 (fr) Procédé de fabrication d'un élément de construction en béton poreux
DE202016105371U1 (de) Fertigteilmauer
AT505267A1 (de) Verbindungselement und hohlwandelement mit solchen verbindungselementen
EP0104262A1 (fr) Dalle mixte autoportante - produit - méthode - dispositif - application
DE1229270B (de) Stahlbetonrippendecke
EP3130713B1 (fr) Construction et procédé de fabrication d'une construction
EP2787135A1 (fr) Éléments de construction en béton et leur procédé de montage
DE102021002584A1 (de) Beton Verbundwandelement aus mindestens zwei, aus unterschiedlichem oder gleichem Material vorgefertigten Wandscheiben, die kraftschlüssig verbunden sind und ein Verfahren zum Herstellen eines Verbundwandelementes.
DE202021103738U1 (de) System zum Verbinden von Betonfertigteilen
CH718329A2 (de) Abschalleiste, Überdeckungsabschalung, Abschalungselement, Schalungsanordnung, Verfahren zum Aufbau einer Schalungsanordnung und Verfahren zum Herstellen einer Abschalleiste.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIC1 Information provided on ipc code assigned before grant

Ipc: B28B 23/02 20060101ALI20130722BHEP

Ipc: E04C 2/04 20060101ALI20130722BHEP

Ipc: E04G 11/18 20060101AFI20130722BHEP

17P Request for examination filed

Effective date: 20140228

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170321

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 923710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009014303

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171114

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170830

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171230

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171201

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009014303

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

26N No opposition filed

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 10

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 923710

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20180924

Year of fee payment: 10

Ref country code: GB

Payment date: 20180924

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190925

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170830

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190918

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009014303

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210401