EP2141251B1 - Alliages à mémoire de forme à base de fer, de manganèse et de silicium - Google Patents

Alliages à mémoire de forme à base de fer, de manganèse et de silicium Download PDF

Info

Publication number
EP2141251B1
EP2141251B1 EP09162774.5A EP09162774A EP2141251B1 EP 2141251 B1 EP2141251 B1 EP 2141251B1 EP 09162774 A EP09162774 A EP 09162774A EP 2141251 B1 EP2141251 B1 EP 2141251B1
Authority
EP
European Patent Office
Prior art keywords
shape
memory alloy
shape memory
weight
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09162774.5A
Other languages
German (de)
English (en)
Other versions
EP2141251A1 (fr
Inventor
Dong Zhizhong
Ulrich Klotz
Andrea Bergamini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMPA
Original Assignee
Empa Duebendorf
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empa Duebendorf filed Critical Empa Duebendorf
Publication of EP2141251A1 publication Critical patent/EP2141251A1/fr
Application granted granted Critical
Publication of EP2141251B1 publication Critical patent/EP2141251B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect

Definitions

  • the present invention describes a shape memory alloy comprising a base alloy of manganese, silicon, chromium and nickel and a residual mass fraction of at least 50 weight percent iron, the shape memory alloy being 17 to 20 weight percent manganese, 4 to 6 weight percent silicon, 8 to 10 weight percent chromium, 4 to 7 weight percent nickel, 0.2 to 1.0 weight percent vanadium, 0.2 to 1.0 weight percent carbon and / or 0.2 to 1.0 weight percent nitrogen.
  • titanium-based and nickel-based shape memory alloys have mostly been used technologically and commercially.
  • the titanium and nickel-based shape memory alloys have interesting properties in terms of transition temperatures and shape memory effect, but costs of the order of a hundred dollars per kilogram limit retransmission of the fields of application.
  • shape memory alloys The memory capability of shape memory alloys is the result of typical diffusionless phase transformations in a known temperature or voltage range.
  • Iron-based shape memory alloys exhibit a phase transition to the martensite phase when the shape memory alloy is deformed and mechanically stressed by the austenite phase. This phase transition is reversible.
  • the phase transition from the martensite phase to the austenite phase can be achieved by heating the shape memory alloy.
  • thermo-mechanical training has a favorable effect on the thickness and the width of the martensite plates, which form the martensite phase and determine the shape memory effect.
  • the shape memory alloys of the time did not succeed in industrial application.
  • Known iron-based shape memory alloys have austenite start temperatures A S of at best 80 ° C to 90 ° C and austenite finish temperatures A F of at least 160 ° C to 170 ° C. This results in an approximately 80 ° C wide austenite transition temperature range A S -A F.
  • Shape memory alloys are known, which in addition to iron and manganese, inter alia, silicon, chromium, nickel, vanadium and essentially a proportion of nitrogen.
  • JP2004115864 Another shape memory alloy with enhanced shape memory effect is described, which is based on iron-manganese and silicon and includes inter alia vanadium nitrides and / or vanadium carbides.
  • a further object of the shape memory alloys according to the invention is to provide shape memory alloys whose austenite start temperature and austenite finish temperature are significantly below the corresponding temperatures of known iron and manganese based shape memory alloys according to the prior art.
  • a further object is to provide shape memory alloys which each have austenite transition temperature ranges A S -A F , which are significantly below the previous iron-based shape memory alloys, whereby application areas can be expanded or newly developed, for example in civil engineering.
  • Shape memory alloys have austenite phases and martensite phases of identical chemical composition but different crystal structures, the occurrence of which depends on the instantaneous temperature of the shape memory alloy. While deformation of the shape memory alloy takes place at low temperatures, in particular room temperature and below, shape recovery can take place by heating the shape memory alloy to high temperatures.
  • An approximately ideal hysteresis curve of the proportion of the martensite phase and the austenite phase as a function of the temperature is in FIG. 1 shown.
  • the austenite phase or austenite has a cubic-face-centered lattice structure which occurs at high temperatures and is therefore also called the high-temperature phase. From an austenite start temperature A S up to an austenite finish temperature A F , the proportion of austenite increases.
  • the austenite phase has a low hardness and some elements such as nickel (Ni), cobalt (Co) and manganese (Mn) are known which promote the formation of austenite, so-called austenite formers.
  • the range between A S -A F is called austenite transition temperature range in this application and this is below the hitherto known on iron-based shape memory alloys for the shape memory alloys according to the invention. Also, the width of the austenite transition temperature range A S -A F is significantly narrower than known from shape memory alloys of the prior art.
  • the martensite phase or martensite designated here by the symbol ⁇ , generally forms a hexagonal close-packed spherical packing, occurs at low temperatures and forms a metastable low-temperature phase.
  • the martensite is from one Martensite start temperature M S up to a martensite final temperature M F.
  • the austenite start temperature and the martensite start temperature are generally and here also referred to as transition temperatures and represent a decisive and characteristic of many applications physical property.
  • the shape memory alloy consists of 50% by weight and more of iron.
  • Vanadium nitride and / or vanadium carbide nanoparticles cause the shape memory alloys according to the invention have desired satisfactory shape memory properties without the need for thermo-mechanical training.
  • the size of the nanoparticles occurring is in the range of nanometers (10 -9 m) and these precipitates, a precipitate or a precipitate-forming nanoparticles are finely distributed in the shape memory alloy.
  • the shape memory alloys according to the invention each comprising a base alloy consisting of manganese, silicon, chromium and nickel and a mass fraction of iron.
  • the example sma1 in addition to the base alloy on a mass fraction of vanadium carbide while the example sma2 a mass fraction of vanadium carbide and vanadium nitride particles and the shape memory alloy according to Example sma3 in addition to the base alloy has a mass fraction of vanadium nitride.
  • FIG. 2 shows measured different shape returns in percent depending on the applied heat aging temperature during each two hours of heat aging of the above-mentioned exemplary alloys sma1, sma2 and sma3.
  • Heat aging temperatures in the range of 650 ° C to 900 ° C were used, with the amount of vanadium carbide and / or vanadium nitride particles occurring during heat aging between 750 ° C and 850 ° C are excreted lead to particularly advantageous results.
  • shape memory alloys with shape-feedback quotients result more than 50%.
  • the admixture of carbon precipitates vanadium carbide particles, resulting in a mold recycle ratio of over 70%.
  • the shape recovery stresses achievable with the shape memory alloys according to the invention are in FIG. 4 plotted on the ordinate against the temperature on the abscissa.
  • FIG. 4 plotted on the ordinate against the temperature on the abscissa.
  • Square shaped measured values Shape feedback voltages of a sample of a prior art Fe-15Mn-9Si-9Cr-5Cr-5Ni-1.5Nb-0.6C prior art niobium carbide shape memory alloy for comparison. From the typical hysteresis-like curve, it can be seen that the austenite finish temperature A F of the sample of the invention is below the sample According to the prior art.
  • the measured values show that the width of the austenite transition temperature range A S -A F of the new shape memory alloy according to the invention is significantly narrower than in the prior art.
  • the electrical resistance of the shape memory alloys was determined as a function of the temperature in measurement series.
  • the resulting hysteresis curves are in FIG. 5 shown.
  • a martensite final temperature M F of about -120 ° C (about 150 K) and a martensite start temperature M S of about -50 ° C (about 220 K) can be read.
  • the austenite start temperature A S is about + 70 ° C (about 340 K) and the austenite finish temperature A F is about + 110 ° C (about 380 K).
  • a combined process of solution treatment and aging which is also called aging, is performed on a solid shape memory alloy comprising the above-mentioned elements in the above-mentioned concentration.
  • the heat treatment solution heat treatment and heat aging are carried out in a preferred embodiment of the inventive method in one and the same heat treatment furnace.
  • the heat aging is carried out directly after the solution annealing.
  • the individual solid constituents of the shape memory alloy according to the invention are fused prior to solution heat treatment and heat aging to form a solid shape memory alloy according to the prior art.
  • Solution heat treatment dissolves precipitated vanadium carbide and / or vanadium nitride particles homogeneously in a matrix of the solid shape memory alloy.
  • aging of the shape memory alloy after solution annealing at at least approximately 850 ° C. leads to advantageous results.
  • vanadium carbide and / or vanadium nitride particles are precipitated and form finely divided precipitates in the structure of the shape memory alloy.
  • the vanadium carbide precipitates and / or vanadium nitride precipitates resulting from the treatment described above result in a change in the physical properties of the shape memory alloy, thereby optimizing shape memory properties while maintaining chemical composition.
  • the described shape memory alloy according to the invention and mixing ratios varied within the abovementioned limits are used in civil engineering, in machine and vehicle construction, in the aerospace industry, and in implants and instruments in medical technology.
  • the cost-effective production of the iron-based novel shape memory alloys expands the fields of application, for example, to concrete structures in construction.
  • the Material costs for the novel shape memory alloys are in the range of known stainless steels.
  • the shape memory alloys according to the invention have narrow austenite transition temperature ranges A S -A F of about 40 ° C width. Due to the achievable shape memory properties, the shape memory alloys according to the invention can be used in concrete structures in civil engineering.

Claims (10)

  1. Alliage à mémoire de forme, comprenant un alliage de base constitué de manganèse, de silicium, de chrome et de nickel ainsi que d'une proportion massique complémentaire de fer correspondant à au moins 50 pour cent en poids, ledit alliage à mémoire de forme contenant
    17 à 20 pour cent en poids de manganèse
    4 à 6 pour cent en poids de silicium
    8 à 10 pour cent en poids de chrome
    4 à 7 pour cent en poids de nickel
    0,2 à 1,0 pour cent en poids de vanadium
    0,2 à 1,0 pour cent en poids de carbone et/ou 0,2 à
    1,0 pour cent en poids d'azote,
    caractérisé en ce que,
    l'alliage à mémoire de forme comprend des concrétions de carbure de vanadium et/ou des concrétions de nitrure de vanadium obtenues par précipitation, lesquelles sont finement dispersées dans l'alliage à mémoire de forme et se présentent sous forme d'un précipité constitué de nanoparticules de taille nanométrique.
  2. Utilisation d'un alliage à mémoire de forme selon la revendication 1 dans le domaine de génie civil, notamment dans le confinement d'éléments de support, pour une mise en oeuvre dans des pièces liées au ciment présentant une précontrainte intérieure ou pour créer des éléments d'ancrage améliorés, caractérisée en ce que l'alliage à mémoire de forme présente une plage de températures d'austénitisation AS-AF correspondant à une fourchette qui est inférieure à 80 °C et notamment, au moins de manière approximative, égale à 40 °C.
  3. Utilisation d'un alliage à mémoire de forme dans le domaine du génie civil selon la revendication 2, caractérisée en ce que l'alliage à mémoire de forme présente une température de début d'austénitisation (AS) qui est inférieure à 80 °C et notamment, au moins de manière approximative, égale à 70 °C.
  4. Utilisation d'un alliage à mémoire de forme dans le domaine du génie civil selon la revendication 2, caractérisée en ce que l'alliage à mémoire de forme présente une température de fin d'austénitisation (AF) qui est inférieure à 150 °C et notamment, au moins de manière approximative, égale à 110 °C.
  5. Utilisation d'un alliage à mémoire de forme dans le domaine du génie civil selon la revendication 2, caractérisée en ce qu'on réalise une déformation de l'alliage à mémoire de forme à des températures inférieures ou égales à -25 °C puis le retour à la forme initiale.
  6. Utilisation d'un alliage à mémoire de forme dans le domaine du génie civil selon la revendication 2, caractérisée en ce qu'on réalise une déformation de l'alliage à mémoire de forme à des températures inférieures à -45 °C puis le retour à la forme initiale, ce qui permet d'atteindre un taux de retour à la forme initiale supérieur à 90 %.
  7. Procédé de fabrication d'un alliage à mémoire de forme selon la revendication 1, caractérisé en ce que dans un four de traitement thermique
    on fait fondre un alliage de base constitué de manganèse, de silicium, de chrome, de nickel et d'une proportion massique de fer pour ensuite procéder à l'ajout d'une proportion massique de vanadium,
    puis de manière ciblée une proportion massique de carbone et soumettre cet alliage solide à mémoire de forme pendant une durée comprise entre cinq et dix heures à un recuit de mise en solution réalisé dans une fourchette de températures allant de 1050 °C à 1150 °C, ledit recuit de mise en solution étant immédiatement suivi d'une maturation thermique réalisée pendant environ une à deux heures dans une fourchette de températures allant de 650 °C à 900 °C, ce qui permet d'obtenir des concrétions de carbure de vanadium au sein de l'alliage à mémoire de forme.
  8. Procédé selon la revendication 7, caractérisé en ce que, préalablement à la maturation thermique, on introduit en outre, de manière ciblée, une proportion massique d'azote dans le four de fonderie, pour ainsi provoquer la précipitation de concrétions comprenant des particules de nitrure de vanadium.
  9. Procédé selon la revendication 7, caractérisé en ce que l'on applique, pendant une durée totale de deux heures, une maturation thermique réalisée à une température de maturation thermique de 850 °C.
  10. Procédé selon la revendication 7, caractérisé en ce que le recuit de mise en solution puis la maturation thermique peuvent être réalisées dans un même four de traitement thermique, l'une directement à la suite de l'autre.
EP09162774.5A 2008-06-25 2009-06-16 Alliages à mémoire de forme à base de fer, de manganèse et de silicium Active EP2141251B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH9682008 2008-06-25

Publications (2)

Publication Number Publication Date
EP2141251A1 EP2141251A1 (fr) 2010-01-06
EP2141251B1 true EP2141251B1 (fr) 2016-12-28

Family

ID=41165491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09162774.5A Active EP2141251B1 (fr) 2008-06-25 2009-06-16 Alliages à mémoire de forme à base de fer, de manganèse et de silicium

Country Status (1)

Country Link
EP (1) EP2141251B1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219463A1 (fr) 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Alliage à mémoire de forme fe-mn-si
WO2020104290A1 (fr) 2018-11-23 2020-05-28 Thyssenkrupp Steel Europe Ag Procédé pour précontraindre une structure au moyen d'un dispositif de serrage et utilisation d'un tel dispositif de serrage destiné à être fixé sur une structure
WO2020108754A1 (fr) 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Produit plat constitué d'un matériau à mémoire de forme à base de fer

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH706824B1 (de) * 2012-08-14 2016-10-14 S & P Clever Reinforcement Company Ag Verankerungssystem für einen Traggrund im Bauwesen, sowie Verfahren zum Anbringen und Vorspannen eines Ankerstabes.
DE102013101378A1 (de) * 2013-02-12 2014-08-28 Thyssenkrupp Steel Europe Ag Bauteil und Verfahren zur Herstellung eines Bauteils
WO2014146733A1 (fr) 2013-03-22 2014-09-25 Thyssenkrupp Steel Europe Ag Alliage à mémoire de forme à base de fer
CH707301B1 (de) * 2013-04-08 2014-06-13 Empa Verfahren zum Erstellen von vorgespannten Betonbauwerken mittels Profilen aus einer Formgedächtnis-Legierung sowie Bauwerk, hergestellt nach dem Verfahren.
CN109477175B (zh) * 2016-09-06 2021-02-12 国立大学法人东北大学 Fe基形状记忆合金材料及其制造方法
WO2019175065A1 (fr) 2018-03-15 2019-09-19 Re-Fer Ag Procédé d'établissement d'une précontrainte sur un composant en acier, en métal ou en alliage au moyen d'une plaque sma et composant précontraint
DE102018119296A1 (de) 2018-08-08 2020-02-13 Thyssenkrupp Ag Inline Vorrecken von Formgedächtnislegierungen, insbesondere Flachstahl
FR3096382B1 (fr) 2019-05-23 2021-05-21 Soletanche Freyssinet Procédé de renforcement d’une structure.
CN111235491B (zh) * 2019-12-27 2022-05-10 西北工业大学 一种高强度高塑性的形状记忆钢及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2009256C1 (ru) * 1992-06-01 1994-03-15 Евгений Захарович Винтайкин Сплав на основе железа с эффектом запоминания формы
WO1997003215A1 (fr) * 1995-07-11 1997-01-30 Kari Martti Ullakko Alliages ferreux a memoire de forme et amortissement de vibrations, contenant de l'azote
JP3542754B2 (ja) 2000-02-09 2004-07-14 独立行政法人物質・材料研究機構 形状記憶合金
JP2004115864A (ja) * 2002-09-26 2004-04-15 Hiroshi Kubo 鉄基形状記憶合金
CN1280444C (zh) * 2004-04-13 2006-10-18 刘文西 含碳化钒的铁基形状记忆合金及其形状记忆封隔器的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219463A1 (fr) 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Alliage à mémoire de forme fe-mn-si
WO2018219514A1 (fr) 2017-06-01 2018-12-06 Thyssenkrupp Steel Europe Ag Alliage à mémoire de forme fe-mn-si
WO2020104290A1 (fr) 2018-11-23 2020-05-28 Thyssenkrupp Steel Europe Ag Procédé pour précontraindre une structure au moyen d'un dispositif de serrage et utilisation d'un tel dispositif de serrage destiné à être fixé sur une structure
DE102018129640A1 (de) 2018-11-23 2020-05-28 Thyssenkrupp Ag Verfahren zum Vorspannen eines Bauwerks mit einer Spannvorrichtung und Verwendung einer solchen Spannvorrichtung zum Befestigen an einem Bauwerk
WO2020108754A1 (fr) 2018-11-29 2020-06-04 Thyssenkrupp Steel Europe Ag Produit plat constitué d'un matériau à mémoire de forme à base de fer

Also Published As

Publication number Publication date
EP2141251A1 (fr) 2010-01-06

Similar Documents

Publication Publication Date Title
EP2141251B1 (fr) Alliages à mémoire de forme à base de fer, de manganèse et de silicium
DE69918350T2 (de) Verfahren zur Herstellung einer dispersionsgehärteten ferritisch-martensitischen Legierung
EP2646590B1 (fr) Verres metalliques ayant une surface structurée et son procédé des fabrication
DE2516749C3 (de) Verfahren zum Herstellen von Metallkörpern mit wiederholt reversiblem Gestaltwechselvermögen
DE2211229C3 (de) Verfahren zur Verbesserung der Zeitstandfestigkeit bei Temperaturen über 750 Grad C eines austenitisehen Chrom-Nickel-Stahlhalbzeuges
DE69601538T3 (de) Hochfestes rostfreies martensitisches stahl mit hoher korrosionsbeständigkeit und daraus hergestellte gegenstände
DE1558521C3 (de) Verwendung einer Nickel Chrom Knetlegierung als superplastischer Werk stoff
EP0062365B1 (fr) Procédé de fabrication d'un élément de construction en un alliage à base de titane, ainsi que l'élément et son application
DE3921626C2 (de) Bauteil mit hoher Festigkeit und geringer Ermüdungsriß-Ausbreitungsgeschwindigkeit
DE60302108T2 (de) Ausscheidungsgehärtete Kobalt-Nickel-Legierung mit guter Wärmebeständigkeit sowie zugehörige Herstellungsmethode
DE112013000503T5 (de) Neue Klassen von nicht-rostfreien Stählen mit hoher Festigkeit und hoher Duktilität
EP3594368A1 (fr) Produit intermédiaire d'acier milieu-manganèse-feuillard laminé à froid à teneur en carbone réduite et procédé de fourniture d'un tel produit intermédiaire d'acier
DE2606632C2 (de) Verwendung von Kohlenstoff-Stahl als superplastischer Wirkstoff und Verfahren zu dessen Wärmebehandlung
EP2585619A1 (fr) Acier chrome-nickel, fil métallique martensitique et procédé de fabrication associé
EP3942084A1 (fr) Alliage de nickel à bonne résistance à la corrosion et à résistance élevée à la traction et procédé de fabrication de demi-produits
EP0123054B1 (fr) Acier au chrome, résistant à la corrosion et procédé pour sa fabrication
WO2019120347A1 (fr) Matériau réfractaire renforcé de particules
WO1999015708A1 (fr) Alliage a base d'aluminium et procede permettant de le soumettre a un traitement thermique
DE3515167A1 (de) Verfahren zur herstellung eines metallischen koerpers aus einer amorphen legierung
EP1475450A1 (fr) Alliage Fe-Co-V magnétique doux à haute résistance mécanique.
DE1290727B (de) Verfahren zur Herstellung von Nioblegierungen hoher Festigkeit
DE102018119296A1 (de) Inline Vorrecken von Formgedächtnislegierungen, insbesondere Flachstahl
DE3535065C2 (fr)
DE2420072C2 (de) Verschleißfeste rostfreie Stahllegierung, Verfahren zum Wärmebehandeln derselben und deren Verwendung
AT391484B (de) Hochwarmfeste, austenitische legierung und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100701

17Q First examination report despatched

Effective date: 20160219

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160608

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 857351

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009013513

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: EMPA

RIN2 Information on inventor provided after grant (corrected)

Inventor name: BERGAMINI, ANDREA

Inventor name: KLOTZ, ULRICH

Inventor name: ZHIZHONG, DONG

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170428

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009013513

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

26N No opposition filed

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170616

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20190610

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20190524

Year of fee payment: 11

Ref country code: FR

Payment date: 20190604

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200602

Year of fee payment: 12

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200616

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009013513

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230414

Year of fee payment: 15