EP0062365B1 - Procédé de fabrication d'un élément de construction en un alliage à base de titane, ainsi que l'élément et son application - Google Patents

Procédé de fabrication d'un élément de construction en un alliage à base de titane, ainsi que l'élément et son application Download PDF

Info

Publication number
EP0062365B1
EP0062365B1 EP82200313A EP82200313A EP0062365B1 EP 0062365 B1 EP0062365 B1 EP 0062365B1 EP 82200313 A EP82200313 A EP 82200313A EP 82200313 A EP82200313 A EP 82200313A EP 0062365 B1 EP0062365 B1 EP 0062365B1
Authority
EP
European Patent Office
Prior art keywords
temperature
phase
weight
titanium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82200313A
Other languages
German (de)
English (en)
Other versions
EP0062365A1 (fr
Inventor
Joachim Dr. Albrecht
Thomas Dr. Duerig
Dag Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0062365A1 publication Critical patent/EP0062365A1/fr
Application granted granted Critical
Publication of EP0062365B1 publication Critical patent/EP0062365B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect

Definitions

  • the invention is based on a method for producing a component from a titanium alloy according to the preamble of claim 1 and a component according to the preamble of claim 11 and the use of a component according to the preamble of claim 18.
  • All these alloys have in common that they do not belong to a group of the generally available classic materials and generally have to be specially manufactured using more or less complex processes. The latter applies in particular to alloys to be produced by powder metallurgy.
  • the memory alloys that have been used technically up to now have in common that they are almost invariably relatively brittle. The lack of ductility places narrower limits on both their processability and their use or requires corresponding additional process steps that make the finished product more expensive.
  • the common alloys show a more or less large hysteresis for the two-way effect when passing through a temperature / path loop. This hysteresis - especially when it reaches considerable values - is not desirable for all applications.
  • Memory alloys based on Ni / Ti have a temperature M s of martensitic conversion of theoretically at most 80 ° C (practically usually not above 50 ° C), which is too low for many applications, especially in the field of electrical thermal switches.
  • such alloys are expensive, especially if one also takes into account the expensive manufacture of components.
  • the copper alloys belonging to the ⁇ -brass type such as Cu / Al / Ni, have a tensile strength that is too low for many practical applications with a maximum of 600 M Pa.
  • their M s temperature is strongly dependent on the accuracy of the composition - in particular the aluminum content - which makes their reproducibility difficult. Because it is the aluminum that, due to its high vapor pressure, leads to losses that are difficult to control and thus deviations from the target value analysis when the alloys melt.
  • the invention has for its object to provide a manufacturing method for a component made of a titanium alloy and a component and its use, which makes use of the martensitic conversion for the purpose of achieving a memory effect. There is also the task of characterizing the memory effect in its various manifestations and showing how it can be used in technology.
  • FIG. 1 shows a section of a schematic, subsumed phase diagram of a binary titanium alloy. It is a matter of the titanium side. The ordinate represents the temperature scale and at the same time corresponds to 100% Ti, ie 0% alloying element. The alloy element X is plotted on the abscissa in percent (for example% by weight). The solid curves divide the diagram into the a, (a + ß) and ß phase area. Two further curves M s and M d , shown in dashed lines, are related to the phase transition (martensite formation) occurring during quenching from the ⁇ region and are explained in more detail below. You meet the 0 ° C isotherm (abscissa) at points A and B.
  • Fig. 3 shows a diagram of the course of the shape change over the temperature for the one-way effect of a ⁇ -titanium alloy (in the present case Ti / 10V / 2Fe / 3AI).
  • a s is the temperature at the start of the transformation of the martensite (low-temperature phase) into the High temperature phase.
  • a F represents the corresponding temperature for the end of this phase transition.
  • the arrows indicate the direction of the deformation / temperature loop.
  • the dashed line denotes the pure thermal shrinkage of the workpiece after cooling to room temperature.
  • the diagram has a fundamental character and applies qualitatively to all mechanically unstable ⁇ -titanium alloys.
  • Fig. 5 shows the course of the change in shape over temperature for the irreversible isothermal effect of the alloy Ti / 1 0V / 2 Fe / 3Al.
  • the statements made under Fig. 3 also apply here.
  • an electrical switch is shown schematically in section, which uses coil springs as components.
  • 1 is a housing in which a support 2 is fastened, which supports the bearing 3 for the contact lever 4.
  • 5 each represent a fixed and 6 each a movable contact.
  • the contact lever 4 is held by the springs 7 and 8 in a previously selectable rest position. This can be the position shown (both contact points open) or another position (one contact point closed).
  • 7 is a coil spring made of a memory alloy. It can be designed both as a compression spring and a tension spring with or without tension.
  • 8 is a common coil spring, which can again act as a tension or compression spring with or without pretension. Depending on the intended version of 7 and 8 and the combination of these springs used, 8 counteracts the memory effect of 7 (return or counter spring) or supports it (auxiliary spring).
  • 9 shows a schematic perspective illustration of an electrical switch using a torsion bar.
  • 9 is a base plate on which a torsion bar 10 made of memory alloy is attached at right angles.
  • the latter in turn carries the switching arm 11 at its end, the mobility (pivoting range) of which is indicated by a double arrow.
  • It has a movable contact 6 at its end, which faces a fixed contact 5 which is fastened in the holder 12.
  • 10 to 13 show the process sequence in the production of a fixed and a releasable connection.
  • 14 each represents a pipe to be connected in longitudinal section.
  • 13 is a sleeve made of a memory alloy, the inside diameter of which in the initial state is opposite before expansion the pipe outside diameter has undersize.
  • 15 shows the sleeve during the expansion process by means of a ball 16.
  • FIG. 17 shows the sleeve after the shrinking process (one-way memory effect) over the pipes 14. This corresponds to the state of a firm pipe connection.
  • Fig. 13 shows the state after loosening (if necessary) the same connection.
  • 18 is the sleeve loosened again by the isothermal memory effect after the expansion process.
  • 19 represents a disk made of a memory alloy provided with a groove 20.
  • 21 is a hollow body made of ceramic material which engages in the groove 19 in a vacuum-tight manner.
  • the disc 22 provided with a conical backward rotation 23 is made of a memory alloy.
  • the hollow body 24 to be connected, made of metal, plastic or ceramic material, is indicated by dashed lines before assembly.
  • 25 represents a disk made of a memory alloy, which is offset on both sides and each has a cylindrical undercut 23. As indicated, the ends of the hollow bodies 24 can have various shapes. In the present case, the disc 25 serves both as a connecting element and as a partition.
  • 26 is a stepped hollow body made of memory alloy, which has the rear twists 23 and a central opening 27.
  • the hollow bodies 24 to be connected can be of different diameters and of course different materials.
  • this can be determined by first subjecting the beta titanium alloy to a thin sheet of a maximum thickness of 1 mm that is solution annealed above the ⁇ transition temperature and then quenched within a maximum of 10 s of cooling time in order to go through the difference between solution annealing temperature and 100 ° C in ice water becomes. After quenching, the material must have a maximum of 10% by volume of thermally induced martensite.
  • the alloy is characterized in that the ⁇ -phase converts to martensite (a ") upon subsequent mechanical deformation.
  • the maximum temperature at which mechanically induced martensite (a") can be determined after this deformation is defined as M d .
  • M s represents the temperature at which martensite begins to form.
  • M d has already been defined in more detail above.
  • a and B intersection of the M s and M d line with the 0 ° C tsotherm.
  • the mechanically stable ⁇ -titanium alloy in principle all alloy elements are suitable which have a stabilizing effect on the cubic, body-centered ⁇ phase. These are V, Al, Fe, Ni, Co, Mn, Cr, Mo, Zr, Nb, Sn, Cu, which can be used both individually and in combination. Certain concentration limits can be specified for these elements, which satisfy the above conditions, which can be derived from the thermodynamic equilibria. As a result, it is possible to mathematically express the alloy composition with the help of empirically determined relationships by a quadratic approximation.
  • the concentration limits, expressed in atomic percentages, of the alloying elements of the titanium alloy have the formula: are sufficient, where X; the concentration of the respective Gen elements means in atomic percent and the coefficients A ; and B ; are assigned to the respective element according to the following table:
  • Titanium alloys belonging to the binary type are particularly suitable and, in addition to titanium, also 14 to 20% by weight vanadium or 4 to 6% by weight iron or 6.5 to 9% by weight manganese or 13 to 19% by weight Contain molybdenum.
  • Further preferred alloys are those of the ternary type and, in addition to titanium, also 13 to 19% by weight vanadium plus 0.2 to 6% by weight aluminum or 4 to 6% by weight iron plus 0.2 to 6% by weight .-% aluminum or 1.5 to 2.3 wt .-% iron plus 10 to 14 wt .-% vanadium.
  • alloys which belong to the quaternary type and, in addition to titanium, also contain 9 to 11% by weight of vanadium plus 1.6 to 2.2% by weight of iron plus 2 to 4% by weight of aluminum.
  • the mechanically unstable ⁇ -titanium alloys defined and characterized above show three shape memory effects depending on the thermomechanical or mechanical pretreatment and depending on the temperature range. If tension is exerted on such an alloy by tension, pressure, shear or a combination of at least two of these operations in such a way that a primary permanent deformation is generated, the prerequisites for the setting of a memory effect are given. By heating the component to a temperature above A s following the deformation, the one-way effect initially occurs (see FIG. 3). With further heating up to AF , the effect that exists in a deformation opposite to the original direction of deformation has ended.
  • a s and A F thus indicate the temperature of the commencing or ending re-transformation of the martensite into the high-temperature phase.
  • mechanically unstable ⁇ -titanium alloys A s and A F are relatively high (in the area above 100 ° C), which opens up a new area of application. If the component is cooled from a temperature near A F to room temperature, the deformation achieved by the one-way effect remains. In this way, for example, fixed connections of components can be realized. If the primary permanent deformation is increased to a certain extent, then after subsequent heating, the one-way effect occurs again when crossing the section between A s and A F.
  • the material is now in the state where it shows a two-way effect (see FIG. 4).
  • the component undergoes a deformation which runs in the opposite direction to that of the one-way effect, and is therefore aligned with the originally applied permanent deformation.
  • this deformation with temperature takes place continuously and practically without hysteresis: the behavior of the material is therefore more similar to that of a bimetal.
  • the curve is not linear, but slightly curved, so that it appears concave towards the temperature axis. If a material pretreated in the usual way for the one-way effect is heated significantly above A F and kept at the temperature reached, a third effect, the isothermal memory effect, can be observed (see FIG. 5). The component deforms in the opposite direction to the one-way effect. In the case of the titanium alloy mentioned above, this effect was triggered at approx. 400 ° C. It is irreversible and can be attributed to the conversion of the martensitic ⁇ "phase into the stable a phase. The structure then essentially consists of the stable phases a and ⁇ . This effect can be used, for example, to construct a releasable shrink connection.
  • the temperature A s which has already been generally described above, is to be defined more precisely as a process engineering variable in the sense of this invention.
  • a s is to be understood as the temperature at which the primary permanent mechanical deformation previously applied is reduced.
  • Ag o is to be introduced as a further variable characteristic of the memory effects. This is to be understood as the temperature at which the structure of the component still contains a maximum of 10 vol.% Martensite after previous deformation and subsequent heating.
  • the workpiece must be heated to a temperature above A s after primary deformation.
  • the workpiece In the case of the isothermal effect, the workpiece must be heated to a temperature at which the stable a phase separates, and it must be kept at this temperature until at least 1% by volume of the original phase has Have converted phase.
  • the two-way effect If the two-way effect is to be used, the workpiece must be heated to a temperature above Ag o after primary deformation and then cooled to a temperature below A s .
  • the aforementioned conditions are the minimum conditions in order to achieve the said memory effects at all.
  • the optimal one-way effect is only obtained after heating to a temperature around A F.
  • heating to a temperature at least 50 ° C above the A F point is generally necessary.
  • the two-way effect can be achieved by heating to a temperature between A s and A F , the structure consisting partly of the a "phase and partly of the ⁇ phase.
  • Beta titanium alloys are generally made by double-arc melting with an consumable electrode.
  • the starting material is titanium sponge and corresponding master alloys.
  • the melting process takes place under vacuum or protective gas with a low hydrogen partial pressure.
  • To produce a component the components are mixed, melted and cast, and the workpiece obtained in this way is thermoformed and subjected to solution annealing in the temperature range at least in part of the stable ⁇ phase.
  • the workpiece is then quenched to room temperature and subjected to mechanical deformation and further thermal treatment.
  • Samples were made from the material in the delivery state, namely tensile samples according to FIG. 6, and hollow torsion samples according to FIG. 7.
  • the samples in the area of the ⁇ phase were solution-annealed at 850 ° C. for 60 min and then quenched to room temperature in moving water.
  • the heat treatment was either carried out in a vacuum oven or the samples were placed in an airtightly sealed quartz glass ampoule filled with protective gas. The glass ampoule breaks immediately when immersed in the quenching medium (water), thus allowing rapid quenching. Both during heat treatment under vacuum and when using the protective gas-filled ampoule, the samples were additionally wrapped loosely in zirconium foil in order to bind residual oxygen due to its high affinity for zirconium.
  • Example II Tensile and torsion specimens were made from the same material and by the same procedure as given in Example I.
  • a tensile test was stressed at room temperature to produce a permanent set of 3.7%.
  • the sample initially showed a one-way effect, i.e. there was a shrinkage in the longitudinal axis (qualitatively similar to FIG. 3).
  • After cooling to room temperature there was an expansion in the longitudinal direction.
  • the sample was then cyclically heated and cooled a few times. The corresponding expansion or contraction between room temperature and approx. 340 ° C was 0.4% (two-way effect).
  • a torsion bar (see FIG. 7) was produced from Ti / 10V / 2Fe / 3AI in accordance with Example I.
  • tensile specimens were worked out from Ti / 10V / 2Fe / 3Al and deformed as described there and heated to 300 ° C.
  • the one-way effect occurred in the form of a corresponding shrinkage in the longitudinal direction of the rod.
  • the samples were then heated to a temperature of 400 to 450 ° C. and held at this temperature for 100 minutes.
  • the test bars extended in the longitudinal direction from the values which were in the order of magnitude of 1 to 2%, depending on the primary deformation applied.
  • This irreversible isothermal effect which runs counter to the one-way effect, is shown qualitatively in FIG. 5. Elongation values from to rel. 50% (based on the primary permanent set applied) can be achieved.
  • a wire was produced from the material according to Example I and after the pretreatment specified there, and a coil spring 7 was wound therefrom.
  • This spring was then subjected to a treatment according to Example II or III in order to bring about the two-way effect in such a way that the spring 7, which is in the idle state at room temperature under a slight compressive preload, gradually contracts when the temperature rises.
  • the spring 7 made of memory alloy was assembled in an electrical switch according to FIG. 8 together with an ordinary compression spring 8. The current is passed through the spring 8. In the normal state, it causes no heating, so that the latter is practically at room temperature and is in equilibrium with the counter spring 8. In the event of overcurrent, the spring 7 is shortened due to heating and thus relieves the counter spring 8, so that the upper contacts 5/6 close and e.g. thereby triggering a main switch to interrupt the circuit.
  • all the reverse combinations of 7 and 8 can also be carried out, as described under FIG. 8.
  • a torsion bar according to FIG. 7 was produced from the material according to the example and after the pretreatment specified there. The latter was treated further in accordance with Example II or III in order to produce the two-way effect.
  • the prepared torsion bar 10 was now provided with a switching arm 11 and mounted on the base plate 9. All other components of the electrical switch result from the description of FIG. 9.
  • the torsion bar 10 can be directly flowed through by the current (direct heating) or tightly enclosed by an insulated heating coil (indirect heating).
  • the trigger mechanism is basically the same as that given in Example I.
  • the counter spring is omitted here. This construction is characterized by great simplicity.
  • the trigger temperature can be set within wide limits by suitable selection of the geometry of the switch (length of the switching arm and swivel range etc.).
  • a hollow cylindrical sleeve 13 of 20.25 mm inside and 26.25 mm outside diameter with 30 mm axial length was produced from Ti / 10V / 2Fe / 3AI. It served to connect two pipes 14 (metal, plastic, ceramic material) with an outer diameter of 20.6 mm.
  • the sleeve 13 was pretreated according to Example 1 (solution annealing, quenching). Thereupon, it was expanded by means of a polished steel ball 16 of 21 mm diameter by axially pushing it through (see arrow in FIG. 11) to an inner diameter of 20.79 mm. Now the pipes 14 were inserted axially symmetrically into the sleeve and the whole thing was heated to a temperature at A F (in the present case approx.
  • the heating of the sleeve 13 made of titanium alloy can be accomplished in a simple manner in any workshop and also outdoors or at the assembly site by means of a blowtorch, welding torch, etc., whereby simple means (tempering colors, temperature chalks, etc.) are sufficient for temperature monitoring.
  • the shrunk sleeve 17 (FIG. 12) is brought to a temperature of approx. AF plus 100 to 150 ° C., the irreversible isothermal memory effect occurring and the sleeve expanding (18 in FIG. 13). In this state, the tubes 14 can be pulled out of the sleeve 18. If the latter is to be used again, the process must be repeated from the beginning: solution annealing, quenching, pre-forming, etc.
  • the component can optionally have at least one of the effects described above, for example the shape of a simple or offset leaf spring or the shape of any torsion bar and that of a cylindrical or conical coil spring.
  • connection or termination elements e.g. Hollow bodies
  • the components made of memory alloy can have a wide variety of shapes, of which FIGS. 14 to 17 show only a selection.
  • the component can have the shape of a simple or stepped cylindrical, square, hexagonal or octagonal hollow body.
  • the component can be designed as a full or perforated, cylindrical or polygonal disk provided with a bead, offset on one or two sides.
  • the components made of mechanically unstable ß-titanium alloy can be used, for example, as temperature-dependent release elements in electrical switches, as temperature sensors in general, as fixed or detachable connecting sleeves for pipes and rods, and as fixed or detachable seals (disk or socket shape) for ceramic components.
  • Beta titanium alloys are also characterized by good hot and cold formability and machinability.
  • Ti / 10V / 2Fe / 3AI there is also a commercially available alloy, which means significant economic advantages over previous conventional memory alloys based on another alloy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)
  • Heat Treatment Of Steel (AREA)
  • Materials For Medical Uses (AREA)
  • Heat Treatment Of Articles (AREA)

Claims (20)

1. Procédé de fabrication d'un élément de construction en un alliage à base de titane qui, à l'état initial stable à la température ambiante, se compose au moins en partie de la phase cubique centrée, procédé dans lequel les constituants sont mélangés, fondus et coulés, et la pièce ainsi obtenue est déformée à chaud, puis soumise à un recuit de mise en solution dans le domaine de température où existe, au moins en partie, la phase stable ß, et ensuite trempée jusqu'à la température ambiante et soumise à une déformation mécanique ainsi qu'à un traitement thermique complémentaire, caractérisé en ce que l'alliage appartient par sa composition métallurgique à la classe des alliages de titane β mécaniquement instables, qui sont définis par le fait que leur phase β cubique centrée peut, par application d'une déformation permanente, être transformée au moins en partie en phase a" martensitique induite par une contrainte, et en ce que la pièce est trempée avec une vitesse qui est suffisamment élevée pour obtenir la phase β mécaniquement instable et empêcher la formation de toute nouvelle phase, hormis de la phase athermale ω, et un maximum de 10% en volume de martensite d'origine thermique due à la trempe, à partir du domaine de température situé au-dessus de la ligne de transformation β ou au-delà d'une température qui est suffisamment élevée pour provoquer, au moins partiellement, la formation d'une phase β instable de son côté, jusqu'à une température à laquelle la phase β est mécaniquement instable, et en ce que la déformation mécanique consiste en l'application d'une traction, d'une compression, d'un cisaillement, ou d'une combinaison d'au moins deux de ces opérations, dans le domaine de température dans lequel la phase β est mécaniquement instable, de sorte que l'on produit une déformation permanente atteignant au maximum 7%, et en ce que le traitement thermique complémentaire consiste en au moins un chauffage.
2. Procédé suivant la revendication 1, caractérisé en ce que le traitement thermique complémentaire consiste en un chauffage à une température supérieure à As, As désignant la température à laquelle
Figure imgb0011
de la déformation mécanique permanente préalablement appliquée est récupérée.
3. Procédé suivant la revendication 1, caractérisé en ce que le traitement thermique complémentaire consiste en un chauffage à une température qui est suffisamment élevée pour provoquer la précipitation de la phase a, ainsi qu'en un maintien à cette température pendant une durée telle qu'au moins 1% en volume de la phase initiale se soit transformé en phase a.
4. Procédé suivant la revendication 1, caractérisé en ce que le traitement thermique complémentaire consiste en un chauffage à une température supérieure à A90 et en un refroidissement ultérieur à une température inférieure à As, Aso désignant la température à laquelle la structure contient au maximum 10% en volume de martensite et As désignant la température à laquelle
Figure imgb0012
de la déformation mécanique permanente préalablement appliquée est récupérée.
5. Procédé suivant la revendication 1, caractérisé en ce que l'alliage à base de titane contient au moins un des éléments V, AI, Fe, Ni, Co, Mn, Cr, Mo, Zr, Nb, Sn, Cu.
6. Procédé suivant la revendication 5, caractérisé en ce que les limites de concentration, exprimées en pour-cent atomique, des éléments d'alliage de l'alliage à base de titane répondent à la formule:
Figure imgb0013
dans laquelle Xi est la concentration de l'élément considéré, en pour-cent atomique, et les coefficients A et Bi sont associés à chaque élément selon le tableau suivant:
Figure imgb0014
7. Procédé suivant la revendication 6, caractérisé en ce que l'alliage à base de titane appartient au type binaire et, outre le titane, contient encore, en poids, 14 à 20% de vanadium ou 4 à 6% de fer, ou 6,5 à 9% de manganèse, ou 13 à 19% de molybdène.
8. Procédé suivant la revendication 6, caractérisé en ce que l'alliage à base de titane appartient au type ternaire et, outre le titane, contient encore, en poids, 13 à 19% de vanadium plus 0,2 à 6% d'aluminium, ou 4 à 6% de fer plus 0,2 à 6% d'aluminium, ou 1,5 à 2,3% de fer plus 10 à 14% de vanadium.
9. Procédé suivant la revendication 6, caractérisé en ce que l'alliage à base de titane appartient au type quaternaire et, outre le titane, contient encore, en poids, 9 à 11 % de vanadium plus 1,6 à 2,2% de fer plus 2 à 4% d'aluminium.
10. Procédé suivant la revendication 9, caractérisé en ce que l'alliage à base de titane se compose, en poids, de 10% de vanadium, de 2% de fer et de 3% d'aluminium, le reste étant du titane.
11. Elément de construction en un alliage à base de titane qui, à l'état initial à la température ambiante, présente une structure (α+β), se présentant en un état structural métastable par recuit de mise en solution à une température supérieure aux températures de transformation ß et trempe subséquente, caractérisé en ce que l'alliage appartient, par sa composition métallurgique, à la classe des alliages de titane β mécaniquement instables, qui sont définis de la façon suivante:
alliage qui, après un recuit de mise en solution à une température supérieure à la température de transformation β, suivi d'une trempe dans l'eau glacée pour parcourir en un laps de temps de 10 s au maximum la chute de température entre la température de transformation β et une température de 100°C, et après une déformation mécanique subséquente, peut être transformé au moins en partie en phase martensitique induite par une contrainte, et en ce que l'élément de construction se présente, après la trempe, dans un état de martensite- induite par une contrainte - en forme de structure a", par application d'une déformation permanente de 7% au maximum par traction, compression, cisaillement, ou par une combinaison d'au moins deux de ces états de déformation, et qu'il présente un effet de mémoire.
12. Elément de construction suivant la revendication 11, caractérisé en ce que, après chauffage à une température correspondant au point AF, il se présente sous la forme d'une structure β et présente un effet de mémoire à sens unique, AF désignant la température à laquelle la retransformation de la martensite en phase à haute température est achevée à 99%.
13. Elément de construction suivant la revendication 11, caractérisé en ce que, après chauffage à une température comprise entre les points As et AF, il se présente partiellement sous la forme d'une structure a" et partiellement sous la forme d'une structure β et présente un effet de mémoire continu à double sens, As désignant la température à laquelle
Figure imgb0015
de la déformation mécanique permanente préalablement appliquée est récupérée et AF désignant la température à laquelle la retransformation de la martensite en phase à haute température est achevée à 99%.
14. Elément de construction suivant la revendication 11, caractérisé en ce que, après chauffage à une température supérieure d'au moins 50°C au point AF et maintien correspondant à cette température, il se présente partiellement sous la forme d'une structure β et partiellement sous la forme d'une structure a et présente un effet de mémoire isotherme irréversible, AF désignant la température à laquelle la retransformation de la martensite en phase à haute température est achevée à 99%.
15. Elément de construction suivant l'une des revendications 12 à 14, caractérisé en ce qu'il présente la forme d'un ressort à lames simple ou étagé ou la forme d'une barre de torsion, ou la forme d'un ressort hélicoïdal cylindrique ou conique.
16. Elément de construction suivant l'une des revendications 12 à 14, caractérisé en ce qu'il présente la forme d'un corps creux simple ou étagé cylindrique, carré, hexagonal ou octogonal.
17. Elément de construction suivant l'une des revendications 12 à 14, caractérisé en ce qu'il présente la forme d'un disque cylindrique ou polygonal, plein ou ajouré, pourvu d'un bourrelet périphérique, étagé sur une ou sur les deux faces.
18. Utilisation d'un élément de construction suivant l'une des revendications 12 ou 13, comme élément de déclenchement sensible à la température dans un interrupteur électrique.
19. Utilisation d'un élément de construction suivant l'une des revendications 12 ou 13 ou selon les revendications 12 et 14 comme manchon d'assemblage permanent ou desserrable pour tubes.et barres.
20. Utilisation d'un élément de construction suivant l'une des revendications 12 ou 13 comme joint permanent ou amovible, en forme de disque ou de manchon, pour éléments de construction en céramique.
EP82200313A 1981-03-23 1982-03-11 Procédé de fabrication d'un élément de construction en un alliage à base de titane, ainsi que l'élément et son application Expired EP0062365B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH193481 1981-03-23
CH1934/81 1981-03-23

Publications (2)

Publication Number Publication Date
EP0062365A1 EP0062365A1 (fr) 1982-10-13
EP0062365B1 true EP0062365B1 (fr) 1984-12-27

Family

ID=4222006

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82200313A Expired EP0062365B1 (fr) 1981-03-23 1982-03-11 Procédé de fabrication d'un élément de construction en un alliage à base de titane, ainsi que l'élément et son application

Country Status (4)

Country Link
US (1) US4412872A (fr)
EP (1) EP0062365B1 (fr)
JP (1) JPS57185965A (fr)
DE (1) DE3261668D1 (fr)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3372918D1 (en) * 1982-11-30 1987-09-17 Beta Phase Inc Controlled flow rate intravenous apparatus employing shape-memory flow-control element
US4645489A (en) * 1982-11-30 1987-02-24 Beta Phase, Inc. Fluid delivery apparatus with shape-memory flow control element
JPS59230189A (ja) * 1983-06-13 1984-12-24 松下電器産業株式会社 熱感応装置
US4533411A (en) * 1983-11-15 1985-08-06 Raychem Corporation Method of processing nickel-titanium-base shape-memory alloys and structure
US4654092A (en) * 1983-11-15 1987-03-31 Raychem Corporation Nickel-titanium-base shape-memory alloy composite structure
US4896955B1 (en) * 1983-12-06 1991-05-21 Eyeglass frame including shape-memory elements
US4895438A (en) * 1983-12-06 1990-01-23 Cvi/Beta Ventures, Inc. Eyeglass frame including shape-memory elements
US4772112A (en) * 1984-11-30 1988-09-20 Cvi/Beta Ventures, Inc. Eyeglass frame including shape-memory elements
US4617448A (en) * 1984-12-18 1986-10-14 North American Philips Corporation Electrically releasable locking device
JPS61185720A (ja) * 1985-02-13 1986-08-19 Sasaki Gankyo Kk 眼鏡の可調整型超弾性パツドア−ム
EP0192475A3 (fr) * 1985-02-20 1987-02-04 Sampson, Ronald Spencer Activeur automatique de fermeture
US4713063A (en) * 1985-04-29 1987-12-15 Beta Phase, Inc. Intravenous tube and controller therefor
US4616499A (en) * 1985-10-17 1986-10-14 Lockheed Corporation Isothermal forging method
US4731069A (en) * 1986-05-01 1988-03-15 Beta Phase, Inc. Intravenous tube and controller therefor
EP0246828B1 (fr) * 1986-05-18 1991-09-25 Daido Tokushuko Kabushiki Kaisha Objets en titanium ou en alliage de titanium résistant à l'usure
GB2209200A (en) * 1987-08-28 1989-05-04 Thorn Emi Flow Measurement Ltd Thermal cut-off valve
JPH01155245U (fr) * 1988-04-14 1989-10-25
US5114504A (en) * 1990-11-05 1992-05-19 Johnson Service Company High transformation temperature shape memory alloy
US5344506A (en) * 1991-10-23 1994-09-06 Martin Marietta Corporation Shape memory metal actuator and cable cutter
US5312152A (en) * 1991-10-23 1994-05-17 Martin Marietta Corporation Shape memory metal actuated separation device
US5226979A (en) * 1992-04-06 1993-07-13 Johnson Service Company Apparatus including a shape memory actuating element made from tubing and a means of heating
FR2694696B1 (fr) * 1992-08-14 1994-11-04 Memometal Ind Pièce contentive pour ostéosynthèse, notamment agrafe, en alliage à transition austénite/martensite proche de la température ambiante.
JPH07201365A (ja) * 1993-03-03 1995-08-04 General Electric Co <Ge> スイッチ装置
US6149742A (en) * 1998-05-26 2000-11-21 Lockheed Martin Corporation Process for conditioning shape memory alloys
US6548013B2 (en) 2001-01-24 2003-04-15 Scimed Life Systems, Inc. Processing of particulate Ni-Ti alloy to achieve desired shape and properties
US7700038B2 (en) * 2005-03-21 2010-04-20 Ati Properties, Inc. Formed articles including master alloy, and methods of making and using the same
US7670445B2 (en) * 2006-01-18 2010-03-02 Nissan Motor Co., Ltd. Titanium alloy of low Young's modulus
JP2008075173A (ja) * 2006-01-18 2008-04-03 Nissan Motor Co Ltd 低ヤング率チタン合金
JP5831283B2 (ja) * 2012-02-17 2015-12-09 新日鐵住金株式会社 熱処理により加工方向と同一方向への形状変形するチタン合金部材とその製造方法
US11185608B2 (en) * 2018-08-09 2021-11-30 Cook Medical Technologies Llc Method of treating a superelastic medical device to improve fatigue life
CN113293324B (zh) * 2021-05-12 2022-05-10 东南大学 具有高使用温度的可调控热膨胀系数的钛铌钼合金及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748197A (en) * 1969-05-27 1973-07-24 Robertshaw Controls Co Method for stabilizing and employing temperature sensitive material exhibiting martensitic transistions
US3652969A (en) * 1969-05-27 1972-03-28 Robertshaw Controls Co Method and apparatus for stabilizing and employing temperature sensitive materials exhibiting martensitic transitions
US4198081A (en) * 1973-10-29 1980-04-15 Raychem Corporation Heat recoverable metallic coupling
US4036669A (en) * 1975-02-18 1977-07-19 Raychem Corporation Mechanical preconditioning method
CH616270A5 (fr) * 1977-05-06 1980-03-14 Bbc Brown Boveri & Cie

Also Published As

Publication number Publication date
JPS57185965A (en) 1982-11-16
US4412872A (en) 1983-11-01
JPS6349741B2 (fr) 1988-10-05
EP0062365A1 (fr) 1982-10-13
DE3261668D1 (en) 1985-02-07

Similar Documents

Publication Publication Date Title
EP0062365B1 (fr) Procédé de fabrication d&#39;un élément de construction en un alliage à base de titane, ainsi que l&#39;élément et son application
DE2516749C3 (de) Verfahren zum Herstellen von Metallkörpern mit wiederholt reversiblem Gestaltwechselvermögen
DE3634635C2 (de) Nickelaluminide und Nickel-Eisenaluminide zur Verwendung in oxidierenden Umgebungen
DE3621671C2 (fr)
DE69024418T2 (de) Legierung auf Titan-Basis und Verfahren zu deren Superplastischer Formgebung
WO2017000932A1 (fr) Procédé pour la production d&#39;un alliage forgeable à base de nickel-fer-chrome-aluminium présentant un allongement augmenté dans un essai de traction
DE10329899B3 (de) Beta-Titanlegierung, Verfahren zur Herstellung eines Warmwalzproduktes aus einer solchen Legierung und deren Verwendungen
EP1438150B1 (fr) Dispositif et procede de production de materiaux microcristallins
DE69414529T2 (de) Superlegierung auf Fe-Basis
DE2500084C3 (de) Verfahren zur Herstellung von Aluminium-Halbzeug
DE3612655A1 (de) Weichmagnetischer rostfreier stahl
EP0035069B1 (fr) Alliage à mémoire de forme à base de Cu-Al ou de Cu-Al-Ni et procédé pour la stabilisation de l&#39;effet de réversibilité
DE2422578A1 (de) Zirkonlegierung, verfahren zu deren herstellung und deren verwendung
DE69319051T2 (de) Verwendung einer Aluminium-Legierung zur Herstellung von Gasflaschen
DE2635947A1 (de) Aushaertbare, dem neusilber aehnliche cu-zn-ni-mn-legierung
DE1290727B (de) Verfahren zur Herstellung von Nioblegierungen hoher Festigkeit
WO1985003953A1 (fr) Alliage a base de molybdene resistant a haute temperature
DE2055756B2 (de) Verfahren zur Herstellung von Gegenständen, die bei Änderung der Temperatur ihre Form zu ändern vermögen, und Anwendung des Verfahrens auf bestimmte Legierungen
DE2711576A1 (de) Neue legierungen
DE2603863A1 (de) Verfahren zum hemmen des verlustes der reversibilitaet zwischen den martensitischen und austenitischen zustaenden in einer metallzusammensetzung
DE2622108C3 (de) Verwendung einer Kupfer und/oder Molybdän enthaltenden Eisenlegierung für Teile mit hoher Dampfungsfahigkeit gegenüber Schwingungen
CH621150A5 (en) Process for treating an object to extend the austenitic-martensitic hysteresis loop of the metallic composition
AT360764B (de) Verfahren zum hemmen des verlustes der rever- sibilitaet zwischen den martensitischen und austenitischen zustaenden in einer metallischen zusammensetzung
DE1458562A1 (de) Hochtemperaturbestaendige Nioblegierungen
DE4217031C2 (de) Verfahren zur Einstellung des pseudoelastischen Effektes in Fe-Ni-Co-Ti-Legierungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB IT

17P Request for examination filed

Effective date: 19830202

ITF It: translation for a ep patent filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IT LI

REF Corresponds to:

Ref document number: 3261668

Country of ref document: DE

Date of ref document: 19850207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19850328

Year of fee payment: 4

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890228

Year of fee payment: 8

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890331

Ref country code: CH

Effective date: 19890331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900311

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19901130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST