EP2138761B1 - Verfahren zur Herstellung eines Downlight-Reflektors - Google Patents

Verfahren zur Herstellung eines Downlight-Reflektors Download PDF

Info

Publication number
EP2138761B1
EP2138761B1 EP09163648.0A EP09163648A EP2138761B1 EP 2138761 B1 EP2138761 B1 EP 2138761B1 EP 09163648 A EP09163648 A EP 09163648A EP 2138761 B1 EP2138761 B1 EP 2138761B1
Authority
EP
European Patent Office
Prior art keywords
reflector
rotational body
cover
cut
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09163648.0A
Other languages
English (en)
French (fr)
Other versions
EP2138761A1 (de
Inventor
Manfred Grimm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RZB Rudolf Zimmermann Bamberg GmbH
Original Assignee
RZB Rudolf Zimmermann Bamberg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RZB Rudolf Zimmermann Bamberg GmbH filed Critical RZB Rudolf Zimmermann Bamberg GmbH
Publication of EP2138761A1 publication Critical patent/EP2138761A1/de
Application granted granted Critical
Publication of EP2138761B1 publication Critical patent/EP2138761B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/37Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors characterised by their material, surface treatment or coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/10Construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/02Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters
    • F21S8/026Lighting devices intended for fixed installation of recess-mounted type, e.g. downlighters intended to be recessed in a ceiling or like overhead structure, e.g. suspended ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/04Lighting devices intended for fixed installation intended only for mounting on a ceiling or the like overhead structures

Definitions

  • the present invention relates to a method for producing a rotationally symmetrical approximately pot-shaped downlight reflector having a highly reflective surface in which one starts from a metallic sheet material and this deformed according to the desired shape of the reflector, wherein from the flat material corresponding to a development of a rotating body blank created in strip form, this bends into a body of revolution and connects the ends of the strip together.
  • Rotationally symmetrical reflectors with highly reflective surfaces are used, for example, for so-called “downlights”. These are usually round cup-shaped recessed luminaires, which are installed in suspended ceilings and often equipped with compact fluorescent lamps.
  • the downlights can also be designed as surface-mounted lights.
  • “downlights” are in most cases understood to mean, for the most part, deep-radiating luminaires which radiate their light largely downwards. These "downlights” should also have a Lichtabstrahl characterizing that meets the current regulations regarding the illuminance and glare. Attention is drawn to the standard DIN EN 12464-1 (see “Lighting of workplaces indoors"). Reflectors of radiators, which may for example also be pivotable, should also be included in the present invention.
  • the reflectors for the downlights are usually made of aluminum, which is coated by various methods to achieve the highly reflective surface.
  • the reflectors for the downlights are usually made of aluminum, which is coated by various methods to achieve the highly reflective surface.
  • One of the known methods is anodizing. However, only reflectivities in the range of about 75% to 87% are achieved.
  • a method for producing a vehicle lamp in which the lamp has a recess with approximately parabolic surface. This surface is not directly developable.
  • the procedure here is that of a flat blank of a reflective foil which is cut in the form of a ring in which a segment is missing. The ring is then bent into a body of revolution having a frusto-conical shape.
  • the thin film has a plurality of slits arranged in a certain pattern. Through these slots, it is possible to further deform the truncated cone in order to adapt the shape of that of the recess, wherein the film is pressed into the surface of the recess and is then glued to the surface of the recess.
  • the reflective sheet used here is a very thin material (it is referred to as a sheet), so that deformation or wrinkling occurs during deformation. For this reason, the film material is slit in order to deform it after the production of the rotating body can.
  • the material thickness of the film used here will be at most about the order of 0.1 mm, comparable to ordinary paper.
  • a curved from such a thin film rotational body is not self-supporting. One can therefore not form a self-supporting body of revolution from the flat material alone.
  • this thin film material can only be used to line the inside of a self-supporting body of defined form (for example cup-shaped with a parabolic cross-section) in order to create a reflecting surface. Accordingly, in this known method, an outer housing with recess is additionally required, in which the film is glued.
  • reflective film material used is not "highly reflective" within the meaning of the definition of the present invention.
  • materials with degrees of light reflection of more than 85%, in particular about 90% and more were not yet known.
  • highly reflective materials according to the present invention are understood to mean those materials which preferably have a light reflectance of more than 85%, more preferably of about 90% or higher.
  • These are usually thin sheets of a metallic support, such as aluminum, which has a mostly multi-layer coating to produce the high reflectance.
  • Such coated metal sheets may comprise, for example, an intermediate layer of anodically oxidized or electrolytically shined aluminum, to which an optical multi-layer system is then applied.
  • the metallic starting material for the use according to the invention has a total material thickness of at least about 0.2 mm, preferably at least about 0.3 mm.
  • Such coated metal sheets are because of the complex coating process very high quality and expensive and they have very sensitive surfaces.
  • the reflector is made of a planar blank, but it is not a "downlight" because the lamp is not low beam and the lamp is not within the floor plan of the reflector, so that the light predominantly undirected and can be radiated even at very shallow angles.
  • the reflector is made of a material with a comparatively large material thickness of more than 1 mm.
  • the FR 1 091 837 A describes a lamp produced in a method of the type mentioned, are bent in the purely frusto-conical elements of the reflector from a flat blank.
  • the ideal conical shape is not advantageous in terms of lighting technology, which is why it is proposed here to connect a plurality of truncated cone elements to one another.
  • such joining processes are disadvantageous for the properties of the reflector, because it is difficult to obtain a transitionless uniform surface.
  • the object of the present invention is to provide a rational method for the production of rotationally symmetrical approximately pot-shaped luminaire reflectors with a highly reflective surface of the type mentioned, which makes it possible, starting from the thin coated high-quality starting materials with comparatively low material thickness comprising a reflector to produce an already stable in itself rotational body and which leads to a reflector with optimized photometric properties.
  • the solution to this problem provides a method for producing rotationally symmetrical, about cup-shaped luminaire reflectors with a highly reflective surface of the type mentioned above with the characterizing features of the main claim.
  • the starting material according to the invention is continuous throughout and unlike the prior art it has no slots.
  • the blank may for example already have a cut-out, for example if a window is required for the radial passage of the luminous means inside the reflector or the like.
  • a slotted foil can not provide a reflector with a uniform highly reflective surface that meets the lighting requirements of the inside of a reflector body according to the present invention.
  • the result of the slit in the prior art undesirable reflections, a poorer beam path and a higher loss of light.
  • a stress-hardened, rolled aluminum sheet as a blank.
  • Such sheets as starting materials not only lead to self-supporting, but very dimensionally stable Rotationskörpem that avoid unwanted deformations such as buckling or the like in the further processing operations.
  • the named starting material of the blank leads, in particular, to a rotational body which is somewhat under tension after the bending process.
  • a shaped truncated cone for example, a deformation of the wall upon application of a force in the axial direction to the body, for example, 90 kg can withstand.
  • the blank is made into a strip shape corresponding to a development of a body of revolution, bent into a self-supporting body of revolution, and the ends of the strip are connected to one another.
  • the usual forming process such as deep drawing or pressing the sheet material is bypassed.
  • a sheet of lesser material thickness may be used as the starting material. Since the materials required for highly reflective surfaces are very expensive, this results in a very significant economic advantage.
  • the method according to the invention requires only a few simple manufacturing steps and therefore also permits efficient serial production. It should be noted that reflectors of this type are manufactured for downlights and the like in the luminaire manufacturers in large quantities, so that simplifications in the manufacturing process lead to time savings and great cost advantages.
  • the flat material In the bending of the self-supporting reflector base according to the invention from a blank corresponding to a development, on the other hand, the flat material is not exposed to excessive mechanical stresses. It is possible to use a comparatively thin starting material (preferably surface-coated aluminum with a material thickness of about 0.2 mm to about 0.8 mm), which already has the high-quality, highly reflective end surface. It is sufficient if, as usual, the flat material to be processed in the production phase is provided with a protective film, which is then peeled off.
  • the inventive method is particularly suitable for the processing of flat material made of aluminum or aluminum alloys, which is formed on its surface in particular by a single or multi-layer coating highly reflective.
  • flat material made of aluminum or aluminum alloys, which is formed on its surface in particular by a single or multi-layer coating highly reflective.
  • the aforementioned “Miro” ® or “Miro-Silver” ® can be used.
  • the procedure is such that the blank is made from a web or sheet of flat material, the blank is bent according to the shape of the desired reflector base body, and then the two ends of the bent blank are joined together in strip form, for example by gluing. It is preferable to bend the blank in strip form so that the two ends abut against each other, and then can stick a strip of a suitable material on the outside of the rotating body, which overlaps both ends of the strip and connects them together. It remains in this approach, only a minimal seam on the inside (visible side) of the reflector, which is not raised and therefore later optically barely perceived.
  • fluorescent lamps are generally used in lamps of this type, in particular compact fluorescent lamps, which take up little space and are usually arranged so that they project into the reflector in the radial direction.
  • the ballasts are usually housed outside the reflector.
  • a window is provided in the reflector, through which the lamp can protrude radially into the reflector. This window can already be considered in the blank or can be introduced only after the bending and gluing of the reflector, for example by a punching operation with a stamp.
  • the basic shape of the desired rotation body After bending the blank, the basic shape of the desired rotation body initially results, for example, this can be the shape of a truncated cone. However, for lighting reasons, it may be advantageous to choose for a reflector a surface line that does not run along a straight line, but along a curved line. For example, it may be advantageous to use an approximately pot-shaped rotational body with a rather spherical shape or a generatrix which at least partially follows approximately the shape of a parabolic branch.
  • the rotary body deforms, after forming the basic shape of the rotating body by bending from the blank, the rotary body in at least one further deformation step, namely in an embossing process.
  • This subsequent deformation step is a "fine deformation" while the actual basic step of forming the body of revolution from the sheet material is simply by bending the blank.
  • a facet embossing can be introduced into the surface of the rotational body. This has advantages, for example, with regard to the technical lighting properties of such a reflector.
  • the image of the lamp in the reflector can be resolved, for example.
  • the downlights, for which the reflectors according to the invention are predominantly used, are predominantly recessed ceiling luminaires.
  • a lower edge of the reflector is advantageous, which rests when installed on the underside of the suspended ceiling.
  • a preferred constructive solution variant therefore further provides that in at least one subsequent step, a flanging ring is formed on the rotary body in the lower edge region so as to create this lower edge.
  • the molding of such a flare ring is a simple process step that can be carried out on conventional conventional machines.
  • a ring such as an approximately L-shaped ring as a separate item and push in a subsequent step on the lower edge region of the rotating body
  • said L-ring has a receptacle for the edge region of the rotating body and the Determines ring on the rotation body.
  • the rotating body of the downlight reflector can also be provided on the upper side with a lid, which serves as an upper cover.
  • This cover may for example be provided with hole fasteners or slots for attachment.
  • To connect such a lid with the bent from the blank rotation body for example, on the blank of flat material in strip form, which is assumed to be formed at least one tab or later attached to the body of rotation at least one tab, and after bending the
  • the rotational body is at least a plate-like on this above Lid fitted, which has at least one slot and rotary body and lid are then connected together such that the at least one tab engages through the at least one slot.
  • the cover overlaps the rotation body with a lateral edge of the cover and is connected to it to form a reflector.
  • the method according to the invention makes it possible to use a flat material with a lower material thickness than starting material. It is preferably provided in the context of the invention that it is possible to use a flat material having a material thickness of less than 1 mm, preferably less than 0.8 mm, more preferably less than 0.6 mm, for example preferably of the order of about 0 , From 4 mm to about 0.3 mm and made from this corresponding to a development of the rotary body blank.
  • the present invention furthermore relates to a rotationally symmetrical, approximately cup-shaped, downlight reflector having a highly reflective surface which has been obtained from a metallic flat material by deformation in accordance with the desired shape of the reflector, the reflector being produced in a method according to one of Claims 1 to 14 has been.
  • the present invention furthermore relates to a luminaire, in particular recessed luminaire or surface-mounted luminaire, in particular downlight, which comprises such a reflector.
  • FIG. 1 shows a blank of the starting material, which corresponds to a development of the rotating body to be produced.
  • the blank 10 which is obtainable from a flat material such as a panel or the like of aluminum or an aluminum alloy, wherein the material has a highly reflective surface.
  • the required blank 10 is punched out of a material which virtually already has the required end surface at least on the later visible side, such as Miro®.
  • the blank 10 is delimited by an upper edge line 11 which follows a curved line and a lower edge Edge line 14, which also follows a curved line, with a slightly different radius of curvature from the line of edge 11.
  • the blank has a first straight edge line 12 at one end and a second straight edge line 13 at its other end, the lengths of both lateral edge lines 12 and 13.
  • the flat material of the blank 10 used is quite thin, for example in the range of 0.4 to 0.6 mm material thickness, so that it can be bent well.
  • FIG. 1 shown blank 10 is now bent so that a rotational body 20 of the in the Figures 2 and 3 shown type, in which the two lateral edge lines 12 and 13 of the blank then abut one another.
  • the plan view of the frustoconical rotational body 20 is in FIG. 2 a shown. Consequently, this truncated cone arises in only one bending step from the blank, without a forming process in the sense of conventional forming processes such as deep drawing, pressing or the like, in which stresses are built up in the workpiece and there are changes in strength.
  • FIG. 3b The fixation of the truncated cone after bending can be done by a Klebe pressure.
  • a first possibility for this is in the FIG. 3b shown.
  • the state after bending is in FIG. 3 a shown.
  • the two edge lines 12 and 13 abut against each other.
  • the rotary body 20 after the bonding step is in FIG. 3b shown.
  • 3d figure shows a possible alternative, in which you can not abut the two ends of the blank on impact, but the blank bends so far that the two ends overlap slightly. In this case, one can do without the previously described strip 15 and connect both ends of the blank directly together, for example by gluing.
  • the overlap area is in 3d figure designated by the reference numeral 28.
  • a window 17 is punched into the rotary body 20, which later serves in the reflector to guide the lamp from the outside into the interior of the reflector. This can be done, for example, with a stamp, in particular in the reinforced by the glued strip 15 area or elsewhere.
  • the rotary body 20 after the punching of the window 17 is in Figure 3c shown.
  • FIG. 1 slightly modified variant of the blank shows, which can be assumed in the production of the rotating body.
  • the basic shape of the blank 10 is similar here as in the case of the previously FIG. 1 described variant. however Here are at the upper edge line several (in the example a total of 4) approximately semicircular projections 29 provided on the upper edge line 11, from which can be bent after bending the blank to the shape of the rotating body tabs, by means of which a cover for the reflector can be fastened , Slightly slits 30 are also preferably provided in the material slightly above the edge line 11, which areas represent a weakened area and can serve to facilitate the subsequent bending of these projections 29 by approximately 90 ° in order to form the tabs.
  • the lid 23 has a corresponding number of slots 24, through which the tabs 26 can be pushed through.
  • FIG. 1 a there is another deviation from the variant of FIG. 1 , Namely, approximately rectangular notches 31, 32 are respectively provided in the upper region of the lateral edge lines 12, 13, so that a window 17 is already formed when bending the punched blank to form the rotating body, as shown in FIG Figure 3c is shown, so that in the variant of FIG. 1 a the subsequent step of punching this window 17 is omitted.
  • the window 17 serves to later introduce the lamp from the outside into the interior of the reflector during assembly of the luminaire.
  • FIGS. 4 and 4a and 5 Referenced The rotational body 20 obtained after the bending step as described in FIG. 2 is shown, which has the shape of a truncated cone, in a possible variant of the method according to the invention in an embossing process subsequently deformed something, so that in FIG. 4 shown in which the generatrix 18 as compared to FIG. 2 recognizes no longer straight, but in a curved line.
  • This has advantages in terms of the characteristic of the light emission of the reflector to be produced, which will not be discussed in detail here.
  • the L-shaped ring 19 can thus be held, for example by a clamp connection or by an adhesive bond to the reflector.
  • the horizontal leg 22 of the L-shaped ring 19 then forms the aforementioned flange for installation on the suspended ceiling when installing the lamp.
  • the finished reflector with mounted L-ring 19 (but without the lid) is in again FIG. 5 shown.
  • a rotationally symmetrical reflector as he, for example, in the FIGS. 3a or 5 can be used, for example, in a downlight or surface-mounted downlight of the type "downlight".
  • this reflector is usually used in a light pot and attached by means of known methods to this light pot.
  • the light box and the complete lamp are not shown in the drawings of the present application.
  • FIG. 3 A shown cover 23 of the downlight reflector can be varied by lighting fixtures on the underside of the lid to change the radiation characteristics of such a lamp.
  • An embodiment of such a reflector is in FIG. 6 shown. There is shown a vertical section through such a reflector. It can be seen the rotating body 20 and the lid 23, which has a centrally extending in the diameter direction center edge 33 above the lamp 34. This Mittelkantung is approximately V-shaped and has two concave-shaped parabolic branches 35, 36.
  • the lid 23 may also be flat on the underside.
  • the lid usually has as in FIG. 6 illustrated a bent lateral edge 37 which engages over the rotational body 20 of the reflector (see FIG. 6 ) and, for example, for bonding both components can be glued to this.
  • the cover 23 may also be concave or convex in itself to change the Lichtabstrahl characterizing. For example, a conical shape for the lid comes into consideration.
  • a very significant advantage of the present invention is that a higher efficiency of the lamp is achieved by the high reflection efficiency of the material used in a reflector according to the invention, in which such a reflector is used. This in turn makes it possible to reduce the number of lights when lighting a room or to operate the lights with weaker lamps, resulting in both cases, an energy savings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines rotationssymmetrischen etwa topfförmigen Downlight-Reflektors mit einer hoch reflektierenden Oberfläche bei dem man von einem metallischen Flachmaterial ausgeht und dieses entsprechend der gewünschten Form des Reflektors verformt, wobei man aus dem Flachmaterial einen einer Abwicklung eines Rotationskörpers entsprechenden Zuschnitt in Streifenform erstellt, diesen zu einem Rotationskörper biegt und die Enden des Streifens miteinander verbindet.
  • Rotationssymmetrische Reflektoren mit hoch reflektierenden Oberflächen werden beispielsweise für sogenannte "Downlights" verwendet. Dies sind in der Regel runde topfförmige Einbauleuchten, die in abgehängte Decken eingebaut werden und oft mit Kompaktleuchtstofflampen bestückt sind. Die Downlights können aber auch als Anbauleuchten ausgebildet sein. Unter "Downlights" werden im Rahmen der vorliegenden Erfindung in den meisten Fällen weitgehend tiefstrahlende Leuchten verstanden, die ihr Licht weitgehend nach unten hin abstrahlen. Diese "Downlights" sollten zudem eine Lichtabstrahlcharakteristik haben, die den heute üblichen Vorschriften bezüglich der Beleuchtungsstärken und der Entblendung entspricht. Es wird auf die Norm DIN EN 12464-1 verwiesen (siehe dort "Beleuchtung von Arbeitsstätten in Innenräumen."). Reflektoren von Strahlern, die beispielsweise auch schwenkbar sein können, sollen ebenfalls von der vorliegenden Erfindung umfasst sein.
  • Zur Erzielung vergleichsweise hoher Beleuchtungsstärken (Wirkungsgrade) werden dabei hoch reflektierende Oberflächen für die Downlight-Reflektoren verwendet. Die Erzielung höherer Wirkungsgrade ist heute aufgrund der Energieeinsparverordnung ein sehr wichtiger Aspekt im Hinblick auf die Möglichkeiten der Vermarktung der Downlights. Die Reflektoren für die Downlights bestehen meist aus Aluminium, welches mittels verschiedener Verfahren zur Erzielung der hoch reflektierenden Oberfläche beschichtet wird. Grundsätzlich kann man auch direkt Reinstaluminium als Ausgangsmaterial verwenden, was jedoch aus Kostengründen oftmals ausscheidet. Üblich ist es daher Aluminiumlegierungen mit einem weniger hohen Reinheitsgrad einzusetzen und dann die Oberflächen durch Beschichtungsverfahren zu veredeln. Eines der bekannten Verfahren ist das Eloxieren. Dabei werden jedoch nur Reflexionsgrade im Bereich von etwa 75 % bis 87 % erzielt. Vor etwa 15 Jahren wurden auch Verfahren entwickelt, mittels derer es möglich ist, Aluminiumoberflächen durch ein Mehrschichtsystem so zu veredeln, dass noch höhere Lichtreflexionsgrade von über 90 % möglich werden. Derartige Materialien werden unter der Bezeichnung "Miro"® im Handel angeboten. Diesbezüglich wird beispielsweise auf das Gebrauchsmuster DE 298 12 559 U1 der Fa. Alanod Aluminium-Veredlung GmbH & Co. und die dort genannten Druckschriften verwiesen. In jüngster Zeit wurde ein Beschichtungsmaterial der Fa. Alanod bekannt, welches einen noch höheren Lichtreflexionsgrad von bis zu 98 % aufweist und unter der Bezeichnung Miro-Silver® im Handel ist. Nachteilig ist jedoch, dass die so veredelten Werkstoffe sehr kostspielig sind, da die Verfahren zur Herstellung dieser Oberflächen recht aufwändig sind. Ein weiterer Nachteil liegt darin, dass bei bestimmten Beschichtungsverfahren wie zum Beispiel dem Sputtern bei rotationssymmetrischen Werkstücken Schattenflächen durch ungleichmäßige Beschichtung entstehen können.
  • Bei rotationssymmetrischen Reflektoren für Leuchten geht man nach dem Stand der Technik im Allgemeinen so vor, dass man das Flachmaterial durch Verformungsverfahren wie Tiefziehen oder Drücken in die gewünschte Form bringt. Diese Verformungsmethoden setzen in der Regel eine minimale Materialstärke des Ausgangs-Flachmaterials von in etwa 1 mm voraus. Bei Verarbeitung der genannten hochwertigen Werkstoffe liegt hier bereits ein Kostengesichtspunkt. Vorteilhaft wäre es, wenn man über Verfahren verfügen würde, die einen Einsatz von dünneren Ausgangsmaterialien (Tafeln, Coils) ermöglichen.
  • In der DE 2 201 197 A ist ein Verfahren zur Herstellung einer Fahrzeugleuchte (eines Scheinwerfers) bekannt, bei dem die Leuchte eine Ausnehmung mit etwa parabolischer Oberfläche aufweist. Diese Oberfläche ist nicht direkt abwickelbar. Es wird hier so vorgegangen, dass man von einem flachen Zuschnitt einer reflektierenden Folie ausgeht, die in Form eines Rings geschnitten ist, bei dem ein Segment fehlt. Der Ring wird dann zu einem Rotationskörper mit einer kegelstumpfförmigen Form gebogen. Die dünne Folie weist eine Vielzahl von Schlitzen auf, die in einem bestimmten Muster angeordnet sind. Durch diese Schlitze ist es möglich, den Kegelstumpf weiter zu verformen, um die Form an diejenige der Ausnehmung anzupassen, wobei die Folie dazu in die Oberfläche der Ausnehmung gedrückt wird und dann mit der Oberfläche der Ausnehmung verklebt wird.
  • Die hier verwendete reflektierende Folie ist ein sehr dünnes Material (es wird von einem Blatt gesprochen), so dass es bei Verformung zu Faltenwurf oder Einreißen kommt. Aus diesem Grunde wird das Folienmaterial geschlitzt, um es nach der Herstellung des Rotationskörpers verformen zu können. Die Materialstärke der hier verwendeten Folie wird höchstens etwa in der Größenordnung von 0,1 mm liegen, vergleichbar mit gewöhnlichem Papier. Ein aus einer solchen dünnen Folie gebogener Rotationskörper ist nicht selbsttragend. Man kann daher aus dem Flachmaterial allein keinen selbsttragenden Rotationskörper formen. Vielmehr lässt sich dieses dünne Folienmaterial nur dazu verwenden, einen bereits in sich formstabilen selbsttragenden Körper definierter Form (beispielsweise topfförmig mit Parabelquerschnitt) innen auszukleiden, um so eine reflektierende Oberfläche zu schaffen. Entsprechend wird bei diesem vorbekannten Verfahren zusätzlich ein äußeres Gehäuse mit Ausnehmung benötigt, in welches die Folie eingeklebt wird.
  • Das in der DE 2 201 197 verwendete reflektierende Folienmaterial ist zudem nicht "hoch reflektierend" im Sinne der Definition der vorliegenden Erfindung. Zu Beginn der 70er Jahre waren Materialien mit Lichtreflexionsgraden von über 85 %, insbesondere etwa 90 % und mehr noch nicht bekannt. Unter "hoch reflektierenden" Materialien werden hingegen gemäß der vorliegenden Erfindung solche Materialien verstanden, die bevorzugt einen Lichtreflexionsgrad von mehr als 85 %, weiter vorzugsweise von etwa 90 % oder höher ausweisen. Dabei handelt es sich in der Regel um dünne Bleche aus einem metallischen Träger, beispielsweise Aluminium, welcher zur Erzeugung des hohen Reflexionsgrads eine meist mehrschichtige Beschichtung aufweist. Derartige beschichtete Metallbleche können beispielsweise eine Zwischenschicht aus anodisch oxidiertem oder elektrolytisch geglänztem Aluminium aufweisen, auf die dann ein optisches Mehrschichtsystem aufgebracht wird. Derartige Materialien sind beispielsweise in der DE 298 12 559 U 1 beschrieben. Das metallische Ausgangsmaterial hat für die erfindungsgemäße Verwendung eine Materialstärke von insgesamt wenigstens etwa 0,2 mm, vorzugsweise wenigstens etwa 0,3 mm. Derartige beschichtete Metallbleche sind wegen der aufwändigen Beschichtungsverfahren sehr hochwertig und teuer und sie haben sehr empfindliche Oberflächen.
  • In der US 4 418 379 A wird eine Leuchte beschrieben, deren Reflektor aus einem planaren Zuschnitt hergestellt wird, wobei es sich jedoch nicht um ein "downlight" handelt, da die Leuchte nicht tiefstrahlend ist und sich die Lampe nicht innerhalb des Grundrisses des Reflektors befindet, so dass das Licht überwiegend ungerichtet und auch in sehr flachen Winkeln abgestrahlt werden kann. Bei dieser Leuchte wird zudem der Reflektor aus einem Material mit vergleichsweise großer Materialstärke von mehr als 1 mm hergestellt.
  • Die FR 1 091 837 A beschreibt eine in einem Verfahren der eingangs genannten Gattung hergestellte Leuchte, bei der rein kegelstumpfförmige Elemente des Reflektors aus einem flachen Zuschnitt gebogen werden. Die ideale Kegelform ist jedoch lichttechnisch nicht vorteilhaft, weshalb hier vorgeschlagen wird, mehrere Kegelstumpfelemente miteinander zu verbinden. Derartige Fügevorgänge sind jedoch nachteilig für die Eigenschaften des Reflektors, denn es ist schwierig eine über gangslose einheitliche Oberfläche zu erhalten.
  • In der US 2007/070633 A1 wird ein Verfahren vorgeschlagen bei dem man einen Reflektor aus dünnem hoch reflektierenden Blech herstellt und dazu einen Zuschnitt verwendet, der aus vielen Einzelsegmenten besteht. Dies ist ein hochkomplizierter Blechzuschnitt und die Segmente müssen anschließend miteinander verbunden werden. Wenn die Form des Reflektors in der Produktion nur geringfügig geändert werden soll, müssen ein neuer Stanzzuschnitt berechnet und entsprechende Werkzeuge hergestellt werden. Dieses Verfahren ist somit sehr aufwändig und es führt auch nicht zu einem Reflektor, der ein idealer Rotationskörper ist, denn es ergeben sich viele Kantenlinien und Montagepunkte, die zu einer ungleichmäßigen Lichtabstrahlung des Reflektors führen.
  • Schließlich sind aus dem Stand der Technik Verfahren bekannt, wie sie zum Beispiel in der GB 1 253 992 A beschrieben werden, bei denen der Reflektor zwar aus einem flachen dünnen Folienzuschnitt gebogen wird, dieses Reflektormaterial jedoch nicht selbsttragend ist, sondern von einem Aufnahmering gehalten wird. Das Folienmaterial wird dabei mit einer Klebebeschichtung versehen und in den Aufnahmering eingeklebt. Dies ist ein zusätzlicher Arbeitsvorgang, der zudem die Gefahr in sich birgt, dass sich bei dem Klebevorgang Falten aufwerfen, die zu Unregelmäßigkeiten in der Oberfläche des Reflektors führen.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, ein rationelles Verfahren zur Herstellung von rotationssymmetrischen etwa topfförmigen Leuchtenreflektoren mit einer hoch reflektierenden Oberfläche der eingangs genannten Gattung zur Verfügung zu stellen, welches es ermöglicht, ausgehend von den dünnen beschichteten hochwertigen Ausgangsmaterialien mit vergleichsweise geringer Materialstärke einen Reflektor umfassend einen bereits in sich stabilen Rotationskörper herzustellen und welches zu einem Reflektor mit optimierten lichttechnischen Eigenschaften führt.
  • Die Lösung dieser Aufgabe liefert ein Verfahren zur Herstellung von rotationssymmetrischen, etwa topfförmigen Leuchtenreflektoren mit einer hoch reflektierenden Oberfläche der eingangs genannten Gattung mit den kennzeichnenden Merkmalen des Hauptanspruchs. Erfindungsgemäß ist vorgesehen, dass man von einem durchgehend vollflächigen, mit einem optisch wirksamen Material beschichteten, hoch reflektierenden, dünnen Metallblech als Zuschnitt ausgeht und aus diesem einen selbsttragenden Rotationskörper biegt, der den Korpus des Reflektors bildet. Das erfindungsgemäße Ausgangsmaterial ist also durchgehend vollflächig und es weist anders als im Stand der Technik keine Schlitze auf. Natürlich kann der Zuschnitt aufgrund der Form des herzustellenden Reflektors beispielsweise bereits eine Ausstanzung aufweisen, wenn zum Beispiel ein Fenster für den radialen Durchgang des Leuchtmittels ins Innere des Reflektors oder dergleichen benötigt wird. Dies ist jedoch mit einer regelmäßigen Schlitzung, die das Material schwächt, nicht vergleichbar. Der herzustellende Reflektor bleibt vielmehr in sich selbsttragend und eigenstabil. Es wird anders als im Stand der Technik kein separater Gehäusekörper mehr nötig, um den Rotationskörper erst selbsttragend zu machen. Dieser ist nach dem Biegevorgang selbsttragend, in sich sehr stabil und resistent gegen unerwünschte
  • Verformung wie Beulenbildung oder dergleichen. Der Rotationskörper, der die Grundform des Reflektors wiedergibt kann aufgrund dieser selbsttragenden Eigenschaften und der hohen Stabilität in den nachfolgenden Bearbeitungsvorgängen problemlos gehandhabt und um weitere lichttechnisch notwendige Bauelemente ergänzt werden. Wenn man hingegen wie im Stand der Technik von einer dünnen und dazu noch geschlitzten Folie ausgeht, die nach dem Biegen aus der Abwicklung nicht zu einem selbsttragenden Rotationskörper führt, sind diese weitere Arbeitsgänge nicht möglich. Diese Folie lässt sich allein gar nicht handhaben und führt nur dann zu einem formstabilen Rotationskörper mit reflektierender Oberfläche, wenn man die Folie in ein separates formstabiles Gehäuse einklebt. Außerdem kann man mit einer geschlitzten Folie nicht einen Reflektor mit einer einheitlichen hoch reflektierenden Oberfläche schaffen, die den lichttechnischen Anforderungen der Innenseite eines Reflektorkorpus gemäß der vorliegenden Erfindung genügt. Es ergeben sich im Stand der Technik durch die Schlitzung unerwünschte Reflexionen, ein schlechterer Strahlenverlauf und ein höherer Lichtverlust.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist insbesondere vorgesehen, dass man von einem spannungsharten, ausgewalzten Aluminiumblech als Zuschnitt ausgeht. Derartige Bleche als Ausgangsmaterialien führen nicht nur zu selbsttragenden, sondern sehr formstabilen Rotationskörpem, die bei den weiteren Bearbeitungsvorgängen unerwünschte Verformungen wie Beulenbildung oder dergleichen vermeiden. Das genannte Ausgangsmaterial des Zuschnitts führt insbesondere zu einem nach dem Biegevorgang etwas unter Spannung stehenden Rotationskörper. Nur zur Veranschaulichung dessen, was im Rahmen der vorliegenden Anmeldung unter selbsttragend und formstabil verstanden wird, sei angeführt, dass ein so geformter Kegelstumpf zum Beispiel einer Verformung der Wandung bei Einwirkung einer Kraft in Achsrichtung auf den Körper von beispielsweise 90 kg widerstehen kann.
  • Erfindungsgemäß geht man also so vor, dass man aus dem Flachmaterial einen einer Abwicklung eines Rotationskörpers entsprechenden Zuschnitt in Streifenform erstellt, diesen zu einem selbsttragenden Rotationskörper biegt und die Enden des Streifens miteinander verbindet. Durch die erfindungsgemäße Lösung wird das sonst übliche Umformverfahren wie Tiefziehen oder Drücken des Flachmaterials umgangen. Dies hat den Vorteil, dass die mit derartigen Umformverfahren verbundenen Einschränkungen bei der erfindungsgemäßen Lösung entfallen. Es kann beispielsweise ein Flachmaterial mit geringerer Materialstärke als Ausgangsmaterial verwendet werden. Da die für hoch reflektierende Oberflächen notwendigen Materialien sehr kostspielig sind, wird hierdurch ein ganz erheblicher wirtschaftlicher Vorteil erzielt. Auch ist es vorteilhaft, wenn man nach dem erfindungsgemäßen Verfahren von einem Flachmaterial ausgehen kann, welches bereits die gewünschte hoch reflektierende Endoberfläche aufweist, als wenn man zunächst ein Flachmaterial umformt und nach dem Umformvorgang eine Beschichtung vornimmt, die zu einem hoch reflektierenden Material führt. Zum Beispiel können dann bei gewissen Beschichtungsverfahren (z. B. nach der Miro®-Methode) Schattenflächen auf den Oberflächen der beschichteten Werkstücke entstehen.
  • Weiterhin ist es vorteilhaft, dass das erfindungsgemäße Verfahren mit wenigen einfachen Fertigungsschritten auskommt und daher auch eine rationelle Serienfertigung ermöglicht. Es ist zu bedenken, dass Reflektoren dieses Typs für Downlights und dergleichen bei den Leuchtenherstellern in großen Stückzahlen hergestellt werden, so dass Vereinfachungen im Fertigungsprozess zu Zeitersparnis und großen Kostenvorteilen führen.
  • Bei dem erfindungsgemäßen Biegen des selbsttragenden Reflektor-Grundkörpers aus einem einer Abwicklung entsprechenden Zuschnitt wird hingegen das Flachmaterial keinen zu hohen mechanischen Belastungen ausgesetzt. Man kann ein vergleichsweise dünnes Ausgangsmaterial (bevorzugt oberflächenbeschichtetes Aluminium mit einer Materialstärke von etwa 0,2 mm bis etwa 0,8 mm) verwenden, welches bereits die hochwertige hoch reflektierende Endoberfläche aufweist. Es genügt, wenn man wie üblich das zu bearbeitende Flachmaterial in der Produktionsphase mit einer Schutzfolie versieht, die dann abgezogen wird.
  • Das erfindungsgemäße Verfahren kommt insbesondere für die Verarbeitung von Flachmaterial aus Aluminium oder Aluminiumlegierungen in Betracht, welches an seiner Oberfläche insbesondere durch eine ein- oder mehrschichtige Beschichtung hoch reflektierend ausgebildet ist. Beispielsweise kann das eingangs genannte "Miro"® oder "Miro-Silver"® verwendet werden.
  • Vorzugsweise geht man so vor, dass man aus einer Bahn oder Tafel eines Flachmaterials den Zuschnitt erstellt, den Zuschnitt entsprechend der Form des gewünschten Reflektor-Grundkörpers biegt und man dann die beiden Enden des gebogenen Zuschnitts in Streifenform zum Beispiel durch einen Klebevorgang miteinander verbindet. Man kann bevorzugt den Zuschnitt in Streifenform so biegen, dass die beiden Enden auf Stoß aneinander liegen und kann dann außenseitig auf den Rotationskörper einen Streifen aus einem geeigneten Werkstoff aufkleben, der beide Enden des Streifens überlappt und diese miteinander verbindet. Es verbleibt bei dieser Vorgehensweise nur eine minimale Stoßnaht auf der Innenseite (Sichtseite) des Reflektors, die nicht erhaben ist und daher später optisch kaum wahrgenommen wird.
  • Als Leuchtmittel werden bei Leuchten dieses Typs in der Regel Leuchtstofflampen verwendet, insbesondere Kompaktleuchtstofflampen, die wenig Platz beanspruchen und meist so angeordnet werden, dass sie in radialer Richtung in den Reflektor hinein ragen. Die Vorschaltgeräte werden üblicherweise außerhalb des Reflektors untergebracht. Um eine solche Anordnung der Leuchtstofflampe zu ermöglichen, ist es daher vorteilhaft, wenn gemäß einer bevorzugten Ausführungsvariante der Erfindung ein Fenster in dem Reflektor vorgesehen wird, durch das die Lampe radial in den Reflektor ragen kann. Dieses Fenster kann bereits in dem Zuschnitt berücksichtigt sein oder auch erst nach dem Biegen und Kleben des Reflektors beispielsweise durch einen Stanzvorgang mit einem Stempel eingebracht werden.
  • Nach dem Biegen des Zuschnitts ergibt sich zunächst die Grundform des gewünschten Rotationskörpers, beispielsweise kann dies die Form eines Kegelstumpfs sein. Aus lichttechnischen Gründen ist es jedoch gegebenenfalls vorteilhaft, für einen Reflektor eine Mantellinie zu wählen, die nicht entlang einer Geraden verläuft, sondern entlang einer Kurvenlinie. Es kann zum Beispiel ein etwa topfförmiger Rotationskörper mit einer eher balligen Form vorteilhaft sein oder mit einer Mantellinie, die wenigstens abschnittsweise etwa der Form eines Parabelastes folgt.
  • Erfindungsgemäß verformt man, nach Ausbildung der Grundform des Rotationskörpers durch Biegen aus dem Zuschnitt, den Rotationskörper in mindestens einem weiteren Verformungsschritt, nämlich in einem Prägevorgang. Hier handelt es sich jedoch um eine eher geringfügige Verformung zu dem genannten Zweck, verglichen mit einer Verformung wie sie bei einem Umformprozess wie beispielsweise beim Tiefziehen oder Drücken erfolgt. Bei diesem nachträglichen Verformungsschritt handelt es sich um eine "Feinverformung", während der eigentliche grundlegende Schritt der Formung des Rotationskörpers aus dem Flachmaterial einfach durch Biegen des Zuschnitts geschieht.
  • Bei einem solchen Prägevorgang kann man beispielsweise in die Oberfläche des Rotationskörpers eine Facettenprägung einbringt. Dies hat beispielsweise Vorteile hinsichtlich der lichttechnischen Eigenschaften eines solchen Reflektors. Die Abbildung der Lampe im Reflektor kann dadurch beispielsweise aufgelöst werden.
  • Bei den Downlights, für die die erfindungsgemäßen Reflektoren überwiegend Verwendung finden, handelt es sich vorwiegend um Deckeneinbauleuchten. Für den Deckeneinbau ist ein unterer Rand des Reflektors vorteilhaft, der im eingebauten Zustand an der Unterseite der abgehängten Decke anliegt. Eine bevorzugte konstruktive Lösungsvariante sieht daher weiterhin vor, dass man in wenigstens einem nachfolgenden Schritt an den Rotationskörper im unteren Randbereich einen Bördelring anformt, um so diesen unteren Rand zu schaffen. Das Anformen eines solchen Bördelrings ist ein einfacher Verfahrensschritt, der sich auf gängigen herkömmlichen Maschinen durchführen lässt. Alternativ dazu kann man aber auch stattdessen einen Ring, beispielsweise einen etwa L-förmigen Ring als separates Einzelteil herstellen und in einem nachfolgenden Schritt über den unteren Randbereich des Rotationskörpers schieben, wobei dieser L-Ring eine Aufnahme für den Randbereich des Rotationskörpers aufweist und man den Ring an dem Rotationskörper festlegt.
  • Der Rotationskörper des Downlight-Reflektors kann auch oberseitig mit einem Deckel versehen werden, der als obere Abdeckung dient. Dieser Deckel kann beispielsweise mit Lochbefestigungen oder Schlitzen für die Befestigung versehen sein. Um einen solchen Deckel mit dem aus dem Zuschnitt gebogenen Rotationskörper zu verbinden, kann beispielsweise an dem Zuschnitt aus Flachmaterial in Streifenform, von dem ausgegangen wird, wenigstens eine Lasche angeformt sein oder an dem Rotationskörper später wenigstens eine Lasche angebracht werden, und nach dem Biegen des Rotationskörpers wird auf diesen oben wenigstens ein tellerartiger Deckel aufgesetzt, der wenigstens einen Schlitz aufweist und Rotationskörper und Deckel werden anschließend miteinander derart verbunden, dass die wenigstens eine Lasche durch den wenigstens einen Schlitz hindurchgreift. Weiterhin kann insbesondere vorgesehen sein, dass der Deckel mit einem seitlichen Deckelrand den Rotationskörper übergreift und mit diesem zu einem Reflektor verbunden wird.
  • Es wurde bereits erwähnt, dass das erfindungsgemäße Verfahren es erlaubt, ein Flachmaterial mit geringerer Materialstärke als Ausgangsmaterial zu verwenden. Bevorzugt ist im Rahmen der Erfindung vorgesehen, dass man von einem Flachmaterial mit einer Materialstärke von weniger als 1 mm, vorzugsweise von weniger als 0,8 mm, weiter vorzugsweise von weniger als 0,6 mm, zum Beispiel bevorzugt in der Größenordnung von etwa 0,4 mm bis etwa 0,3 mm ausgeht und aus diesem den einer Abwicklung des Rotationskörpers entsprechenden Zuschnitt erstellt.
  • Gegenstand der vorliegenden Erfindung ist weiterhin ein rotationssymmetrischer etwa topfförmiger Downlight-Reflektor mit einer hoch reflektierenden Oberfläche, welcher von einem metallischen Flachmaterial ausgehend durch Verformung entsprechend der gewünschten Form des Reflektors erhalten wurde, wobei der Reflektor in einem Verfahren nach einem der Ansprüche 1 bis 14 hergestellt wurde.
  • Gegenstand der vorliegenden Erfindung ist weiterhin eine Leuchte, insbesondere Einbauleuchte oder Anbauleuchte, insbesondere Downlight, die einen solchen Reflektor umfasst.
  • Die in den Unteransprüchen beschriebenen Merkmale betreffen bevorzugte Weiterbildungen der erfindungsgemäßen Aufgabenlösung. Weitere Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Detailbeschreibung.
  • Nachfolgend wird die vorliegende Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Zeichnungen näher erläutert. Dabei zeigen:
    • Figur 1 eine Ansicht eines Zuschnitts, der der Abwicklung des herzustellenden Rotationskörpers entspricht;
    • Figur 1 a eine Ansicht eines ähnlichen Zuschnitts gemäß einer leicht abgewandelten Variante der vorliegenden Erfindung;
    • Figur 2 eine Ansicht des Rotationskörpers nach dem Biegevorgang im Längsschnitt;
    • Figur 2 a eine Draufsicht des Rotationskörpers von Figur 2;
    • Figur 3 a eine perspektivische Ansicht des Reflektors nach dem Biegevorgang;
    • Figur 3b eine entsprechende Ansicht wie in Figur 3 nach dem Klebevorgang;
    • Figur 3c eine ähnliche Ansicht nach dem Ausstanzen eines Fensters;
    • Figur 3d eine ähnliche Ansicht, die eine alternative Variante der Verbindung der Enden nach dem Biegen zeigt;
    • Figur 4 einen Längsschnitt durch den Reflektor in einem späteren Stadium des Verfahrens;
    • Figur 4 a eine Detailansicht des Reflektors im unteren Bereich entsprechend einem Ausschnitt von Figur 4;
    • Figur 5 einen Längsschnitt eines fertigen Reflektors;
    • Figur 6 einen Längsschnitt durch einen Reflektor mit Deckel gemäß einer weiteren beispielhaften Ausführungsvariante der Erfindung.
  • Zunächst wird auf die Figur 1 Bezug genommen, die einen Zuschnitt des Ausgangsmaterials zeigt, der einer Abwicklung des herzustellenden Rotationskörpers entspricht. Man erkennt in Figur 1 den Zuschnitt 10, der aus einem Flachmaterial wie beispielweise einer Tafel oder dergleichen aus Aluminium oder einer Aluminiumlegierung erhältlich ist, wobei der Werkstoff eine hoch reflektierende Oberfläche aufweist. Es wird der benötigte Zuschnitt 10 beispielsweise ausgestanzt aus einem Werkstoff, der mindestens an der späteren Sichtseite quasi bereits die benötigte Endoberfläche aufweist, wie zum Beispiel Miro"®. Der Zuschnitt 10 wird begrenzt durch eine obere Kantenlinie 11, die einer Kurvenlinie folgt, eine untere Kantenlinie 14, die ebenfalls einer Kurvenlinie folgt, mit von der Linie der Kante 11 geringfügig abweichendem Krümmungsradius. Weiter hat der Zuschnitt eine erste gerade seitliche Kantenlinie 12 an seinem einen Ende und eine zweite gerade seitliche Kantenlinie 13 an seinem anderen Ende, wobei die Längen der beiden seitlichen Kantenlinien 12 und 13 übereinstimmen. Das verwendete Flachmaterial des Zuschnitts 10 ist recht dünn, beispielsweise etwa im Bereich 0,4 bis 0,6 mm Materialstärke, so dass es sich gut biegen lässt.
  • Der in Figur 1 dargestellte Zuschnitt 10 wird nun so gebogen, dass sich ein Rotationskörper 20 der in den Figuren 2 und 3 dargestellten Art ergibt, bei dem die beiden seitlichen Kantenlinien 12 und 13 des Zuschnitts dann auf Stoß aneinander liegen. Es ergibt sich dann ein Kegelstumpf, der oben begrenzt wird durch die Kantenlinie 11 und unten begrenzt wird durch die Kantenlinie 14. Die Draufsicht auf den kegelstumpfförmigen Rotationskörper 20 ist in Figur 2 a dargestellt. Dieser Kegelstumpf entsteht folglich in nur einem Biegeschritt aus dem Zuschnitt, ohne einen Umformprozess im Sinne der herkömmlichen Umformverfahren wie Tiefziehen, Drücken oder dergleichen, bei denen Spannungen im Werkstück aufgebaut werden und es zu Festigkeitsänderungen kommt.
  • Um den als downlight-Reflektor dienenden Rotationskörper nach oben hin abzuschließen, kann man wie in der Figur 3 a gezeigt ist, einen tellerartigen Deckel 23 von oben auf den Rotationskörper 20 aufsetzen und an diesem befestigen. Die Befestigung kann zum Beispiel über Laschen 26 an dem Rotationskörper 20 erfolgen, die in Schlitze 24 in dem Deckel 23 eingreifen. Alternativ dazu können auch beispielsweise vorstehende Bereiche wie Nocken 27 oder ähnliches oben an dem Rotationskörper gebildet sein, die in Löcher 25 an einem angeformten Ring des Deckels 23 eingreifen. Im befestigten Zustand kann dieser Ring außen am Deckel den Rotationskörper oben übergreifen.
  • Die Fixierung des Kegelstumpfs nach dem Biegen kann durch einen Klebefügeprozess erfolgen. Eine erste Möglichkeit hierzu ist in der Figur 3b dargestellt. Der Zustand nach dem Biegen ist in Figur 3 a gezeigt. Die beiden Kantenlinien 12 und 13 liegen auf Stoß aneinander. Es wird nun ein beispielsweise etwa rechteckiger Streifen aus einem ähnlichen Werkstoff (gegebenenfalls aus dem gleichen Material oder zumindest dem Grundmaterial Aluminiumfolie) außen auf den Kegelstumpf geklebt, so dass der Streifen 15 die beiden Enden des Zuschnitts jeweils über eine gewisse Breite überdeckt und am besten so, dass die Stoßlinie 16 etwa in der Mitte unter dem Streifen 15 verläuft. Der Rotationskörper 20 nach dem Klebeschritt ist in Figur 3b dargestellt.
  • Figur 3d zeigt eine mögliche Alternative, bei der man die beiden Enden des Zuschnitts nicht auf Stoß aneinandergrenzen lässt, sondern den Zuschnitt so weit biegt, dass sich die beiden Enden etwas überlappen. In diesem Fall kann man ohne den zuvor geschilderten Streifen 15 auskommen und beide Enden des Zuschnitts unmittelbar miteinander verbinden, zum Beispiel durch Verkleben. Der Überlappungsbereich ist in Figur 3d mit dem Bezugszeichen 28 bezeichnet.
  • In einem weiteren Arbeitsschritt, der in Figur 3c gezeigt ist, wird dann gegebenenfalls ein Fenster 17 in den Rotationskörper 20 gestanzt, welches später bei dem Reflektor dazu dient, die Lampe von außen hindurch in das Innere des Reflektors zu führen. Dies kann beispielsweise mit einem Stempel erfolgen, insbesondere in dem durch den aufgeklebten Streifen 15 verstärkten Bereich oder auch an anderer Stelle. Der Rotationskörper 20 nach dem Ausstanzen des Fensters 17 ist in Figur 3c dargestellt.
  • Es wird nun nachfolgend auf die Figur 1 a Bezug genommen, die eine gegenüber Figur 1 leicht abgewandelte Variante des Zuschnitts zeigt, von dem bei der Herstellung des Rotationskörpers ausgegangen werden kann. Die Grundform des Zuschnitts 10 ist hier ähnlich wie bei der zuvor anhand von Figur 1 beschriebenen Variante. Jedoch sind hier an der oberen Kantenlinie mehrere (in dem Beispiel insgesamt 4) etwa halbkreisförmige Anformungen 29 an der oberen Kantenlinie 11 vorgesehen, aus denen nach Biegen des Zuschnitts zu der Form des Rotationskörpers Laschen gebogen werden können, mittels derer ein Deckel für den Reflektor befestigbar ist. Etwas oberhalb der Kantenlinie 11 sind außerdem bevorzugt schmale Schlitze 30 in dem Material vorgesehen, die einen geschwächten Bereich darstellen und dazu dienen können, das spätere Umbiegen dieser Anformungen 29 um etwa 90 ° zur Ausbildung der Laschen zu erleichtern. Es sind bei dieser Variante von vornherein Laschen 26 vorhanden, geformt aus den Anformungen 29, so dass eine Befestigung eines Deckels 23 an dem Rotationskörper erfolgen kann, ähnlich wie dies in Figur 3 a dargestellt ist. Dazu weist der Deckel 23 eine entsprechende Anzahl von Schlitzen 24 auf, durch die die Laschen 26 hindurch geschoben werden können.
  • In dem Ausführungsbeispiel von Figur 1 a gibt es eine weitere Abweichung gegenüber der Variante von Figur 1. Es sind nämlich im oberen Bereich der seitlichen Kantenlinien 12, 13 jeweils etwa rechteckige Ausklinkungen 31, 32 vorgesehen, so dass beim Biegen des Stanzzuschnitts zu dem Rotationskörper bereits ein Fenster 17 ausgebildet ist, wie es in Figur 3c dargestellt ist, so dass bei der Variante von Figur 1 a der spätere Arbeitsschritt des Stanzens dieses Fensters 17 entfällt. Das Fenster 17 dient wie bereits erwähnt dazu, bei der Montage der Leuchte später die Lampe von außen in das Innere des Reflektors einzuführen.
  • Es wird nun nachfolgend auf die Figuren 4 und 4a und 5 Bezug genommen. Der nach dem Biegeschritt erhaltene Rotationskörper 20 wie er in Figur 2 dargestellt ist, der die Form eines Kegelstumpfs hat, wird bei einer möglichen Variante des erfindungsgemäßen Verfahrens in einem Prägeprozess nachträglich noch etwas verformt, so dass die in Figur 4 dargestellte Form erhalten wird, bei der die Mantellinie 18 wie man im Vergleich zu Figur 2 erkennt nicht mehr geradlinig verläuft, sondern in einer Kurvenlinie. Dies hat Vorteile in Bezug auf die Charakteristik der Lichtabstrahlung des herzustellenden Reflektors, worauf hier nicht näher eingegangen werden soll. Da der Reflektor meist in eine abgehängte Decke eingebaut wird, wird in diesen Fällen ein unterer nach außen ragender Flansch benötigt, der dann im eingebauten Zustand an der Unterseite der hier nicht dargestellten abgehängten Decke zur Anlage kommt. Zur Erzeugung eines solchen unteren Flansches kann man durch Bördeln einen Bördelring herstellen. Eine Alternative dazu stellt die Verwendung eines etwa L-förmigen Rings 19 dar, wie er in den Figuren 4 und 4 a dargestellt ist. Die vergrößerte Ansicht gemäß Figur 4 a zeigt wie der L-förmige Ring 19, der eine Aufnahme 21 hat, über das untere Ende der Wandung des Rotationskörpers 20 geschoben wird, so dass der untere Rand des Reflektors von der Aufnahme 21 aufgenommen wird. Der L-förmige Ring 19 kann damit beispielsweise durch eine Klemmverbindung oder auch durch eine Klebeverbindung an dem Reflektor gehalten werden. Der waagrechte Schenkel 22 des L-förmigen Rings 19 bildet dann den erwähnten Flansch für die Anlage an der abgehängten Decke beim Einbau der Leuchte. Der fertige Reflektor mit montiertem L-Ring 19 (aber ohne den Deckel) ist noch einmal in Figur 5 dargestellt.
  • Ein rotationssymmetrischer Reflektor wie er beispielsweise in den Figuren 3a oder 5 dargestellt ist, kann beispielsweise bei einer Deckeneinbauleuchte oder Deckenanbauleuchte des Typs "downlight" verwendet werden. Dazu wird dieser Reflektor üblicherweise in einen Leuchtentopf eingesetzt und mittels an sich bekannter Methoden an diesem Leuchtentopf befestigt. Der Leuchtentopf und die vollständige Leuchte sind in den Zeichnungen der vorliegenden Anmeldung nicht dargestellt.
  • Der in Figur 3 a dargestellte Deckel 23 des Downlight-Reflektors kann durch lichttechnische Einbauten an der Unterseite des Deckels variiert werden, um die Abstrahlcharakteristik einer solchen Leuchte zu verändern. Ein Ausführungsbeispiel eines solchen Reflektors ist in Figur 6 gezeigt. Dort ist ein vertikaler Schnitt durch einen solchen Reflektor gezeigt. Man erkennt den Rotationskörper 20 und den Deckel 23, welcher eine mittig in Durchmesserrichtung verlaufende Mittelkantung 33 oberhalb der Lampe 34 aufweist. Diese Mittelkantung ist etwa V-förmig ausgebildet und hat zwei konkav geformte Parabeläste 35, 36. Durch diese Mittelkantung kann man erreichen, dass von der Lampe 34 nach oben hin abgegebenes Licht nicht unmittelbar auf die Lampe zurück reflektiert wird, denn dieser Lichtanteil wird dann durch die Parabeläste gelenkt und wird seitlich an der Lampe vorbei entweder direkt nach unten gelenkt oder auf die innere seitliche Fläche des Rotationskörpers 20 und von dort aus reflektiert und nach unten hin abgestrahlt.
  • Der Deckel 23 kann aber auch unterseitig plan sein. Der Deckel hat in der Regel wie in Figur 6 dargestellt einen umgebogenen seitlichen Rand 37, der den Rotationskörper 20 des Reflektors übergreift (siehe Figur 6) und beispielsweise zur Verbindung beider Bauteile mit diesem verklebt werden kann. Der Deckel 23 kann aber auch in sich konkav oder konvex verformt sein, um die Lichtabstrahlcharakteristik zu verändern. Beispielsweise kommt auch eine Kegelform für den Deckel in Betracht.
  • Ein ganz wesentlicher Vorteil der vorliegenden Erfindung liegt darin, dass durch den hohen Reflexions-Wirkungsgrad des bei einem erfindungsgemäßen Reflektor verwendbaren Materials ein höherer Wirkungsgrad der Leuchte erzielbar ist, bei der ein solcher Reflektor verwendet wird. Dies macht es wiederum möglich, bei der Beleuchtung eines Raumes die Anzahl der Leuchten zu reduzieren oder die Leuchten mit schwächeren Lampen zu betreiben, wodurch sich in beiden Fällen eine Energieersparnis ergibt.
  • Bezugszeichenliste
  • 10
    Zuschnitt
    11
    Kantenlinie
    12
    seitliche Kantenlinie
    13
    seitliche Kantenlinie
    14
    Kantenlinie
    15
    Streifen
    16
    Stoßlinie
    17
    Fenster
    18
    Mantellinie
    19
    L-förmiger Ring
    20
    Rotationskörper
    21
    Aufnahme
    22
    waagerechter Schenkel
    23
    Deckel
    24
    Schlitze
    25
    Löcher für Lochbefestigung
    26
    Laschen
    27
    Nocken für Lochbefestigung
    28
    Überlappung
    29
    Anformungen
    30
    Schlitze
    31
    Ausklinkungen
    32
    Ausklinkungen
    33
    Mittelkantung
    34
    Lampe
    35
    Parabelast
    36
    Parabelast
    37
    Deckelrand

Claims (13)

  1. Verfahren zur Herstellung eines rotationssymmetrischen etwa topfförmigen Downlight-Reflektors mit einer hoch reflektierenden Oberfläche, bei dem man von einem metallischen Flachmaterial ausgeht und dieses entsprechend der gewünschten Form des Reflektors verformt, wobei man aus dem Flachmaterial einen einer Abwicklung eines Rotationskörpers (20) entsprechenden Zuschnitt (10) in Streifenform erstellt, diesen zu einem Rotationskörper (20) biegt und die Enden des Streifens miteinander verbindet, dadurch gekennzeichnet, dass man von einem durchgehend vollflächigen, mit einem optisch wirksamen Material oberflächenbeschichteten, hoch reflektierenden, weniger als 1 mm und wenigstens 0,2 mm dicken Aluminiumblech mit einem Lichtreflexionsgrad von über 90 % als Zuschnitt (10) ausgeht, welches bereits die hoch reflektierende Oberfläche aufweist, und aus diesem einen selbsttragenden Rotationskörper (20) biegt, der den Korpus des Reflektors bildet, und dass man, nach Ausbildung der Grundform des Rotationskörpers (20) durch Biegen aus dem Zuschnitt (10), den Rotationskörper (20) in mindestens einem weiteren Verformungsschritt, der ein Prägevorgang ist, noch weiter verformt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man von einem spannungsharten, ausgewalzten Aluminiumblech als Zuschnitt (10) ausgeht.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass man den Zuschnitt (10) in Streifenform so biegt, dass die beiden Enden auf Stoß aneinander liegen und man dann außenseitig auf den Rotationskörper (20) einen Streifen (15) aus einem geeigneten Werkstoff aufklebt, der beide Enden des gebogenen Zuschnitts (10) überlappt und diese miteinander verbindet.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man nach Formung des Rotationskörpers (20) vorzugsweise durch einen Stanzvorgang in diesen wenigstens ein Fenster (17) einbringt oder dass man einen Zuschnitt (10) verwendet, welcher im Bereich der seitlichen Kantenlinien (12, 13) jeweils Ausklinkungen (31, 32) entsprechend der Form des zu schaffenden Fensters (17) aufweist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man nach dem Biegen des Rotationskörpers (20) auf diesen oben wenigstens einen tellerartigen Deckel (23) aufsetzt und man anschließend Rotationskörper (20) und Deckel (23) miteinander verbindet.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man in wenigstens einem nachfolgenden Schritt an den Rotationskörper (20) im unteren Randbereich einen Bördelring anformt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man in einem nachfolgenden Schritt über den unteren Randbereich des Rotationskörpers (20) einen im Querschnitt etwa L-förmigen Ring (19) schiebt mit einer Aufnahme (21) für den Randbereich und den Ring (19) an dem Rotationskörper (20) festiegt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man von einem Flachmaterial mit einer Materialstärke von weniger als 0,8 mm, weiter vorzugsweise von weniger als 0,6 mm und einer minimalen Materialstärke von vorzugsweise wenigstens 0,3 mm ausgeht.
  9. Verfahren nach einem der Ansprüche 1 bis 4 oder 6 bis 8, dadurch gekennzeichnet, dass an dem Zuschnitt (10) aus Flachmaterial in Streifenform, von dem ausgegangen wird, wenigstens eine Lasche (26, 29) angeformt ist oder an dem Rotationskörper (20) später wenigstens eine Lasche (26,28) angebracht wird, man nach dem Biegen des Rotationskörpers (20) auf diesen oben wenigstens einen tellerartigen Deckel (23) aufsetzt, der wenigstens einen Schlitz (24) aufweist und man Rotationskörper (20) und Deckel (23) anschließend miteinander der verbindet, dass die wenigstens eine Lasche (26,29) durch den wenigstens einen Schlitz (24) hindurchgreift.
  10. Verfahren nach Anspruch 5 oder 9, dadurch gekennzeichnet, dass der Deckel (23) mit einem seitlichen Deckelrand (37) den Rotationskörper (20) übergreift und mit diesem zu einem Reflektor verbunden wird.
  11. Verfahren nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass der Deckel (23) plan ist, konkav oder konvex verformt ist, eine Kegelform aufweist, eine Mittelkantung (33) aufweist, insbesondere mit Parabelästen (35, 36), oder dass durch Verformung des Deckels (23) oder durch Einbauten im Deckelbereich die Lichtabstrahlcharakteristik des Deckels (23) verändert wird.
  12. Rotationssymmetrischer etwa topfförmiger Downlight-Reflektor mit einer hoch reflektierenden Oberfläche, welcher von einem metallischen Flachmaterial ausgehend durch Verformung entsprechend der gewünschten Form des Reflektors erhalten wurde, dadurch gekennzeichnet, dass der Reflektor in einem Verfahren nach einem der Ansprüche 1 bis 11 hergestellt wurde.
  13. Leuchte, insbesondere Einbauleuchte oder Anbauleuchte, insbesondere Downlight, dadurch gekennzeichnet, dass diese mindestens einen Reflektor gemäß Anspruch 12 umfasst.
EP09163648.0A 2008-06-25 2009-06-24 Verfahren zur Herstellung eines Downlight-Reflektors Active EP2138761B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008029743A DE102008029743A1 (de) 2008-06-25 2008-06-25 Verfahren zur Herstellung eines Downlight-Reflektors

Publications (2)

Publication Number Publication Date
EP2138761A1 EP2138761A1 (de) 2009-12-30
EP2138761B1 true EP2138761B1 (de) 2013-12-11

Family

ID=41097714

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09163648.0A Active EP2138761B1 (de) 2008-06-25 2009-06-24 Verfahren zur Herstellung eines Downlight-Reflektors

Country Status (2)

Country Link
EP (1) EP2138761B1 (de)
DE (1) DE102008029743A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2312208A1 (de) * 2009-10-16 2011-04-20 Jordan Reflektoren GmbH & Co.KG Leuchten-Reflektor
DE102012108719A1 (de) 2012-09-17 2014-03-20 Alanod Gmbh & Co. Kg Reflektor, Beleuchtungskörper mit einem derartigen Reflektor und Verwendung eines Basismaterials zu dessen Herstellung
BR112015027792A2 (pt) * 2013-05-08 2017-07-25 Koninklijke Philips Nv dispositivo de iluminação
DE102014104331A1 (de) 2014-03-27 2015-10-01 Alanod Gmbh & Co. Kg Reflektormaterial mit einer Oberflächenstruktur zur diffusen Lichtstreuung
DE102017115798A1 (de) 2017-07-13 2019-01-17 Alanod Gmbh & Co. Kg Reflektierendes Verbundmaterial, insbesondere für oberflächenmontierte Bauelemente (SMD), und lichtemittierende Vorrichtung mit einem derartigen Verbundmaterial

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1091837A (fr) 1953-10-19 1955-04-15 Holophane Réflecteur pour source lumineuse de forme sensiblement tubulaire
DE1860113U (de) * 1962-07-05 1962-10-18 Ullmann Ulo Werk Leuchtkoerper fuer insbesondere fahrzeuge.
US3413462A (en) * 1966-09-29 1968-11-26 Spero Electric Corp Lighting fixture reflector surfacing device
GB1253992A (en) 1968-06-14 1971-11-17 Lucas Industries Ltd Vehicle lamps
GB1365893A (en) * 1971-01-13 1974-09-04 Lucas Industries Ltd Vehicle lamps
DE2260505A1 (de) * 1972-12-11 1974-06-12 Zimmermann & Co Lampenschirm sowie vorrichtung und verfahren zu seiner herstellung
FR2484607B1 (fr) * 1980-06-13 1986-09-05 David Francis Systeme de reflecteur associe a la lampe
US4418379A (en) 1981-09-08 1983-11-29 Marsh Melvin J De Halide and like light reflector and socket assembly for greenhouse and like use
DE29504730U1 (de) * 1994-12-09 1996-04-18 Zumtobel Licht Gmbh, Dornbirn Einbauleuchte
DE29502900U1 (de) * 1995-02-21 1995-03-30 Ridi Leuchten Gmbh, 72417 Jungingen Leuchte
DE29812559U1 (de) 1998-07-15 1999-11-25 Alanod Aluminium Veredlung Gmb Verbundmaterial für Reflektoren
DE102004006003B4 (de) * 2004-02-06 2014-01-23 Zumtobel Lighting Gmbh Ringförmiger Reflektor für eine Leuchte
DE102004058750A1 (de) * 2004-12-06 2006-06-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Einseitig gesockelte Hochdruckentladungslampe
DE102004060918A1 (de) * 2004-12-17 2006-06-22 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH PAR-Lampenanordnung
US7445363B2 (en) 2005-09-29 2008-11-04 Lsi Industries, Inc. Self-standing reflector for a luminaire
DE202006003988U1 (de) * 2006-03-14 2006-05-04 Trilux-Lenze Gmbh + Co. Kg Leuchte mit einem aus Reflektorsegmenten mit einer reflektionsverstärkenden Beschichtung bestehenden Reflektor

Also Published As

Publication number Publication date
EP2138761A1 (de) 2009-12-30
DE102008029743A1 (de) 2009-12-31

Similar Documents

Publication Publication Date Title
EP2138761B1 (de) Verfahren zur Herstellung eines Downlight-Reflektors
DE102007044963B4 (de) Leuchte
DE102007035396B4 (de) Leuchte
EP2019254A2 (de) Leuchte zur Ausleuchtung von Gebäudeflächen
EP2541126A2 (de) Selbstschneidender Einbauring zum Einbau einer Leuchte und Werkzeug zur Montage des Einbaurings
DE19615388A1 (de) Leuchte mit einer insbesondere kleinvolumigen Lampe
US7789522B2 (en) Lighting device with a wallwash reflector assembly
CH697262B1 (de) Ringförmiger Reflektor für eine Leuchte.
EP2381163A2 (de) Lampenschirm-Vorrichtung, Lampe sowie Lampen-Bausatz zur Schaffung einer solchen Lampe
EP2239496A1 (de) Verfahren zum Herstellen einer Leuchte mit einem Leuchtenrahmen
DE19954735B4 (de) Leuchte für den Einbau in eine Öffnung in einer Einbaufläche
EP2132762B1 (de) Lampensockel, fahrzeuglampe mit einem derartigen lampensockel und verfahren zur herstellung einer fahrzeuglampe
EP2330342B1 (de) Leuchte mit Leuchtengehäuse und einem an der Außenseite angeordneten Befestigungselement
DE19540018C1 (de) Verfahren zur Herstellung eines Reflektors für Niedervoltlampen
DE102011086228A1 (de) Solarmodulanordnung, Befestigungssystem und Trägerschiene
DE202007015488U1 (de) Leuchte
DE1497316A1 (de) Beleuchtungskoerper mit Rueckstrahlvorrichtung
EP2019255A2 (de) Leuchte zur Ausleuchtung einer Fläche in einem Gebäude
DE202005020246U1 (de) Teelichthülle
EP2312207A1 (de) Leuchten-Reflektor
DE102005062559B4 (de) Teelichthülle bzw. Verfahren zum Herstellen einer Teelichthülle
DE29517030U1 (de) Reflektor für Niedervoltlampen
EP1616124B1 (de) Rasterleuchte
DE19645017C2 (de) Selbsttragendes Raumelement und Verfahren zur Formung dieses Raumelements
DE202007015489U1 (de) Leuchte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20100511

17Q First examination report despatched

Effective date: 20101110

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RZB RUDOLF ZIMMERMANN, BAMBERG GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRIMM, MANFRED

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502009008481

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21V0007000000

Ipc: F21V0007100000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 7/22 20060101ALI20130703BHEP

Ipc: F21V 7/10 20060101AFI20130703BHEP

Ipc: F21S 8/02 20060101ALN20130703BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/02 20060101ALN20130730BHEP

Ipc: F21V 7/10 20060101AFI20130730BHEP

Ipc: F21V 7/22 20060101ALI20130730BHEP

INTG Intention to grant announced

Effective date: 20130823

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 644793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009008481

Country of ref document: DE

Effective date: 20140206

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140411

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008481

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

26N No opposition filed

Effective date: 20140912

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009008481

Country of ref document: DE

Effective date: 20140912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140624

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 644793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090624

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009008481

Country of ref document: DE

Representative=s name: FRITZ & BRANDENBURG PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502009008481

Country of ref document: DE

Representative=s name: DUDA, RAFAEL THOMAS, DIPL.-ING. DR. RER. NAT., DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230817

Year of fee payment: 15