EP2146822A2 - Kraftschrauber - Google Patents
KraftschrauberInfo
- Publication number
- EP2146822A2 EP2146822A2 EP08757966A EP08757966A EP2146822A2 EP 2146822 A2 EP2146822 A2 EP 2146822A2 EP 08757966 A EP08757966 A EP 08757966A EP 08757966 A EP08757966 A EP 08757966A EP 2146822 A2 EP2146822 A2 EP 2146822A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- torque
- electric motor
- power wrench
- voltage
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000000670 limiting effect Effects 0.000 claims description 13
- 229910001416 lithium ion Inorganic materials 0.000 claims description 6
- 230000003247 decreasing effect Effects 0.000 claims description 5
- 238000001514 detection method Methods 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 claims description 3
- 238000003860 storage Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 241001598984 Bromius obscurus Species 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25B—TOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
- B25B23/00—Details of, or accessories for, spanners, wrenches, screwdrivers
- B25B23/14—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
- B25B23/147—Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
Definitions
- the invention relates to a power wrench according to the preamble of the independent claim.
- a mains voltage operated screwdriver which provides a predetermined torque setpoint.
- the torque applied by the screwdriver is detected indirectly on the basis of the current flowing through the electric motor. Due to the mains connection, the starting point is an operating voltage of the electric motor, which is always the same and constant. If the torque setpoint has not yet been reached, the screwdriver turns at the maximum possible speed, which depends on the torque setpoint to be applied. Due to the inertia of the rotating parts of the screwdriver, such as electric motor and in particular gear, the screw is still rotated depending on the caster after reaching the torque setpoint.
- the problem occurring in DE 23 26 027 A1 due to the further rotation of the screwdriver when reaching the torque setpoint is taken up by the DE 103 41 975 A1.
- Described is an electronic torque limiting device for a used for example in a battery-powered screwdriver electric motor.
- the starting point is an electronic torque limitation, in which the current flowing through the electric motor is used as a measure of the torque.
- Such a procedure is referred to as inaccurate, because in particular at high speeds after switching off the electric motor by the kinetic energy of the rotating masses can occur with the result that a screw is tightened with a higher torque than the predetermined torque setpoint.
- a torque setpoint can be set which is in a maximum value of
- Electric motor current is converted.
- AC power supply is supplied. It is based on the knowledge that the electric motor provides a maximum and specific torque under load at standstill, this torque depends on the provided voltage or the load current according to the respective motor characteristic.
- the tightening torque setpoint is achieved at a low speed or even when the wrench is stopped, thus avoiding overshoot of the torque setpoint by an overrun.
- a battery-powered small screwdriver which contains a switching element which short-circuits the electric motor off.
- the switching element is actuated by a depth stop.
- the abrupt deceleration of the electric motor reduces overshoot.
- short-circuiting of the electric motor is possible only at comparatively low torques to be delivered, for example, 100 Nm and low-power electric motors, even in low-power electric motors in the case of short-circuiting a high-speed rotating electric motor with a significant short-circuit current and the related electromagnetic interference must be expected.
- the short-circuit current loads both a collector of a DC motor realized as an electric motor and the used
- DE 201 13 184 U1 and, for example, DE 19647813 A1 specify electric motor-driven screwdrivers designed as hand tool machines, which each have a support arm for providing a counter torque when tightening or loosening screw connections.
- Such screwdrivers are referred to as power wrenches, because the torque provided can amount to, for example, 10,000 Nm, which could not be applied without the support arm of an operator of the power wrench. With increasing torque during the screwing deforms the torque provided can amount to, for example, 10,000 Nm, which could not be applied without the support arm of an operator of the power wrench. With increasing torque during the screwing deforms the torque provided can amount to, for example, 10,000 Nm, which could not be applied without the support arm of an operator of the power wrench. With increasing torque during the screwing deforms the
- Support arm elastic, whereby the support arm absorbs energy.
- the support arm clamps the screwdriver on the screw connection.
- the support arm takes not only the energy occurring during the screwing, but also after switching off the power wrench still in the rotating masses such as the
- DE 196 20 782 A1 discloses a method for producing a screw connection, in which the temporal torque curve is detected as a gradient. A distinction is made between a first and second torque increase, wherein the first torque increase a thread cutting operation and the second torque increase the tightening of
- the invention has for its object to provide a power Schauber, in particular a battery-powered power wrench, which allows the achievement of a predetermined torque setpoint for a screw without the risk of torque overshoot.
- the power wrench according to the invention has an electric motor as drive, a
- Torque setpoint specification a torque-actual value determination, a torque gradient determination and an electric motor drive, which controls the electric motor in dependence on the torque gradient.
- a torque threshold setting that provides a torque threshold that depends on the torque gradient and that is below the torque setpoint.
- the electric motor drive gives the electric motor a speed reduction or already completely shuts off the electric motor.
- the power wrench according to the invention makes it possible, on the basis of the torque gradient determination, to fall short of hard and soft Screwdriving.
- the torque threshold setting may selectively set the torque threshold below the torque setpoint such that torque overshoot may occur due to the speed reduction or the complete shutdown of the electric motor Exceeding the torque threshold can be avoided.
- An embodiment provides that the electric motor control the electric motor at a torque actual value, which is below the torque threshold, the maximum possible speed of the electric motor pretends. Accordingly, the maximum possible power is made available to the electric motor, whereby the maximum possible under the given load conditions
- the torque threshold setting sets the difference at a larger torque gradient to a higher value than a smaller torque gradient, so that torque overshoot is avoided in both a hard and soft tightening case.
- Setpoints for determining the torque threshold are stored. Alternatively, it may be provided that the torque threshold setting extrapolated the torque threshold based on the detected torque gradient, torque feedback, and set torque setpoint.
- Another embodiment provides a motor current detection, which the
- Motor current detected as a measure of the torque actual value can be realized, for example, as a low-impedance shunt, which is cheaper to implement compared to an electromagnetic motor current detection.
- Another embodiment provides a data carrier in which characteristic values of the screw connection are stored and / or which is provided for the storage of recorded data of the screw connection to be produced.
- the data carrier contains at least the predetermined torque setpoint. At least the torque actually achieved can be stored.
- the data carrier may also contain parameters such as calibration data of the power screwdriver or be provided for storing such characteristics.
- the data carrier can be assigned to the power screwdriver. According to another aspect
- the power wrench means for signal transmission to a rauber arranged outside of the power ram on.
- a further development provides for a voltage limiter circuit which switches the motor voltage occurring at the electric motor to a predetermined one
- Limiting voltage limited is preferably set at least to the rated operating voltage of the electric motor, so that the electric motor can contribute to the reduction of an optionally stored in a support arm of the power wrench towards the end of the screwing energy by operating the electric motor in the generator mode, without the
- the voltage limiter circuit preferably includes a bipolar limiter diode and / or a varistor.
- the power wrench according to the invention provides as a power source for the electric motor before a lithium-based accumulator due to its comparatively high energy density.
- a battery voltage drop compensation circuit is preferably provided, which compensates the influence of a sinking supply voltage on the achievement of the set torque setpoint, which occurs in particular when the torque actual value is obtained from the motor current.
- Akkunapsabfall compensation circuit with decreasing supply voltage either increases the set torque setpoint or reduces the determined torque actual value. As a result, an intervention in the power section of the electric motor is avoided.
- FIG. 1 shows a sketch of a power wrench according to the invention
- FIG. 2 shows a block diagram of a drive circuit of the power wrench according to the invention
- FIGS. 4a and 4b show different embodiments of a voltage limiter circuit.
- FIG. 1 shows a sketch of a power wrench 10, which includes an electric motor 12 as a drive, which drives a socket 16 via a gear 14.
- Power wrench 10 includes a support arm 18 which provides a counter moment during the screwing operation.
- a battery-operated power wrench 10 contains a battery part 20 in which an accumulator 22 is accommodated. The commissioning of the power wrench 10 takes place with a switch 24. For controlling the electric motor
- a drive circuit 26 is provided, to which a data carrier 28 and a transceiver 30 are assigned.
- a DC motor 12 is assumed, which is preferably driven by a pulse width modulated signal which determines the average operating voltage of the electric motor 12.
- FIG. 2 shows an electric motor drive 40 which provides a pulse width modulated signal s_PWM which either completely opens or completely closes a switching element 42, for example a MOS field effect transistor, wherein the period duration and / or the pulse duration can be variable.
- a pulse width modulated signal s_PWM which either completely opens or completely closes a switching element 42, for example a MOS field effect transistor, wherein the period duration and / or the pulse duration can be variable.
- a motor current i_Mot flows as a function of the pulse duty factor of the pulse-width-modulated signal s_PWM, depending on from the supply voltage u_Batt and in dependence on the load of the electric motor 12.
- the motor current i_Mot is used as a measure of the torque applied by the electric motor 12 and thus as a measure of the provided on the socket 16
- the motor current i_Mot is detected with a motor current detection 44, which is implemented as a low-resistance resistor or shunt of, for example, 0.01 ohms.
- the voltage drop u_Sens which occurs as a measure of the motor current i_Mot at the shunt 44 is amplified in a torque actual value determination 46, which contains, for example, an OpAmp connected as a differential amplifier, and provided as a measure of the actual torque value mdjst.
- a signal smoothing device not shown in detail is provided, which frees the torque actual value md_lst at least from high-frequency interference signals.
- the torque actual value mdjst is provided to the electric motor drive 40, a torque gradient determination 48 and a torque threshold determination 50.
- the torque gradient determination 48 determines the gradient dmd_lst / dt of the torque actual value md_lst by determining at least one time differential differential. Preferably, the differential quotient is approximated and by the difference quotient.
- the torque gradient determination 48 provides the torque gradient dmd_lst / dt of the torque threshold setting 50, which is based on the torque gradient dmd_lst / dt, the actual torque value mdjst, that of a torque setpoint specification 52 provided torque setpoint Md-SoII and a torque minimum value Md_Min a torque threshold MdJJm determines which of the electric motor drive 40 is available.
- FIG. 3 shows a first screw connection SF1, which corresponds to a hard screw connection, in which a comparatively rapid change of the actual torque value md_lst occurs.
- FIG. 3 shows a second screwdriver SF2 which corresponds to a soft screwdriving case in which a comparatively slow change of the actual torque value md_lst occurs.
- the torque gradient determination 48 determines the torque gradient dmd_lst / dt, which can be approximated, for example, by at least one difference quotient. In the embodiment shown in FIG 3, it is assumed that the
- Torque gradient determination 48 after exceeding the torque minimum value Md_Min on the basis of a time interval dti determined at least one difference quotient.
- the time interval dti is to be set in such a way that the expected fastest possible torque increase and the lowest possible setpoint torque setpoint Md_Soll ensure that the torque threshold setting 50 can determine and provide a torque threshold value Md_l_im1, Md_Lim2.
- the torque minimum value Md_Min is set, for example, to a torque actual value mdjst which is slightly above the expected value
- the torque threshold setting 50 sets the first torque threshold Md_l_im1 and for the second screwdriver SF2 the second torque threshold Md_Lim2 fixed.
- Threshold values Md_Lim1, Md_Lim2 are each below the torque setpoint Md SoII.
- the first torque threshold MdJJmI is a first one Difference d1 below the torque setpoint Md-SoII and the second torque threshold Md_Lim2 is a second difference d2 below the torque setpoint Md_Soll.
- the torque threshold setting 50 may set the threshold Md_l_im1,
- Md_Lim2 based on stored tables.
- functional relationships between said input variables are stored in the torque threshold setting 50, so that the torque threshold values Md_Lim1, Md_Lim2 can be extrapolated from the current actual torque value mdjst.
- the relationship can be based on a straight-line equation, so that the expected torque curve can be completely specified by the slope and a point of the straight line.
- the torque threshold values Md_Lim1, Md_Lim2 or the functional relationships required for determining the threshold values Md_Lim1, Md_Lim2 are preferably determined experimentally and stored in the torque threshold setting 50.
- Torque threshold Md_Lim1 or the first difference d1 are adapted to a hard screw case, which was detected on the basis of the determined torque gradient dmd_lst / dt.
- the first difference d1 is comparatively large.
- the second torque threshold Md_Lim2 will be reached at a fourth time ti4.
- the second torque threshold Md_Lim2 or the second difference d2 are adapted to a soft screw case, which was detected on the basis of the determined torque gradient dmd_lst / dt.
- a first comparator 54 included in the electric motor drive 40 compares the torque threshold MdJJm, MdJJmI, Md_Lim2 with the actual torque value mdjst, and provides a control signal s_Mot depending on the result of the comparison.
- the control signal s_Mot ensures that the pulse width modulated signal s_PWM the electric motor 12 with a lower
- the speed reduction or the complete shutdown after reaching the torque threshold MdJJm, MdJJmI, Md_Lim2 substantially prevents an overshoot of the torque actual value mdjst, which would cause the screw connection with a higher torque than the torque setpoint Md- SoII would screwed.
- the overshoot is caused by the existing in the electric motor 12 and in particular in the transmission 14 kinetic energy towards the end of the screwing.
- the hard screw SF1 critical, because in a relatively short time ti the torque setpoint Md_Soll is reached.
- the torque actual value mdjst increases until a second time ti2 almost without reduction of
- Torque gradient dmd Jst / dt occurs.
- the speed reduction initiated by the control signal s_Mot and predetermined by the pulse-width-modulated signal Sj 3 WM or the complete switching off of the electric motor 12 thus does not take effect until the second time ti 2.
- the torque setpoint Md_Soll is reached at a third time ti3 with a reduced torque gradient dmdjst / dt. If the electric motor 12 has not already been completely switched off when the first torque threshold value Md_l_im1 is exceeded, the electric motor 12 is switched off at the latest at the third time ti3. This shutdown is caused by a stop signal s_Stop, which provides a arranged in the electric motor drive 40 second comparator 56 in response to the comparison result between the torque setpoint Md_Soll and the torque actual value mdjst.
- the second torque threshold Md_Lim2 may be much closer to the torque setpoint Md-SoII, corresponding to a smaller difference d2. Also in this case, after reaching the second torque threshold Md_Lim2, the speed reduction of the
- Electric motor 12 causes or the electric motor 12 is already completely switched off. Due to the resulting reduction of the torque gradient dmd_lst / dt after exceeding the second torque threshold value Md_Lim2, an overshoot is also prevented in the case of the soft screw connection SF2, so that the screw connection coincides exactly with the torque
- Setpoint Md-SoII is attracted, which is reached at a fifth time ti5.
- the battery 22 which is preferably realized as a lithium-based accumulator, which is characterized by a high energy density.
- a lithium-based accumulator which is characterized by a high energy density.
- the battery 22 provides the supply voltage u_Batt.
- a battery voltage drop compensation circuit 60 which compensates the influence of a sinking supply voltage u_Batt on reaching the set torque setpoint Md-SoII.
- the supply voltage u_Batt could be directly stabilized and kept constant, but power semiconductor devices would be required, which are relatively expensive on the one hand and on the other hand because of the high expected currents to 100A, for example, are too voluminous to be accommodated in the power Schreiber 10 can.
- the battery voltage drop compensation circuit 60 preferably intervenes with a compensation signal s_Batt_Komp in the torque setpoint input 52 or in the actual torque value determination 46, wherein with decreasing supply voltage u_Batt either the torque setpoint Md-SoII increases or the actual torque value mdjst is reduced.
- the battery voltage drop compensation circuit 60 may include, for example, a reference voltage source with which the supply voltage u_Batt is compared. As the difference between the reference voltage and the supply voltage u Batt decreases during the discharging process of the battery 22, the compensation signal s_Batt_ Komp is constantly increased, wherein the increase in a virtual reduction of the motor current i_Mot corresponds to equalize the actually lower motor current i_Mot with decreasing supply voltage u_Batt in the signal evaluation ,
- the support arm 18 provides the required counter torque to the torque transmitted by the socket 16 to the screw connection.
- the support arm 18 is in preparation for the To fix screwing on a suitable support.
- the energy stored in the support arm 18 has after switching off the power Schaubers 10 when reaching the set torque setpoint Md-SoII the maximum value.
- the socket 16 and thus the entire power wrench 10 is clamped on the screw.
- the stored energy in the support arm 18 causes the electric motor 12, starting from the socket 16, is driven backwards via the gear 14, wherein the electric motor 12 begins to rotate in the opposite direction to the drive direction.
- the electric motor 12 is therefore stored during the degradation of the support arm 18
- the electric motor 12 should be able to rotate freely without applying a counter-torque, which would complicate and extend the discharge process.
- the electric motor 12 should therefore not be short-circuited or low-resistance bridged in this operating condition, which would occur even at a low generator voltage, a high motor current i_Mot, corresponding to a high counter-torque.
- a high motor current i_Mot corresponding to a high counter-torque. It should be noted here that in generator mode the motor voltage u_Mot reverses due to the other direction of rotation and the motor current i_Mot therefore flows in the opposite direction, provided that the current path is available.
- Volts were detected voltage peaks to over 200 volts with a pulse duration of several 100 ns. Such high-energy pulses can for Destruction of components of the drive circuit 26, in particular to destroy the switching element 42 lead.
- the voltage limiter circuit 70 is provided which detects the motor voltage u_Mot occurring at the electric motor 12 during the degradation of the motor
- Support arm 18 stored energy as a generator operated against the drive direction rotating electric motor 12 limited to a predetermined limiting voltage u_Lim.
- the voltage limiter circuit 70 is not comparable to a freewheel which essentially short circuits only the electric motor 12.
- the voltage limiter circuit 70 allows the targeted specification of the limiting voltage u_l_im, so that the electric motor 12 during generator operation in the destruction of the energy stored in the support arm 18 at least until reaching the limiting voltage u_l_im no
- the voltage limiter circuit 70 can take over the function of a freewheel, wherein during the freewheel, in which the direction of the motor current i_Mot does not turn around, the limiting voltage u_Lim occurs as a motor voltage u_Mot.
- a not shown in detail switched freewheel can be provided which of the pulse width modulated
- Signal s_PWM is controlled.
- the voltage limiter circuit 70 can be realized in different ways.
- the voltage limiter circuit 70 includes a bipolar voltage limiter diode 72, which is also referred to as TVS (Transient Voltage Suppressor).
- the voltage limiter diode 72 includes two Zener diodes integrated in one single component.
- the voltage limiter circuit 70 contains a varistor 74.
- diodes 72 enable a very fast response to voltage pulses
- a varistor 74 can receive and derive a higher energy, at least in the short term. Depending on the requirements, therefore, a combination of diodes 72 and a varistor 74 may be provided.
- the limiting voltage u_Lim is initially set to a value at which in the normal drive mode of the electric motor 12 no limitation of
- Motor voltage u_Mot can occur.
- the limiting voltage u_Lim is thus set to a value of at least 28 volts in a 28 volt electric motor 12. Since the motor voltage u_Mot reverses in generator operation of the electric motor 12, the voltage limiter circuit 70 must provide the limiting voltage u_Lim, in particular for the motor voltage u_Mot, with reversed polarity, since the risk of overvoltage exists in generator operation in particular.
- the positive potential of the motor voltage u_Mot at the switching element 42 occurs during generator operation of the electric motor 12, while the negative potential is applied to the battery 22.
- a limiting voltage u_Lim is given, which corresponds at least to the amount of the nominal operating voltage of the electric motor 12. According to another embodiment, at least the in
- a protective low voltage in this sense should be defined by the fact that on an electrical device, in this case the power wrench 10, live parts that can be touched, the
- the protective low voltage must not exceed. If this could be the case, Special measures must be taken to protect against contact.
- the protective low voltage is for example at 42 volts.
- Kraftsch raubers 10 provides a data carrier 80 which contains data for the screw, such as at least the torque setpoint Md-SoII, and / or for receiving data, such as the actually achieved torque actual value mdjst, is prepared, which are stored at least at the end of the screwing process.
- the data carrier 80 may further contain calibration data of the power converter 10 and / or be prepared for storing parameters of the power wrench 10.
- the data carrier 80 is realized as a mobile data carrier, for example as a low-cost RFID.
- a transmitting / receiving device 82 which is designed for receiving and / or transmitting data relating to screwing and / or characteristics of the power wrench 10.
- the transmitting / receiving device 82 is preferably designed to cooperate with a data carrier, not shown in detail, for example, a mobile data carrier, which may correspond to the data carrier 80. Unless it is at this
- Disk is an already mentioned RFID, the transmitting / receiving device 82 to a high-frequency transmitter and / or high-frequency receiver, wherein the transmission / reception frequency is tuned to the transmission / reception frequency of the data carrier.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
- Control Of Electric Motors In General (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007019409A DE102007019409B3 (de) | 2007-04-23 | 2007-04-23 | Kraftschrauber |
PCT/DE2008/000671 WO2008128523A2 (de) | 2007-04-23 | 2008-04-23 | Kraftschrauber |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2146822A2 true EP2146822A2 (de) | 2010-01-27 |
EP2146822B1 EP2146822B1 (de) | 2012-08-01 |
Family
ID=39744869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08757966A Not-in-force EP2146822B1 (de) | 2007-04-23 | 2008-04-23 | Kraftschrauber |
Country Status (11)
Country | Link |
---|---|
US (1) | US20100116519A1 (de) |
EP (1) | EP2146822B1 (de) |
CN (1) | CN101765483B (de) |
AR (1) | AR066256A1 (de) |
BR (1) | BRPI0811037A8 (de) |
CA (1) | CA2684786C (de) |
CL (1) | CL2008001169A1 (de) |
DE (1) | DE102007019409B3 (de) |
RU (1) | RU2459695C2 (de) |
TW (1) | TWI492824B (de) |
WO (1) | WO2008128523A2 (de) |
Families Citing this family (448)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070084897A1 (en) | 2003-05-20 | 2007-04-19 | Shelton Frederick E Iv | Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism |
US9060770B2 (en) | 2003-05-20 | 2015-06-23 | Ethicon Endo-Surgery, Inc. | Robotically-driven surgical instrument with E-beam driver |
US9072535B2 (en) | 2011-05-27 | 2015-07-07 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments with rotatable staple deployment arrangements |
US8215531B2 (en) | 2004-07-28 | 2012-07-10 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument having a medical substance dispenser |
US11896225B2 (en) | 2004-07-28 | 2024-02-13 | Cilag Gmbh International | Staple cartridge comprising a pan |
US11998198B2 (en) | 2004-07-28 | 2024-06-04 | Cilag Gmbh International | Surgical stapling instrument incorporating a two-piece E-beam firing mechanism |
US7669746B2 (en) | 2005-08-31 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US11246590B2 (en) | 2005-08-31 | 2022-02-15 | Cilag Gmbh International | Staple cartridge including staple drivers having different unfired heights |
US11484312B2 (en) | 2005-08-31 | 2022-11-01 | Cilag Gmbh International | Staple cartridge comprising a staple driver arrangement |
US7934630B2 (en) | 2005-08-31 | 2011-05-03 | Ethicon Endo-Surgery, Inc. | Staple cartridges for forming staples having differing formed staple heights |
US9237891B2 (en) | 2005-08-31 | 2016-01-19 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical stapling devices that produce formed staples having different lengths |
US10159482B2 (en) | 2005-08-31 | 2018-12-25 | Ethicon Llc | Fastener cartridge assembly comprising a fixed anvil and different staple heights |
US20070106317A1 (en) | 2005-11-09 | 2007-05-10 | Shelton Frederick E Iv | Hydraulically and electrically actuated articulation joints for surgical instruments |
US7845537B2 (en) | 2006-01-31 | 2010-12-07 | Ethicon Endo-Surgery, Inc. | Surgical instrument having recording capabilities |
US7753904B2 (en) | 2006-01-31 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Endoscopic surgical instrument with a handle that can articulate with respect to the shaft |
US11224427B2 (en) | 2006-01-31 | 2022-01-18 | Cilag Gmbh International | Surgical stapling system including a console and retraction assembly |
US20110024477A1 (en) | 2009-02-06 | 2011-02-03 | Hall Steven G | Driven Surgical Stapler Improvements |
US8186555B2 (en) | 2006-01-31 | 2012-05-29 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting and fastening instrument with mechanical closure system |
US11278279B2 (en) | 2006-01-31 | 2022-03-22 | Cilag Gmbh International | Surgical instrument assembly |
US8820603B2 (en) | 2006-01-31 | 2014-09-02 | Ethicon Endo-Surgery, Inc. | Accessing data stored in a memory of a surgical instrument |
US20110295295A1 (en) | 2006-01-31 | 2011-12-01 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical instrument having recording capabilities |
US11793518B2 (en) | 2006-01-31 | 2023-10-24 | Cilag Gmbh International | Powered surgical instruments with firing system lockout arrangements |
US8708213B2 (en) | 2006-01-31 | 2014-04-29 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a feedback system |
US20120292367A1 (en) | 2006-01-31 | 2012-11-22 | Ethicon Endo-Surgery, Inc. | Robotically-controlled end effector |
US8992422B2 (en) | 2006-03-23 | 2015-03-31 | Ethicon Endo-Surgery, Inc. | Robotically-controlled endoscopic accessory channel |
US8322455B2 (en) | 2006-06-27 | 2012-12-04 | Ethicon Endo-Surgery, Inc. | Manually driven surgical cutting and fastening instrument |
US10568652B2 (en) | 2006-09-29 | 2020-02-25 | Ethicon Llc | Surgical staples having attached drivers of different heights and stapling instruments for deploying the same |
US7665647B2 (en) | 2006-09-29 | 2010-02-23 | Ethicon Endo-Surgery, Inc. | Surgical cutting and stapling device with closure apparatus for limiting maximum tissue compression force |
US11980366B2 (en) | 2006-10-03 | 2024-05-14 | Cilag Gmbh International | Surgical instrument |
US11291441B2 (en) | 2007-01-10 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with wireless communication between control unit and remote sensor |
US8684253B2 (en) | 2007-01-10 | 2014-04-01 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor |
US8652120B2 (en) | 2007-01-10 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US8840603B2 (en) | 2007-01-10 | 2014-09-23 | Ethicon Endo-Surgery, Inc. | Surgical instrument with wireless communication between control unit and sensor transponders |
US11039836B2 (en) | 2007-01-11 | 2021-06-22 | Cilag Gmbh International | Staple cartridge for use with a surgical stapling instrument |
US20080169333A1 (en) | 2007-01-11 | 2008-07-17 | Shelton Frederick E | Surgical stapler end effector with tapered distal end |
US7669747B2 (en) | 2007-03-15 | 2010-03-02 | Ethicon Endo-Surgery, Inc. | Washer for use with a surgical stapling instrument |
US8893946B2 (en) | 2007-03-28 | 2014-11-25 | Ethicon Endo-Surgery, Inc. | Laparoscopic tissue thickness and clamp load measuring devices |
DE102007019408B3 (de) * | 2007-04-23 | 2008-11-27 | Lösomat Schraubtechnik Neef Gmbh | Kraftschrauber |
US11564682B2 (en) | 2007-06-04 | 2023-01-31 | Cilag Gmbh International | Surgical stapler device |
US8931682B2 (en) | 2007-06-04 | 2015-01-13 | Ethicon Endo-Surgery, Inc. | Robotically-controlled shaft based rotary drive systems for surgical instruments |
US7753245B2 (en) | 2007-06-22 | 2010-07-13 | Ethicon Endo-Surgery, Inc. | Surgical stapling instruments |
US11849941B2 (en) | 2007-06-29 | 2023-12-26 | Cilag Gmbh International | Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis |
DE102007036328A1 (de) * | 2007-07-31 | 2009-02-05 | Lösomat Schraubtechnik Neef Gmbh | Mobiles Kraftschrauber-Bediengerät |
US7819298B2 (en) | 2008-02-14 | 2010-10-26 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with control features operable with one hand |
US8758391B2 (en) | 2008-02-14 | 2014-06-24 | Ethicon Endo-Surgery, Inc. | Interchangeable tools for surgical instruments |
US11986183B2 (en) | 2008-02-14 | 2024-05-21 | Cilag Gmbh International | Surgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter |
US9179912B2 (en) | 2008-02-14 | 2015-11-10 | Ethicon Endo-Surgery, Inc. | Robotically-controlled motorized surgical cutting and fastening instrument |
US7866527B2 (en) | 2008-02-14 | 2011-01-11 | Ethicon Endo-Surgery, Inc. | Surgical stapling apparatus with interlockable firing system |
US8636736B2 (en) | 2008-02-14 | 2014-01-28 | Ethicon Endo-Surgery, Inc. | Motorized surgical cutting and fastening instrument |
US8573465B2 (en) | 2008-02-14 | 2013-11-05 | Ethicon Endo-Surgery, Inc. | Robotically-controlled surgical end effector system with rotary actuated closure systems |
RU2493788C2 (ru) | 2008-02-14 | 2013-09-27 | Этикон Эндо-Серджери, Инк. | Хирургический режущий и крепежный инструмент, имеющий радиочастотные электроды |
US10390823B2 (en) | 2008-02-15 | 2019-08-27 | Ethicon Llc | End effector comprising an adjunct |
US11272927B2 (en) | 2008-02-15 | 2022-03-15 | Cilag Gmbh International | Layer arrangements for surgical staple cartridges |
US9005230B2 (en) | 2008-09-23 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Motorized surgical instrument |
US8210411B2 (en) | 2008-09-23 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument |
US9386983B2 (en) | 2008-09-23 | 2016-07-12 | Ethicon Endo-Surgery, Llc | Robotically-controlled motorized surgical instrument |
US11648005B2 (en) | 2008-09-23 | 2023-05-16 | Cilag Gmbh International | Robotically-controlled motorized surgical instrument with an end effector |
US8608045B2 (en) | 2008-10-10 | 2013-12-17 | Ethicon Endo-Sugery, Inc. | Powered surgical cutting and stapling apparatus with manually retractable firing system |
US8517239B2 (en) | 2009-02-05 | 2013-08-27 | Ethicon Endo-Surgery, Inc. | Surgical stapling instrument comprising a magnetic element driver |
BRPI1008667A2 (pt) | 2009-02-06 | 2016-03-08 | Ethicom Endo Surgery Inc | aperfeiçoamento do grampeador cirúrgico acionado |
US8444036B2 (en) | 2009-02-06 | 2013-05-21 | Ethicon Endo-Surgery, Inc. | Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector |
US8220688B2 (en) | 2009-12-24 | 2012-07-17 | Ethicon Endo-Surgery, Inc. | Motor-driven surgical cutting instrument with electric actuator directional control assembly |
US8851354B2 (en) | 2009-12-24 | 2014-10-07 | Ethicon Endo-Surgery, Inc. | Surgical cutting instrument that analyzes tissue thickness |
US8783543B2 (en) | 2010-07-30 | 2014-07-22 | Ethicon Endo-Surgery, Inc. | Tissue acquisition arrangements and methods for surgical stapling devices |
US10945731B2 (en) | 2010-09-30 | 2021-03-16 | Ethicon Llc | Tissue thickness compensator comprising controlled release and expansion |
US9301755B2 (en) | 2010-09-30 | 2016-04-05 | Ethicon Endo-Surgery, Llc | Compressible staple cartridge assembly |
US11849952B2 (en) | 2010-09-30 | 2023-12-26 | Cilag Gmbh International | Staple cartridge comprising staples positioned within a compressible portion thereof |
US11298125B2 (en) | 2010-09-30 | 2022-04-12 | Cilag Gmbh International | Tissue stapler having a thickness compensator |
US9592050B2 (en) | 2010-09-30 | 2017-03-14 | Ethicon Endo-Surgery, Llc | End effector comprising a distal tissue abutment member |
US9517063B2 (en) | 2012-03-28 | 2016-12-13 | Ethicon Endo-Surgery, Llc | Movable member for use with a tissue thickness compensator |
US11812965B2 (en) | 2010-09-30 | 2023-11-14 | Cilag Gmbh International | Layer of material for a surgical end effector |
US9629814B2 (en) | 2010-09-30 | 2017-04-25 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator configured to redistribute compressive forces |
US9364233B2 (en) | 2010-09-30 | 2016-06-14 | Ethicon Endo-Surgery, Llc | Tissue thickness compensators for circular surgical staplers |
US9386988B2 (en) | 2010-09-30 | 2016-07-12 | Ethicon End-Surgery, LLC | Retainer assembly including a tissue thickness compensator |
US9351730B2 (en) | 2011-04-29 | 2016-05-31 | Ethicon Endo-Surgery, Llc | Tissue thickness compensator comprising channels |
US8695866B2 (en) | 2010-10-01 | 2014-04-15 | Ethicon Endo-Surgery, Inc. | Surgical instrument having a power control circuit |
FR2972665B1 (fr) * | 2011-03-18 | 2014-05-30 | Renault Georges Ets | Procede pour adapter automatiquement la vitesse de vissage d’un outil de vissage pour atteindre un couple de consigne par freinage anticipe. |
SE535870C2 (sv) * | 2011-03-18 | 2013-01-22 | Atlas Copco Ind Tech Ab | Metod för åtdragning av skruvförband med ett handhållet kraftverktyg |
BR112013027794B1 (pt) | 2011-04-29 | 2020-12-15 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos |
US11207064B2 (en) | 2011-05-27 | 2021-12-28 | Cilag Gmbh International | Automated end effector component reloading system for use with a robotic system |
JP5780896B2 (ja) * | 2011-09-20 | 2015-09-16 | 株式会社マキタ | 電動工具 |
US9044230B2 (en) | 2012-02-13 | 2015-06-02 | Ethicon Endo-Surgery, Inc. | Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status |
RU2014143258A (ru) | 2012-03-28 | 2016-05-20 | Этикон Эндо-Серджери, Инк. | Компенсатор толщины ткани, содержащий множество слоев |
CN104334098B (zh) | 2012-03-28 | 2017-03-22 | 伊西康内外科公司 | 包括限定低压强环境的胶囊剂的组织厚度补偿件 |
BR112014024194B1 (pt) | 2012-03-28 | 2022-03-03 | Ethicon Endo-Surgery, Inc | Conjunto de cartucho de grampos para um grampeador cirúrgico |
US9101358B2 (en) | 2012-06-15 | 2015-08-11 | Ethicon Endo-Surgery, Inc. | Articulatable surgical instrument comprising a firing drive |
BR112014032776B1 (pt) | 2012-06-28 | 2021-09-08 | Ethicon Endo-Surgery, Inc | Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico |
US11197671B2 (en) | 2012-06-28 | 2021-12-14 | Cilag Gmbh International | Stapling assembly comprising a lockout |
US9282974B2 (en) | 2012-06-28 | 2016-03-15 | Ethicon Endo-Surgery, Llc | Empty clip cartridge lockout |
RU2636861C2 (ru) | 2012-06-28 | 2017-11-28 | Этикон Эндо-Серджери, Инк. | Блокировка пустой кассеты с клипсами |
US9204879B2 (en) | 2012-06-28 | 2015-12-08 | Ethicon Endo-Surgery, Inc. | Flexible drive member |
US9289256B2 (en) | 2012-06-28 | 2016-03-22 | Ethicon Endo-Surgery, Llc | Surgical end effectors having angled tissue-contacting surfaces |
US20140001231A1 (en) | 2012-06-28 | 2014-01-02 | Ethicon Endo-Surgery, Inc. | Firing system lockout arrangements for surgical instruments |
US9226751B2 (en) | 2012-06-28 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical instrument system including replaceable end effectors |
DE102012108332A1 (de) * | 2012-08-29 | 2014-03-06 | Hs-Technik Gmbh | Verfahren für die Regelung der Drehzahl eines Schraubwerkzeugs |
DE102012220482A1 (de) * | 2012-11-09 | 2014-05-15 | Wagner Vermögensverwaltungs-GmbH & Co. KG | Verfahren zur Steuerung eines Drehschraubers sowie Drehschrauber |
RU2672520C2 (ru) | 2013-03-01 | 2018-11-15 | Этикон Эндо-Серджери, Инк. | Шарнирно поворачиваемые хирургические инструменты с проводящими путями для передачи сигналов |
RU2669463C2 (ru) | 2013-03-01 | 2018-10-11 | Этикон Эндо-Серджери, Инк. | Хирургический инструмент с мягким упором |
US9883860B2 (en) | 2013-03-14 | 2018-02-06 | Ethicon Llc | Interchangeable shaft assemblies for use with a surgical instrument |
US9629629B2 (en) | 2013-03-14 | 2017-04-25 | Ethicon Endo-Surgey, LLC | Control systems for surgical instruments |
BR112015026109B1 (pt) | 2013-04-16 | 2022-02-22 | Ethicon Endo-Surgery, Inc | Instrumento cirúrgico |
US9801626B2 (en) | 2013-04-16 | 2017-10-31 | Ethicon Llc | Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts |
EP2799170A1 (de) * | 2013-04-30 | 2014-11-05 | HILTI Aktiengesellschaft | Handwerkzeugmaschine und Steuerungsverfahren |
EP3021767B1 (de) | 2013-07-19 | 2018-12-12 | Pro-Dex Inc. | Drehmomentbegrenzende schraubendreher |
JP6416260B2 (ja) | 2013-08-23 | 2018-10-31 | エシコン エルエルシー | 動力付き外科用器具のための発射部材後退装置 |
US20150053746A1 (en) | 2013-08-23 | 2015-02-26 | Ethicon Endo-Surgery, Inc. | Torque optimization for surgical instruments |
DE102013217044A1 (de) * | 2013-08-27 | 2015-03-05 | Db Bahnbau Gruppe Gmbh | Verfahren zum Verspannen von Schienenbefestigungen des Gleisoberbaus |
WO2015061370A1 (en) | 2013-10-21 | 2015-04-30 | Milwaukee Electric Tool Corporation | Adapter for power tool devices |
US9962161B2 (en) | 2014-02-12 | 2018-05-08 | Ethicon Llc | Deliverable surgical instrument |
JP6462004B2 (ja) | 2014-02-24 | 2019-01-30 | エシコン エルエルシー | 発射部材ロックアウトを備える締結システム |
US9820738B2 (en) | 2014-03-26 | 2017-11-21 | Ethicon Llc | Surgical instrument comprising interactive systems |
US9826977B2 (en) | 2014-03-26 | 2017-11-28 | Ethicon Llc | Sterilization verification circuit |
BR112016021943B1 (pt) | 2014-03-26 | 2022-06-14 | Ethicon Endo-Surgery, Llc | Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico |
US20150272580A1 (en) | 2014-03-26 | 2015-10-01 | Ethicon Endo-Surgery, Inc. | Verification of number of battery exchanges/procedure count |
JP6612256B2 (ja) | 2014-04-16 | 2019-11-27 | エシコン エルエルシー | 不均一な締結具を備える締結具カートリッジ |
US20150297225A1 (en) | 2014-04-16 | 2015-10-22 | Ethicon Endo-Surgery, Inc. | Fastener cartridges including extensions having different configurations |
CN106456176B (zh) | 2014-04-16 | 2019-06-28 | 伊西康内外科有限责任公司 | 包括具有不同构型的延伸部的紧固件仓 |
US9844369B2 (en) | 2014-04-16 | 2017-12-19 | Ethicon Llc | Surgical end effectors with firing element monitoring arrangements |
US9801628B2 (en) | 2014-09-26 | 2017-10-31 | Ethicon Llc | Surgical staple and driver arrangements for staple cartridges |
JP6532889B2 (ja) | 2014-04-16 | 2019-06-19 | エシコン エルエルシーEthicon LLC | 締結具カートリッジ組立体及びステープル保持具カバー配置構成 |
CN105301987B (zh) * | 2014-05-28 | 2019-02-12 | 苏州宝时得电动工具有限公司 | 手持电动工具及其控制方法 |
EP2985118A1 (de) * | 2014-08-12 | 2016-02-17 | HILTI Aktiengesellschaft | Optimiertes Setzverfahren für Spreizanker mittels einer Werkzeugmaschine |
CN105388922A (zh) * | 2014-09-02 | 2016-03-09 | 苏州宝时得电动工具有限公司 | 电动工具的控制方法及控制系统、电动工具 |
US11311294B2 (en) | 2014-09-05 | 2022-04-26 | Cilag Gmbh International | Powered medical device including measurement of closure state of jaws |
BR112017004361B1 (pt) | 2014-09-05 | 2023-04-11 | Ethicon Llc | Sistema eletrônico para um instrumento cirúrgico |
US10016199B2 (en) | 2014-09-05 | 2018-07-10 | Ethicon Llc | Polarity of hall magnet to identify cartridge type |
US10105142B2 (en) | 2014-09-18 | 2018-10-23 | Ethicon Llc | Surgical stapler with plurality of cutting elements |
MX2017003960A (es) | 2014-09-26 | 2017-12-04 | Ethicon Llc | Refuerzos de grapas quirúrgicas y materiales auxiliares. |
US11523821B2 (en) | 2014-09-26 | 2022-12-13 | Cilag Gmbh International | Method for creating a flexible staple line |
US10076325B2 (en) | 2014-10-13 | 2018-09-18 | Ethicon Llc | Surgical stapling apparatus comprising a tissue stop |
US9924944B2 (en) | 2014-10-16 | 2018-03-27 | Ethicon Llc | Staple cartridge comprising an adjunct material |
US11141153B2 (en) | 2014-10-29 | 2021-10-12 | Cilag Gmbh International | Staple cartridges comprising driver arrangements |
US10517594B2 (en) | 2014-10-29 | 2019-12-31 | Ethicon Llc | Cartridge assemblies for surgical staplers |
US9844376B2 (en) | 2014-11-06 | 2017-12-19 | Ethicon Llc | Staple cartridge comprising a releasable adjunct material |
US10736636B2 (en) | 2014-12-10 | 2020-08-11 | Ethicon Llc | Articulatable surgical instrument system |
US9844375B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Drive arrangements for articulatable surgical instruments |
US9987000B2 (en) | 2014-12-18 | 2018-06-05 | Ethicon Llc | Surgical instrument assembly comprising a flexible articulation system |
US9943309B2 (en) | 2014-12-18 | 2018-04-17 | Ethicon Llc | Surgical instruments with articulatable end effectors and movable firing beam support arrangements |
US10085748B2 (en) | 2014-12-18 | 2018-10-02 | Ethicon Llc | Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors |
MX2017008108A (es) | 2014-12-18 | 2018-03-06 | Ethicon Llc | Instrumento quirurgico con un yunque que puede moverse de manera selectiva sobre un eje discreto no movil con relacion a un cartucho de grapas. |
US9844374B2 (en) | 2014-12-18 | 2017-12-19 | Ethicon Llc | Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member |
US10188385B2 (en) | 2014-12-18 | 2019-01-29 | Ethicon Llc | Surgical instrument system comprising lockable systems |
US10180463B2 (en) | 2015-02-27 | 2019-01-15 | Ethicon Llc | Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band |
US11154301B2 (en) | 2015-02-27 | 2021-10-26 | Cilag Gmbh International | Modular stapling assembly |
US10045779B2 (en) | 2015-02-27 | 2018-08-14 | Ethicon Llc | Surgical instrument system comprising an inspection station |
US10548504B2 (en) | 2015-03-06 | 2020-02-04 | Ethicon Llc | Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression |
US9808246B2 (en) | 2015-03-06 | 2017-11-07 | Ethicon Endo-Surgery, Llc | Method of operating a powered surgical instrument |
US10441279B2 (en) * | 2015-03-06 | 2019-10-15 | Ethicon Llc | Multiple level thresholds to modify operation of powered surgical instruments |
US10245033B2 (en) | 2015-03-06 | 2019-04-02 | Ethicon Llc | Surgical instrument comprising a lockable battery housing |
US9993248B2 (en) | 2015-03-06 | 2018-06-12 | Ethicon Endo-Surgery, Llc | Smart sensors with local signal processing |
US9901342B2 (en) | 2015-03-06 | 2018-02-27 | Ethicon Endo-Surgery, Llc | Signal and power communication system positioned on a rotatable shaft |
US9924961B2 (en) | 2015-03-06 | 2018-03-27 | Ethicon Endo-Surgery, Llc | Interactive feedback system for powered surgical instruments |
JP2020121162A (ja) | 2015-03-06 | 2020-08-13 | エシコン エルエルシーEthicon LLC | 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価 |
US10687806B2 (en) | 2015-03-06 | 2020-06-23 | Ethicon Llc | Adaptive tissue compression techniques to adjust closure rates for multiple tissue types |
US10617412B2 (en) | 2015-03-06 | 2020-04-14 | Ethicon Llc | System for detecting the mis-insertion of a staple cartridge into a surgical stapler |
US10213201B2 (en) | 2015-03-31 | 2019-02-26 | Ethicon Llc | Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw |
US10357871B2 (en) | 2015-04-28 | 2019-07-23 | Milwaukee Electric Tool Corporation | Precision torque screwdriver |
KR200489917Y1 (ko) | 2015-04-28 | 2019-08-28 | 밀워키 일렉트릭 툴 코포레이션 | 정밀 토크 스크류드라이버 |
KR102052809B1 (ko) | 2015-05-04 | 2019-12-05 | 밀워키 일렉트릭 툴 코포레이션 | 전동 공구 및 무선 통신 방법 |
US10603770B2 (en) | 2015-05-04 | 2020-03-31 | Milwaukee Electric Tool Corporation | Adaptive impact blow detection |
US10295990B2 (en) | 2015-05-18 | 2019-05-21 | Milwaukee Electric Tool Corporation | User interface for tool configuration and data capture |
EP4029652A1 (de) | 2015-06-02 | 2022-07-20 | Milwaukee Electric Tool Corporation | Elektrowerkzeug mit mehreren geschwindigkeiten mit elektronischer kupplung |
EP3307453B1 (de) | 2015-06-15 | 2022-08-03 | Milwaukee Electric Tool Corporation | Hydraulisches crimpwerkzeug |
US10380883B2 (en) | 2015-06-16 | 2019-08-13 | Milwaukee Electric Tool Corporation | Power tool profile sharing and permissions |
US10835249B2 (en) | 2015-08-17 | 2020-11-17 | Ethicon Llc | Implantable layers for a surgical instrument |
US10345797B2 (en) | 2015-09-18 | 2019-07-09 | Milwaukee Electric Tool Corporation | Power tool operation recording and playback |
US10238386B2 (en) | 2015-09-23 | 2019-03-26 | Ethicon Llc | Surgical stapler having motor control based on an electrical parameter related to a motor current |
US10363036B2 (en) | 2015-09-23 | 2019-07-30 | Ethicon Llc | Surgical stapler having force-based motor control |
US10105139B2 (en) | 2015-09-23 | 2018-10-23 | Ethicon Llc | Surgical stapler having downstream current-based motor control |
US10327769B2 (en) | 2015-09-23 | 2019-06-25 | Ethicon Llc | Surgical stapler having motor control based on a drive system component |
US10299878B2 (en) | 2015-09-25 | 2019-05-28 | Ethicon Llc | Implantable adjunct systems for determining adjunct skew |
US20170086829A1 (en) | 2015-09-30 | 2017-03-30 | Ethicon Endo-Surgery, Llc | Compressible adjunct with intermediate supporting structures |
US10980539B2 (en) | 2015-09-30 | 2021-04-20 | Ethicon Llc | Implantable adjunct comprising bonded layers |
US10478188B2 (en) | 2015-09-30 | 2019-11-19 | Ethicon Llc | Implantable layer comprising a constricted configuration |
US11890015B2 (en) | 2015-09-30 | 2024-02-06 | Cilag Gmbh International | Compressible adjunct with crossing spacer fibers |
DK3369292T3 (da) | 2015-10-30 | 2021-02-08 | Milwaukee Electric Tool Corp | Fjernlysstyring, -konfiguration og -overvågning |
US11424601B2 (en) | 2015-11-02 | 2022-08-23 | Milwaukee Electric Tool Corporation | Externally configurable worksite power distribution box |
US10646982B2 (en) | 2015-12-17 | 2020-05-12 | Milwaukee Electric Tool Corporation | System and method for configuring a power tool with an impact mechanism |
DE112016005963B4 (de) * | 2015-12-25 | 2021-12-30 | Nitto Kohki Co., Ltd. | Gewinde-Anziehwerkzeug und Verfahren zur Einstellung der Antriebszeit für ein Gewindeteil- bzw. Gewindeteil-Festziehwerkzeug |
US10368865B2 (en) | 2015-12-30 | 2019-08-06 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10292704B2 (en) | 2015-12-30 | 2019-05-21 | Ethicon Llc | Mechanisms for compensating for battery pack failure in powered surgical instruments |
US10265068B2 (en) | 2015-12-30 | 2019-04-23 | Ethicon Llc | Surgical instruments with separable motors and motor control circuits |
US11014224B2 (en) | 2016-01-05 | 2021-05-25 | Milwaukee Electric Tool Corporation | Vibration reduction system and method for power tools |
AU2017213819B2 (en) | 2016-02-03 | 2019-12-05 | Milwaukee Electric Tool Corporation | Systems and methods for configuring a reciprocating saw |
US10433837B2 (en) | 2016-02-09 | 2019-10-08 | Ethicon Llc | Surgical instruments with multiple link articulation arrangements |
BR112018016098B1 (pt) | 2016-02-09 | 2023-02-23 | Ethicon Llc | Instrumento cirúrgico |
US11213293B2 (en) | 2016-02-09 | 2022-01-04 | Cilag Gmbh International | Articulatable surgical instruments with single articulation link arrangements |
US10258331B2 (en) | 2016-02-12 | 2019-04-16 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US10448948B2 (en) | 2016-02-12 | 2019-10-22 | Ethicon Llc | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
US11224426B2 (en) | 2016-02-12 | 2022-01-18 | Cilag Gmbh International | Mechanisms for compensating for drivetrain failure in powered surgical instruments |
JP6706681B2 (ja) | 2016-02-25 | 2020-06-10 | ミルウォーキー エレクトリック ツール コーポレイション | 出力位置センサを含むパワーツール |
US10617413B2 (en) | 2016-04-01 | 2020-04-14 | Ethicon Llc | Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts |
US10285705B2 (en) | 2016-04-01 | 2019-05-14 | Ethicon Llc | Surgical stapling system comprising a grooved forming pocket |
EP3228423A1 (de) * | 2016-04-06 | 2017-10-11 | HILTI Aktiengesellschaft | Anwendungsoptimiertes abschaltverhalten einer elektronischen rutschkupplung |
US10828028B2 (en) | 2016-04-15 | 2020-11-10 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10426467B2 (en) | 2016-04-15 | 2019-10-01 | Ethicon Llc | Surgical instrument with detection sensors |
US10492783B2 (en) | 2016-04-15 | 2019-12-03 | Ethicon, Llc | Surgical instrument with improved stop/start control during a firing motion |
US10357247B2 (en) | 2016-04-15 | 2019-07-23 | Ethicon Llc | Surgical instrument with multiple program responses during a firing motion |
US10405859B2 (en) | 2016-04-15 | 2019-09-10 | Ethicon Llc | Surgical instrument with adjustable stop/start control during a firing motion |
US10335145B2 (en) | 2016-04-15 | 2019-07-02 | Ethicon Llc | Modular surgical instrument with configurable operating mode |
US11179150B2 (en) | 2016-04-15 | 2021-11-23 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US11607239B2 (en) | 2016-04-15 | 2023-03-21 | Cilag Gmbh International | Systems and methods for controlling a surgical stapling and cutting instrument |
US10456137B2 (en) | 2016-04-15 | 2019-10-29 | Ethicon Llc | Staple formation detection mechanisms |
US11317917B2 (en) | 2016-04-18 | 2022-05-03 | Cilag Gmbh International | Surgical stapling system comprising a lockable firing assembly |
US20170296173A1 (en) | 2016-04-18 | 2017-10-19 | Ethicon Endo-Surgery, Llc | Method for operating a surgical instrument |
US10363037B2 (en) | 2016-04-18 | 2019-07-30 | Ethicon Llc | Surgical instrument system comprising a magnetic lockout |
US11622392B2 (en) | 2016-06-06 | 2023-04-04 | Milwaukee Electric Tool Corporation | System and method for establishing a wireless connection between power tool and mobile device |
TWM555274U (zh) | 2016-06-06 | 2018-02-11 | 米沃奇電子工具公司 | 用以與動力工具裝置作連接的行動裝置 |
US10383674B2 (en) | 2016-06-07 | 2019-08-20 | Pro-Dex, Inc. | Torque-limiting screwdriver devices, systems, and methods |
US11134942B2 (en) | 2016-12-21 | 2021-10-05 | Cilag Gmbh International | Surgical stapling instruments and staple-forming anvils |
US20180168619A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling systems |
US10835247B2 (en) | 2016-12-21 | 2020-11-17 | Ethicon Llc | Lockout arrangements for surgical end effectors |
US10675026B2 (en) | 2016-12-21 | 2020-06-09 | Ethicon Llc | Methods of stapling tissue |
US10667810B2 (en) | 2016-12-21 | 2020-06-02 | Ethicon Llc | Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems |
US10695055B2 (en) | 2016-12-21 | 2020-06-30 | Ethicon Llc | Firing assembly comprising a lockout |
US10888322B2 (en) | 2016-12-21 | 2021-01-12 | Ethicon Llc | Surgical instrument comprising a cutting member |
US10624635B2 (en) | 2016-12-21 | 2020-04-21 | Ethicon Llc | Firing members with non-parallel jaw engagement features for surgical end effectors |
US10499914B2 (en) | 2016-12-21 | 2019-12-10 | Ethicon Llc | Staple forming pocket arrangements |
MX2019007311A (es) | 2016-12-21 | 2019-11-18 | Ethicon Llc | Sistemas de engrapado quirurgico. |
US11419606B2 (en) | 2016-12-21 | 2022-08-23 | Cilag Gmbh International | Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems |
JP7010956B2 (ja) | 2016-12-21 | 2022-01-26 | エシコン エルエルシー | 組織をステープル留めする方法 |
JP6983893B2 (ja) | 2016-12-21 | 2021-12-17 | エシコン エルエルシーEthicon LLC | 外科用エンドエフェクタ及び交換式ツールアセンブリのためのロックアウト構成 |
CN110114014B (zh) | 2016-12-21 | 2022-08-09 | 爱惜康有限责任公司 | 包括端部执行器闭锁件和击发组件闭锁件的外科器械系统 |
US10568625B2 (en) | 2016-12-21 | 2020-02-25 | Ethicon Llc | Staple cartridges and arrangements of staples and staple cavities therein |
US10426471B2 (en) | 2016-12-21 | 2019-10-01 | Ethicon Llc | Surgical instrument with multiple failure response modes |
US10856868B2 (en) | 2016-12-21 | 2020-12-08 | Ethicon Llc | Firing member pin configurations |
US20180168625A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Surgical stapling instruments with smart staple cartridges |
US11191539B2 (en) | 2016-12-21 | 2021-12-07 | Cilag Gmbh International | Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system |
US20180168615A1 (en) | 2016-12-21 | 2018-06-21 | Ethicon Endo-Surgery, Llc | Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument |
US10980537B2 (en) | 2017-06-20 | 2021-04-20 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations |
USD890784S1 (en) | 2017-06-20 | 2020-07-21 | Ethicon Llc | Display panel with changeable graphical user interface |
US10624633B2 (en) | 2017-06-20 | 2020-04-21 | Ethicon Llc | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument |
US10881399B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument |
USD879809S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with changeable graphical user interface |
USD879808S1 (en) | 2017-06-20 | 2020-03-31 | Ethicon Llc | Display panel with graphical user interface |
US11382638B2 (en) | 2017-06-20 | 2022-07-12 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance |
US11090046B2 (en) | 2017-06-20 | 2021-08-17 | Cilag Gmbh International | Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument |
US11071554B2 (en) | 2017-06-20 | 2021-07-27 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements |
US11653914B2 (en) | 2017-06-20 | 2023-05-23 | Cilag Gmbh International | Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector |
US10646220B2 (en) | 2017-06-20 | 2020-05-12 | Ethicon Llc | Systems and methods for controlling displacement member velocity for a surgical instrument |
US11517325B2 (en) | 2017-06-20 | 2022-12-06 | Cilag Gmbh International | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval |
US10813639B2 (en) | 2017-06-20 | 2020-10-27 | Ethicon Llc | Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions |
US10307170B2 (en) | 2017-06-20 | 2019-06-04 | Ethicon Llc | Method for closed loop control of motor velocity of a surgical stapling and cutting instrument |
US10327767B2 (en) | 2017-06-20 | 2019-06-25 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10881396B2 (en) | 2017-06-20 | 2021-01-05 | Ethicon Llc | Surgical instrument with variable duration trigger arrangement |
US10368864B2 (en) | 2017-06-20 | 2019-08-06 | Ethicon Llc | Systems and methods for controlling displaying motor velocity for a surgical instrument |
US10390841B2 (en) | 2017-06-20 | 2019-08-27 | Ethicon Llc | Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation |
US10888321B2 (en) | 2017-06-20 | 2021-01-12 | Ethicon Llc | Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument |
US10779820B2 (en) | 2017-06-20 | 2020-09-22 | Ethicon Llc | Systems and methods for controlling motor speed according to user input for a surgical instrument |
CN109108882B (zh) * | 2017-06-26 | 2021-02-09 | 李育侪 | 电动冲击式扭力工具的扭力控制系统及其扭力控制方法 |
US11324503B2 (en) | 2017-06-27 | 2022-05-10 | Cilag Gmbh International | Surgical firing member arrangements |
US10631859B2 (en) | 2017-06-27 | 2020-04-28 | Ethicon Llc | Articulation systems for surgical instruments |
US10993716B2 (en) | 2017-06-27 | 2021-05-04 | Ethicon Llc | Surgical anvil arrangements |
US10772629B2 (en) | 2017-06-27 | 2020-09-15 | Ethicon Llc | Surgical anvil arrangements |
US11266405B2 (en) | 2017-06-27 | 2022-03-08 | Cilag Gmbh International | Surgical anvil manufacturing methods |
US10856869B2 (en) | 2017-06-27 | 2020-12-08 | Ethicon Llc | Surgical anvil arrangements |
US10765427B2 (en) | 2017-06-28 | 2020-09-08 | Ethicon Llc | Method for articulating a surgical instrument |
US11058424B2 (en) | 2017-06-28 | 2021-07-13 | Cilag Gmbh International | Surgical instrument comprising an offset articulation joint |
USD906355S1 (en) | 2017-06-28 | 2020-12-29 | Ethicon Llc | Display screen or portion thereof with a graphical user interface for a surgical instrument |
USD854151S1 (en) | 2017-06-28 | 2019-07-16 | Ethicon Llc | Surgical instrument shaft |
US11259805B2 (en) | 2017-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical instrument comprising firing member supports |
US11246592B2 (en) | 2017-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical instrument comprising an articulation system lockable to a frame |
US10716614B2 (en) | 2017-06-28 | 2020-07-21 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies with increased contact pressure |
US11564686B2 (en) | 2017-06-28 | 2023-01-31 | Cilag Gmbh International | Surgical shaft assemblies with flexible interfaces |
USD869655S1 (en) | 2017-06-28 | 2019-12-10 | Ethicon Llc | Surgical fastener cartridge |
US10211586B2 (en) | 2017-06-28 | 2019-02-19 | Ethicon Llc | Surgical shaft assemblies with watertight housings |
US10639037B2 (en) | 2017-06-28 | 2020-05-05 | Ethicon Llc | Surgical instrument with axially movable closure member |
US10903685B2 (en) | 2017-06-28 | 2021-01-26 | Ethicon Llc | Surgical shaft assemblies with slip ring assemblies forming capacitive channels |
EP3420947B1 (de) | 2017-06-28 | 2022-05-25 | Cilag GmbH International | Chirurgisches instrument mit selektiv betätigbaren drehbaren kupplern |
USD851762S1 (en) | 2017-06-28 | 2019-06-18 | Ethicon Llc | Anvil |
US10932772B2 (en) | 2017-06-29 | 2021-03-02 | Ethicon Llc | Methods for closed loop velocity control for robotic surgical instrument |
US10898183B2 (en) | 2017-06-29 | 2021-01-26 | Ethicon Llc | Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing |
US10398434B2 (en) | 2017-06-29 | 2019-09-03 | Ethicon Llc | Closed loop velocity control of closure member for robotic surgical instrument |
US10258418B2 (en) | 2017-06-29 | 2019-04-16 | Ethicon Llc | System for controlling articulation forces |
US11007022B2 (en) | 2017-06-29 | 2021-05-18 | Ethicon Llc | Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument |
US11471155B2 (en) | 2017-08-03 | 2022-10-18 | Cilag Gmbh International | Surgical system bailout |
US11974742B2 (en) | 2017-08-03 | 2024-05-07 | Cilag Gmbh International | Surgical system comprising an articulation bailout |
US11944300B2 (en) | 2017-08-03 | 2024-04-02 | Cilag Gmbh International | Method for operating a surgical system bailout |
US11304695B2 (en) | 2017-08-03 | 2022-04-19 | Cilag Gmbh International | Surgical system shaft interconnection |
USD917500S1 (en) | 2017-09-29 | 2021-04-27 | Ethicon Llc | Display screen or portion thereof with graphical user interface |
US10743872B2 (en) | 2017-09-29 | 2020-08-18 | Ethicon Llc | System and methods for controlling a display of a surgical instrument |
USD907648S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
USD907647S1 (en) | 2017-09-29 | 2021-01-12 | Ethicon Llc | Display screen or portion thereof with animated graphical user interface |
US11399829B2 (en) | 2017-09-29 | 2022-08-02 | Cilag Gmbh International | Systems and methods of initiating a power shutdown mode for a surgical instrument |
US10729501B2 (en) | 2017-09-29 | 2020-08-04 | Ethicon Llc | Systems and methods for language selection of a surgical instrument |
US10796471B2 (en) | 2017-09-29 | 2020-10-06 | Ethicon Llc | Systems and methods of displaying a knife position for a surgical instrument |
US10765429B2 (en) | 2017-09-29 | 2020-09-08 | Ethicon Llc | Systems and methods for providing alerts according to the operational state of a surgical instrument |
US11134944B2 (en) | 2017-10-30 | 2021-10-05 | Cilag Gmbh International | Surgical stapler knife motion controls |
US11090075B2 (en) | 2017-10-30 | 2021-08-17 | Cilag Gmbh International | Articulation features for surgical end effector |
US10779903B2 (en) | 2017-10-31 | 2020-09-22 | Ethicon Llc | Positive shaft rotation lock activated by jaw closure |
US10842490B2 (en) | 2017-10-31 | 2020-11-24 | Ethicon Llc | Cartridge body design with force reduction based on firing completion |
US11071543B2 (en) | 2017-12-15 | 2021-07-27 | Cilag Gmbh International | Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges |
US10828033B2 (en) | 2017-12-15 | 2020-11-10 | Ethicon Llc | Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto |
US10687813B2 (en) | 2017-12-15 | 2020-06-23 | Ethicon Llc | Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments |
US11197670B2 (en) | 2017-12-15 | 2021-12-14 | Cilag Gmbh International | Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed |
US11006955B2 (en) | 2017-12-15 | 2021-05-18 | Ethicon Llc | End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments |
US10966718B2 (en) | 2017-12-15 | 2021-04-06 | Ethicon Llc | Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments |
US10779826B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Methods of operating surgical end effectors |
US10743875B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member |
US10779825B2 (en) | 2017-12-15 | 2020-09-22 | Ethicon Llc | Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments |
US11033267B2 (en) | 2017-12-15 | 2021-06-15 | Ethicon Llc | Systems and methods of controlling a clamping member firing rate of a surgical instrument |
US10743874B2 (en) | 2017-12-15 | 2020-08-18 | Ethicon Llc | Sealed adapters for use with electromechanical surgical instruments |
US10869666B2 (en) | 2017-12-15 | 2020-12-22 | Ethicon Llc | Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument |
US11045270B2 (en) | 2017-12-19 | 2021-06-29 | Cilag Gmbh International | Robotic attachment comprising exterior drive actuator |
US10835330B2 (en) | 2017-12-19 | 2020-11-17 | Ethicon Llc | Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly |
USD910847S1 (en) | 2017-12-19 | 2021-02-16 | Ethicon Llc | Surgical instrument assembly |
US10729509B2 (en) | 2017-12-19 | 2020-08-04 | Ethicon Llc | Surgical instrument comprising closure and firing locking mechanism |
US11020112B2 (en) | 2017-12-19 | 2021-06-01 | Ethicon Llc | Surgical tools configured for interchangeable use with different controller interfaces |
US10716565B2 (en) | 2017-12-19 | 2020-07-21 | Ethicon Llc | Surgical instruments with dual articulation drivers |
US11311290B2 (en) | 2017-12-21 | 2022-04-26 | Cilag Gmbh International | Surgical instrument comprising an end effector dampener |
US10743868B2 (en) | 2017-12-21 | 2020-08-18 | Ethicon Llc | Surgical instrument comprising a pivotable distal head |
US11129680B2 (en) | 2017-12-21 | 2021-09-28 | Cilag Gmbh International | Surgical instrument comprising a projector |
US11076853B2 (en) | 2017-12-21 | 2021-08-03 | Cilag Gmbh International | Systems and methods of displaying a knife position during transection for a surgical instrument |
DE102018118853A1 (de) * | 2018-08-02 | 2020-02-06 | Johannes Lübbering Gmbh | Schraubvorrichtung, Antriebsdrehmomenterzeugungsmittel, Verschraubsystem sowie Verfahren zur Drehmomentsteuerung |
US11253256B2 (en) | 2018-08-20 | 2022-02-22 | Cilag Gmbh International | Articulatable motor powered surgical instruments with dedicated articulation motor arrangements |
CA3105137A1 (en) | 2018-08-20 | 2020-02-27 | Pro-Dex, Inc. | Torque-limiting devices, systems, and methods |
US11045192B2 (en) | 2018-08-20 | 2021-06-29 | Cilag Gmbh International | Fabricating techniques for surgical stapler anvils |
US10842492B2 (en) | 2018-08-20 | 2020-11-24 | Ethicon Llc | Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system |
USD914878S1 (en) | 2018-08-20 | 2021-03-30 | Ethicon Llc | Surgical instrument anvil |
US11207065B2 (en) | 2018-08-20 | 2021-12-28 | Cilag Gmbh International | Method for fabricating surgical stapler anvils |
US10912559B2 (en) | 2018-08-20 | 2021-02-09 | Ethicon Llc | Reinforced deformable anvil tip for surgical stapler anvil |
US11324501B2 (en) | 2018-08-20 | 2022-05-10 | Cilag Gmbh International | Surgical stapling devices with improved closure members |
US11039834B2 (en) | 2018-08-20 | 2021-06-22 | Cilag Gmbh International | Surgical stapler anvils with staple directing protrusions and tissue stability features |
US10856870B2 (en) | 2018-08-20 | 2020-12-08 | Ethicon Llc | Switching arrangements for motor powered articulatable surgical instruments |
US10779821B2 (en) | 2018-08-20 | 2020-09-22 | Ethicon Llc | Surgical stapler anvils with tissue stop features configured to avoid tissue pinch |
US11083458B2 (en) | 2018-08-20 | 2021-08-10 | Cilag Gmbh International | Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions |
US11291440B2 (en) | 2018-08-20 | 2022-04-05 | Cilag Gmbh International | Method for operating a powered articulatable surgical instrument |
US11172929B2 (en) | 2019-03-25 | 2021-11-16 | Cilag Gmbh International | Articulation drive arrangements for surgical systems |
US11147553B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11147551B2 (en) | 2019-03-25 | 2021-10-19 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11696761B2 (en) | 2019-03-25 | 2023-07-11 | Cilag Gmbh International | Firing drive arrangements for surgical systems |
US11452528B2 (en) | 2019-04-30 | 2022-09-27 | Cilag Gmbh International | Articulation actuators for a surgical instrument |
US11426251B2 (en) | 2019-04-30 | 2022-08-30 | Cilag Gmbh International | Articulation directional lights on a surgical instrument |
US11471157B2 (en) | 2019-04-30 | 2022-10-18 | Cilag Gmbh International | Articulation control mapping for a surgical instrument |
US11648009B2 (en) | 2019-04-30 | 2023-05-16 | Cilag Gmbh International | Rotatable jaw tip for a surgical instrument |
US11432816B2 (en) | 2019-04-30 | 2022-09-06 | Cilag Gmbh International | Articulation pin for a surgical instrument |
US11253254B2 (en) | 2019-04-30 | 2022-02-22 | Cilag Gmbh International | Shaft rotation actuator on a surgical instrument |
US11903581B2 (en) | 2019-04-30 | 2024-02-20 | Cilag Gmbh International | Methods for stapling tissue using a surgical instrument |
US11399837B2 (en) | 2019-06-28 | 2022-08-02 | Cilag Gmbh International | Mechanisms for motor control adjustments of a motorized surgical instrument |
US12004740B2 (en) | 2019-06-28 | 2024-06-11 | Cilag Gmbh International | Surgical stapling system having an information decryption protocol |
US11627959B2 (en) | 2019-06-28 | 2023-04-18 | Cilag Gmbh International | Surgical instruments including manual and powered system lockouts |
US11219455B2 (en) | 2019-06-28 | 2022-01-11 | Cilag Gmbh International | Surgical instrument including a lockout key |
US11229437B2 (en) | 2019-06-28 | 2022-01-25 | Cilag Gmbh International | Method for authenticating the compatibility of a staple cartridge with a surgical instrument |
US11259803B2 (en) | 2019-06-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling system having an information encryption protocol |
US11426167B2 (en) | 2019-06-28 | 2022-08-30 | Cilag Gmbh International | Mechanisms for proper anvil attachment surgical stapling head assembly |
US11298127B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Interational | Surgical stapling system having a lockout mechanism for an incompatible cartridge |
US11523822B2 (en) | 2019-06-28 | 2022-12-13 | Cilag Gmbh International | Battery pack including a circuit interrupter |
US11771419B2 (en) | 2019-06-28 | 2023-10-03 | Cilag Gmbh International | Packaging for a replaceable component of a surgical stapling system |
US11291451B2 (en) | 2019-06-28 | 2022-04-05 | Cilag Gmbh International | Surgical instrument with battery compatibility verification functionality |
US11464601B2 (en) | 2019-06-28 | 2022-10-11 | Cilag Gmbh International | Surgical instrument comprising an RFID system for tracking a movable component |
US11638587B2 (en) | 2019-06-28 | 2023-05-02 | Cilag Gmbh International | RFID identification systems for surgical instruments |
US11553971B2 (en) | 2019-06-28 | 2023-01-17 | Cilag Gmbh International | Surgical RFID assemblies for display and communication |
US11246678B2 (en) | 2019-06-28 | 2022-02-15 | Cilag Gmbh International | Surgical stapling system having a frangible RFID tag |
US11684434B2 (en) | 2019-06-28 | 2023-06-27 | Cilag Gmbh International | Surgical RFID assemblies for instrument operational setting control |
US11051807B2 (en) | 2019-06-28 | 2021-07-06 | Cilag Gmbh International | Packaging assembly including a particulate trap |
US11224497B2 (en) | 2019-06-28 | 2022-01-18 | Cilag Gmbh International | Surgical systems with multiple RFID tags |
US11478241B2 (en) | 2019-06-28 | 2022-10-25 | Cilag Gmbh International | Staple cartridge including projections |
US11298132B2 (en) | 2019-06-28 | 2022-04-12 | Cilag GmbH Inlernational | Staple cartridge including a honeycomb extension |
US11660163B2 (en) | 2019-06-28 | 2023-05-30 | Cilag Gmbh International | Surgical system with RFID tags for updating motor assembly parameters |
US11497492B2 (en) | 2019-06-28 | 2022-11-15 | Cilag Gmbh International | Surgical instrument including an articulation lock |
US11376098B2 (en) | 2019-06-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument system comprising an RFID system |
US11529137B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11446029B2 (en) | 2019-12-19 | 2022-09-20 | Cilag Gmbh International | Staple cartridge comprising projections extending from a curved deck surface |
US11529139B2 (en) | 2019-12-19 | 2022-12-20 | Cilag Gmbh International | Motor driven surgical instrument |
US11504122B2 (en) | 2019-12-19 | 2022-11-22 | Cilag Gmbh International | Surgical instrument comprising a nested firing member |
US11911032B2 (en) | 2019-12-19 | 2024-02-27 | Cilag Gmbh International | Staple cartridge comprising a seating cam |
US11844520B2 (en) | 2019-12-19 | 2023-12-19 | Cilag Gmbh International | Staple cartridge comprising driver retention members |
US11291447B2 (en) | 2019-12-19 | 2022-04-05 | Cilag Gmbh International | Stapling instrument comprising independent jaw closing and staple firing systems |
US11304696B2 (en) | 2019-12-19 | 2022-04-19 | Cilag Gmbh International | Surgical instrument comprising a powered articulation system |
US11607219B2 (en) | 2019-12-19 | 2023-03-21 | Cilag Gmbh International | Staple cartridge comprising a detachable tissue cutting knife |
US11464512B2 (en) | 2019-12-19 | 2022-10-11 | Cilag Gmbh International | Staple cartridge comprising a curved deck surface |
US11701111B2 (en) | 2019-12-19 | 2023-07-18 | Cilag Gmbh International | Method for operating a surgical stapling instrument |
US11234698B2 (en) | 2019-12-19 | 2022-02-01 | Cilag Gmbh International | Stapling system comprising a clamp lockout and a firing lockout |
US11559304B2 (en) | 2019-12-19 | 2023-01-24 | Cilag Gmbh International | Surgical instrument comprising a rapid closure mechanism |
US12035913B2 (en) | 2019-12-19 | 2024-07-16 | Cilag Gmbh International | Staple cartridge comprising a deployable knife |
US11576672B2 (en) | 2019-12-19 | 2023-02-14 | Cilag Gmbh International | Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw |
US11931033B2 (en) | 2019-12-19 | 2024-03-19 | Cilag Gmbh International | Staple cartridge comprising a latch lockout |
USD966512S1 (en) | 2020-06-02 | 2022-10-11 | Cilag Gmbh International | Staple cartridge |
USD975278S1 (en) | 2020-06-02 | 2023-01-10 | Cilag Gmbh International | Staple cartridge |
USD976401S1 (en) | 2020-06-02 | 2023-01-24 | Cilag Gmbh International | Staple cartridge |
USD975850S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
USD974560S1 (en) | 2020-06-02 | 2023-01-03 | Cilag Gmbh International | Staple cartridge |
USD967421S1 (en) | 2020-06-02 | 2022-10-18 | Cilag Gmbh International | Staple cartridge |
USD975851S1 (en) | 2020-06-02 | 2023-01-17 | Cilag Gmbh International | Staple cartridge |
US20220031350A1 (en) | 2020-07-28 | 2022-02-03 | Cilag Gmbh International | Surgical instruments with double pivot articulation joint arrangements |
EP4192657A1 (de) | 2020-08-10 | 2023-06-14 | Milwaukee Electric Tool Corporation | Angetriebener schraubenzieher mit kupplungseinstellungssensor |
US11517390B2 (en) | 2020-10-29 | 2022-12-06 | Cilag Gmbh International | Surgical instrument comprising a limited travel switch |
US11617577B2 (en) | 2020-10-29 | 2023-04-04 | Cilag Gmbh International | Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable |
US11452526B2 (en) | 2020-10-29 | 2022-09-27 | Cilag Gmbh International | Surgical instrument comprising a staged voltage regulation start-up system |
US11844518B2 (en) | 2020-10-29 | 2023-12-19 | Cilag Gmbh International | Method for operating a surgical instrument |
US11896217B2 (en) | 2020-10-29 | 2024-02-13 | Cilag Gmbh International | Surgical instrument comprising an articulation lock |
US11717289B2 (en) | 2020-10-29 | 2023-08-08 | Cilag Gmbh International | Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable |
US11931025B2 (en) | 2020-10-29 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a releasable closure drive lock |
US12053175B2 (en) | 2020-10-29 | 2024-08-06 | Cilag Gmbh International | Surgical instrument comprising a stowed closure actuator stop |
USD1013170S1 (en) | 2020-10-29 | 2024-01-30 | Cilag Gmbh International | Surgical instrument assembly |
US11534259B2 (en) | 2020-10-29 | 2022-12-27 | Cilag Gmbh International | Surgical instrument comprising an articulation indicator |
US11779330B2 (en) | 2020-10-29 | 2023-10-10 | Cilag Gmbh International | Surgical instrument comprising a jaw alignment system |
USD980425S1 (en) | 2020-10-29 | 2023-03-07 | Cilag Gmbh International | Surgical instrument assembly |
CN112405413B (zh) * | 2020-11-03 | 2024-07-19 | 杭州倍力耐工具有限公司 | 一种预置式扭矩扳手 |
US11653915B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Surgical instruments with sled location detection and adjustment features |
US11737751B2 (en) | 2020-12-02 | 2023-08-29 | Cilag Gmbh International | Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings |
US11744581B2 (en) | 2020-12-02 | 2023-09-05 | Cilag Gmbh International | Powered surgical instruments with multi-phase tissue treatment |
US11849943B2 (en) | 2020-12-02 | 2023-12-26 | Cilag Gmbh International | Surgical instrument with cartridge release mechanisms |
US11653920B2 (en) | 2020-12-02 | 2023-05-23 | Cilag Gmbh International | Powered surgical instruments with communication interfaces through sterile barrier |
US11890010B2 (en) | 2020-12-02 | 2024-02-06 | Cllag GmbH International | Dual-sided reinforced reload for surgical instruments |
US11627960B2 (en) | 2020-12-02 | 2023-04-18 | Cilag Gmbh International | Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections |
US11678882B2 (en) | 2020-12-02 | 2023-06-20 | Cilag Gmbh International | Surgical instruments with interactive features to remedy incidental sled movements |
US11944296B2 (en) | 2020-12-02 | 2024-04-02 | Cilag Gmbh International | Powered surgical instruments with external connectors |
US11696757B2 (en) | 2021-02-26 | 2023-07-11 | Cilag Gmbh International | Monitoring of internal systems to detect and track cartridge motion status |
US11980362B2 (en) | 2021-02-26 | 2024-05-14 | Cilag Gmbh International | Surgical instrument system comprising a power transfer coil |
US11950777B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Staple cartridge comprising an information access control system |
US11751869B2 (en) | 2021-02-26 | 2023-09-12 | Cilag Gmbh International | Monitoring of multiple sensors over time to detect moving characteristics of tissue |
US11925349B2 (en) | 2021-02-26 | 2024-03-12 | Cilag Gmbh International | Adjustment to transfer parameters to improve available power |
US11744583B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Distal communication array to tune frequency of RF systems |
US11812964B2 (en) | 2021-02-26 | 2023-11-14 | Cilag Gmbh International | Staple cartridge comprising a power management circuit |
US12108951B2 (en) | 2021-02-26 | 2024-10-08 | Cilag Gmbh International | Staple cartridge comprising a sensing array and a temperature control system |
US11701113B2 (en) | 2021-02-26 | 2023-07-18 | Cilag Gmbh International | Stapling instrument comprising a separate power antenna and a data transfer antenna |
US11950779B2 (en) | 2021-02-26 | 2024-04-09 | Cilag Gmbh International | Method of powering and communicating with a staple cartridge |
US11723657B2 (en) | 2021-02-26 | 2023-08-15 | Cilag Gmbh International | Adjustable communication based on available bandwidth and power capacity |
US11749877B2 (en) | 2021-02-26 | 2023-09-05 | Cilag Gmbh International | Stapling instrument comprising a signal antenna |
US11730473B2 (en) | 2021-02-26 | 2023-08-22 | Cilag Gmbh International | Monitoring of manufacturing life-cycle |
US11793514B2 (en) | 2021-02-26 | 2023-10-24 | Cilag Gmbh International | Staple cartridge comprising sensor array which may be embedded in cartridge body |
US11826042B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Surgical instrument comprising a firing drive including a selectable leverage mechanism |
US11717291B2 (en) | 2021-03-22 | 2023-08-08 | Cilag Gmbh International | Staple cartridge comprising staples configured to apply different tissue compression |
US11759202B2 (en) | 2021-03-22 | 2023-09-19 | Cilag Gmbh International | Staple cartridge comprising an implantable layer |
US11723658B2 (en) | 2021-03-22 | 2023-08-15 | Cilag Gmbh International | Staple cartridge comprising a firing lockout |
US11826012B2 (en) | 2021-03-22 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising a pulsed motor-driven firing rack |
US11806011B2 (en) | 2021-03-22 | 2023-11-07 | Cilag Gmbh International | Stapling instrument comprising tissue compression systems |
US11737749B2 (en) | 2021-03-22 | 2023-08-29 | Cilag Gmbh International | Surgical stapling instrument comprising a retraction system |
US11786239B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Surgical instrument articulation joint arrangements comprising multiple moving linkage features |
US12102323B2 (en) | 2021-03-24 | 2024-10-01 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising a floatable component |
US11849945B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Rotary-driven surgical stapling assembly comprising eccentrically driven firing member |
US11896218B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Method of using a powered stapling device |
US11944336B2 (en) | 2021-03-24 | 2024-04-02 | Cilag Gmbh International | Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments |
US11849944B2 (en) | 2021-03-24 | 2023-12-26 | Cilag Gmbh International | Drivers for fastener cartridge assemblies having rotary drive screws |
US11896219B2 (en) | 2021-03-24 | 2024-02-13 | Cilag Gmbh International | Mating features between drivers and underside of a cartridge deck |
US11786243B2 (en) | 2021-03-24 | 2023-10-17 | Cilag Gmbh International | Firing members having flexible portions for adapting to a load during a surgical firing stroke |
US11744603B2 (en) | 2021-03-24 | 2023-09-05 | Cilag Gmbh International | Multi-axis pivot joints for surgical instruments and methods for manufacturing same |
US11903582B2 (en) | 2021-03-24 | 2024-02-20 | Cilag Gmbh International | Leveraging surfaces for cartridge installation |
US11832816B2 (en) | 2021-03-24 | 2023-12-05 | Cilag Gmbh International | Surgical stapling assembly comprising nonplanar staples and planar staples |
US11793516B2 (en) | 2021-03-24 | 2023-10-24 | Cilag Gmbh International | Surgical staple cartridge comprising longitudinal support beam |
US11857183B2 (en) | 2021-03-24 | 2024-01-02 | Cilag Gmbh International | Stapling assembly components having metal substrates and plastic bodies |
US11826047B2 (en) | 2021-05-28 | 2023-11-28 | Cilag Gmbh International | Stapling instrument comprising jaw mounts |
US11957337B2 (en) | 2021-10-18 | 2024-04-16 | Cilag Gmbh International | Surgical stapling assembly with offset ramped drive surfaces |
US11877745B2 (en) | 2021-10-18 | 2024-01-23 | Cilag Gmbh International | Surgical stapling assembly having longitudinally-repeating staple leg clusters |
US11980363B2 (en) | 2021-10-18 | 2024-05-14 | Cilag Gmbh International | Row-to-row staple array variations |
US11937816B2 (en) | 2021-10-28 | 2024-03-26 | Cilag Gmbh International | Electrical lead arrangements for surgical instruments |
US12089841B2 (en) | 2021-10-28 | 2024-09-17 | Cilag CmbH International | Staple cartridge identification systems |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1006606A (en) * | 1972-05-22 | 1977-03-08 | Katsuyuki Totsu | Motor-driven screw driver with automatic stopping means |
US4106176A (en) * | 1977-04-06 | 1978-08-15 | Ingersoll-Rand Company | Method and apparatus for fastener tensioning |
US4344216A (en) * | 1979-12-10 | 1982-08-17 | Sps Technologies, Inc. | Apparatus and method for tightening an assembly |
US4375123A (en) * | 1980-04-07 | 1983-03-01 | Sps Technologies, Inc. | Method and apparatus for tightening threaded fastener assemblies |
DE3422522A1 (de) * | 1984-06-16 | 1985-12-19 | Deutsche Gardner-Denver GmbH, 7084 Westhausen | Streckgrenzgesteuertes anziehverfahren fuer verschraubungen |
JPS6144582A (ja) * | 1984-08-07 | 1986-03-04 | マツダ株式会社 | ナツトランナ−における塑性締め良否判定方法 |
DE3500714C1 (de) * | 1985-01-11 | 1988-12-22 | Kipfelsberger, Albert, 8070 Ingolstadt | Kraftschrauber mit Drehmomentbegrenzung |
SU1524992A1 (ru) * | 1988-04-18 | 1989-11-30 | Специализированное конструкторское бюро по механизации и автоматизации слесарно-сборочных работ | Пневмогидравлический импульсный гайковерт |
SU1701510A1 (ru) * | 1989-01-25 | 1991-12-30 | Центральное Опытное Проектно-Конструкторское И Технологическое Бюро Госнити По Организации И Технологии Ремонта И Технического Обслуживания Автомобилей | Двухрежимный гайковерт |
US4995145A (en) * | 1990-01-08 | 1991-02-26 | Allen-Bradley Company, Inc. | Reduction of relaxation induced tension scatter in fasteners |
US5315501A (en) * | 1992-04-03 | 1994-05-24 | The Stanley Works | Power tool compensator for torque overshoot |
DE19620782A1 (de) * | 1995-06-03 | 1996-12-05 | Volkswagen Ag | Verfahren zur Herstellung einer Schraubverbindung und Vorrichtung hierfür |
DE19626731A1 (de) * | 1996-07-03 | 1998-01-08 | Wagner Gmbh J | Handarbeitsgerät |
DE19647813C2 (de) * | 1996-11-19 | 2003-07-03 | Joerg Hohmann | Kraftschrauber |
JP2000202180A (ja) * | 1999-01-14 | 2000-07-25 | Brother Ind Ltd | 縫製デ―タ作成装置及び縫製デ―タ作成プログラムを記録した記録媒体 |
US6561896B1 (en) * | 2000-05-22 | 2003-05-13 | David M. Lauer | Auger for combine header |
JP3456949B2 (ja) * | 2000-06-19 | 2003-10-14 | 株式会社エスティック | ネジ締め装置の制御方法および装置 |
DE10116469B4 (de) * | 2001-04-03 | 2006-08-03 | Hofmann Maschinen- Und Anlagenbau Gmbh | Verfahren zum Aufziehen eines Kraftfahrzeugreifens auf eine Felge eines Scheibenrades |
DE20113184U1 (de) * | 2001-04-20 | 2002-09-26 | Wagner, Paul-Heinz, 53804 Much | Drehschrauber |
US6516896B1 (en) * | 2001-07-30 | 2003-02-11 | The Stanley Works | Torque-applying tool and control therefor |
JP3740694B2 (ja) * | 2002-02-22 | 2006-02-01 | 日立工機株式会社 | 電動工具 |
JP3835374B2 (ja) * | 2002-08-09 | 2006-10-18 | マツダ株式会社 | ボルト締結方法及びその装置 |
DE10258900B4 (de) * | 2002-12-17 | 2006-02-23 | Bayerische Motoren Werke Ag | Akkuschrauber für Sicherheitsverschraubungen |
DE10341975A1 (de) * | 2003-09-11 | 2005-04-21 | Bosch Gmbh Robert | Drehmomentbegrenzungseinrichtung für einen Elektromotor |
DE10345135A1 (de) * | 2003-09-29 | 2005-04-21 | Bosch Gmbh Robert | Akkuschrauber |
JP2005118910A (ja) * | 2003-10-14 | 2005-05-12 | Matsushita Electric Works Ltd | インパクト回転工具 |
JP4820061B2 (ja) * | 2004-03-05 | 2011-11-24 | 日立工機株式会社 | 電池工具 |
JP4211676B2 (ja) * | 2004-05-12 | 2009-01-21 | パナソニック電工株式会社 | インパクト回転工具 |
JP2006000993A (ja) * | 2004-06-21 | 2006-01-05 | Maeda Metal Industries Ltd | 反力受け付き締付機 |
DE102006015664A1 (de) * | 2005-04-04 | 2007-01-25 | Hitachi Koki Co., Ltd. | Batteriepack und kabelloses elektrisches Werkzeug, das dieses aufweist |
US20060249294A1 (en) * | 2005-05-06 | 2006-11-09 | Jergens, Inc. | Device for tightening threaded fastener joints |
DE102005056264A1 (de) * | 2005-11-14 | 2007-05-16 | Fein C & E Gmbh | Schrauber mit Drehzahlregelung und Verfahren zur Drehzahlregelung eines Schraubers |
DE102006017193A1 (de) * | 2006-04-12 | 2007-10-25 | Robert Bosch Gmbh | Verfahren zum Anziehen einer Schraubverbindung und Schraubwerkzeug |
-
2007
- 2007-04-23 DE DE102007019409A patent/DE102007019409B3/de not_active Expired - Fee Related
-
2008
- 2008-04-23 BR BRPI0811037A patent/BRPI0811037A8/pt not_active Application Discontinuation
- 2008-04-23 RU RU2009142992/02A patent/RU2459695C2/ru not_active IP Right Cessation
- 2008-04-23 CL CL200801169A patent/CL2008001169A1/es unknown
- 2008-04-23 CA CA2684786A patent/CA2684786C/en not_active Expired - Fee Related
- 2008-04-23 CN CN2008800215449A patent/CN101765483B/zh not_active Expired - Fee Related
- 2008-04-23 US US12/451,013 patent/US20100116519A1/en not_active Abandoned
- 2008-04-23 WO PCT/DE2008/000671 patent/WO2008128523A2/de active Application Filing
- 2008-04-23 AR ARP080101698A patent/AR066256A1/es not_active Application Discontinuation
- 2008-04-23 EP EP08757966A patent/EP2146822B1/de not_active Not-in-force
- 2008-04-23 TW TW097114758A patent/TWI492824B/zh not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO2008128523A2 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI0811037A8 (pt) | 2019-01-15 |
CA2684786A1 (en) | 2008-10-30 |
DE102007019409B3 (de) | 2008-11-13 |
CL2008001169A1 (es) | 2008-10-03 |
WO2008128523A2 (de) | 2008-10-30 |
CN101765483A (zh) | 2010-06-30 |
BRPI0811037A2 (pt) | 2014-12-09 |
CN101765483B (zh) | 2013-09-18 |
RU2009142992A (ru) | 2011-05-27 |
TWI492824B (zh) | 2015-07-21 |
AR066256A1 (es) | 2009-08-05 |
TW200846142A (en) | 2008-12-01 |
EP2146822B1 (de) | 2012-08-01 |
RU2459695C2 (ru) | 2012-08-27 |
CA2684786C (en) | 2015-04-07 |
US20100116519A1 (en) | 2010-05-13 |
WO2008128523A3 (de) | 2009-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2146822B1 (de) | Kraftschrauber | |
EP2139645B1 (de) | Kraftschrauber | |
DE102005020377B4 (de) | Verfahren zum Betreiben einer Elektrowerkzeugmaschine | |
DE69631754T2 (de) | Elektrowerkzeug mit einer Motorsteuerungsschaltung zur Verbesserung der Steuerung der Drehmomentsabgabe des Elektrowerkzeuges | |
DE102008040096A1 (de) | Verfahren zum Betreiben einer Elektrowerkzeugmaschine und eine Antriebseinheit für eine Elektrowerkzeugmaschine | |
DE102007000281A1 (de) | Verfahren zur Steuerung eines Schraubgerätes | |
DE102011078629A1 (de) | Vorrichtung und Verfahren zum Regeln eines zeitlichen Abtriebsdrehmomentanstiegs eines elektrischen Antriebsmotors | |
DE102005015900B4 (de) | Elektrowerkzeug, insbesondere Schlagschrauber | |
DE102008040524B4 (de) | Elektrowerkzeug mit einer Vorrichtung zur pulsweitenmodulierten Stromregelung | |
EP2873491A1 (de) | Spannungsnachführung bei Tieftemperatur zur Vermeidung von Unterspannungsabschaltungen bei akkubetriebenen handbetriebenen Elektrowerkzeugen | |
WO2022022960A1 (de) | Elektrowerkzeug | |
EP0283945A2 (de) | Stromversorgungseinrichtung für Elektrowerkzeuge | |
EP2087582B1 (de) | Pulsweitenmodulations-ansteuerung einer elektrohandwerkzeugmaschine | |
AT519142B1 (de) | Verfahren und Vorrichtung zum Abbauen elastisch gespeicherter Energie | |
DE202007009282U1 (de) | Kraftschrauber | |
DE202007009286U1 (de) | Kraftschrauber | |
DE102007045695A1 (de) | Hydropneumatischer Impulsschrauber und Verfahren zur Steuerung eines hydropneumatischen Impulsschraubers | |
DE19947372B4 (de) | Steuerschaltung für eine Hubvorrichtung | |
EP0345539B1 (de) | Schaltanordnung zur Drehzahlsteuerung eines Reihenschlussmotors mit Drehmomentabschaltung | |
DE3501947C2 (de) | ||
EP0551909A1 (de) | Bremsschaltung mit verminderter Belastung des Bremswiderstandes | |
EP2873490A1 (de) | Spannungsnachführung bei Tieftemperatur zur Vermeidung von Unterspannungsabschaltungen bei akkubetriebenen handbetriebenen Elektrowerkzeugen | |
DE102006000436B4 (de) | Verfahren zur Begrenzung einer Motorspannung | |
DE102023202161A1 (de) | Steuerungseinheit für eine Antriebseinheit einer Hand-Werkzeugmaschine, Antriebseinheit, Hand-Werkzeugmaschine und Verfahren zum Betrieb einer Hand-Werkzeugmaschine | |
DE102017103003A1 (de) | Verfahren zum Abbremsen einer Werkzeugspindel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20091023 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17Q | First examination report despatched |
Effective date: 20100210 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 568406 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008007833 Country of ref document: DE Effective date: 20120927 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ISLER & PEDRAZZINI AG |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120801 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121101 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121112 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121101 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008007833 Country of ref document: DE Effective date: 20130503 |
|
BERE | Be: lapsed |
Owner name: LOSOMAT SCHRAUBTECHNIK NEEF G.M.B.H. Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130423 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 568406 Country of ref document: AT Kind code of ref document: T Effective date: 20130423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080423 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130423 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20170912 Year of fee payment: 13 Ref country code: FR Payment date: 20170424 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20170425 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20180418 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180424 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180424 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008007833 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190423 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |