EP2137279A1 - Herstellung und verwendung von paraffininhibitorformulierungen - Google Patents

Herstellung und verwendung von paraffininhibitorformulierungen

Info

Publication number
EP2137279A1
EP2137279A1 EP08736064A EP08736064A EP2137279A1 EP 2137279 A1 EP2137279 A1 EP 2137279A1 EP 08736064 A EP08736064 A EP 08736064A EP 08736064 A EP08736064 A EP 08736064A EP 2137279 A1 EP2137279 A1 EP 2137279A1
Authority
EP
European Patent Office
Prior art keywords
component
water
paraffin
formulation
paraffin inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08736064A
Other languages
English (en)
French (fr)
Inventor
Marcus Guzmann
Yaqian Liu
Rouven Konrad
Diana Franz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to EP08736064A priority Critical patent/EP2137279A1/de
Publication of EP2137279A1 publication Critical patent/EP2137279A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • C10L10/16Pour-point depressants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • C10L1/125Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1826Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms poly-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/223Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond having at least one amino group bound to an aromatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/23Organic compounds containing nitrogen containing at least one nitrogen-to-oxygen bond, e.g. nitro-compounds, nitrates, nitrites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2381Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds polyamides; polyamide-esters; polyurethane, polyureas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/24Organic compounds containing sulfur, selenium and/or tellurium
    • C10L1/2431Organic compounds containing sulfur, selenium and/or tellurium sulfur bond to oxygen, e.g. sulfones, sulfoxides
    • C10L1/2437Sulfonic acids; Derivatives thereof, e.g. sulfonamides, sulfosuccinic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2641Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) oxygen bonds only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/26Organic compounds containing phosphorus
    • C10L1/2633Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond)
    • C10L1/2658Organic compounds containing phosphorus phosphorus bond to oxygen (no P. C. bond) amine salts

Definitions

  • the present invention relates to paraffin inhibitor formulations, their preparation, use and methods of paraffin inhibition / pour point reduction by such formulations.
  • paraffin molecules which are a component of crude oil and crude oil raffinate, occurs. Due to this crystallization process, these paraffins can accumulate in production wells, production probes, pipelines or plant parts, such as tanks, which can be detrimental to the productivity of the oil extraction and oil storage or transport.
  • paraffin inhibitors or pour point depressants are generally added to the corresponding systems.
  • the paraffin inhibitors and pour point depressants consist of polymeric structures that are waxy in consistency. Even after mixing the waxy products with organic solvents, the resulting blends are of waxy consistency at low temperatures. This also applies to dilute solutions of paraffin inhibitors or pour point depressants.
  • waxy products can be applied in different ways.
  • paraffin inhibitors are only soluble in low concentrations or the solution as such has a very high viscosity. This is especially true at low temperatures where the formulated polymers are no longer soluble, i. either fail or the products become stuck.
  • the object is achieved by a method for producing a paraffin inhibitor formulation comprising the steps
  • the optionally present water produces a w / o emulsion and has a weight fraction which is less than the sum of the weight proportions of the components ( i) and (ii);
  • step (b) adding water to the mixture, after complete addition of the water there is an o / w emulsion; (c) cooling the o / w emulsion of step (b) to a temperature in a second temperature range which is below the melting point of component (i); and
  • the present object is likewise achieved by a paraffin inhibitor formulation obtainable from the preparation process according to the invention.
  • a formulation can be obtained which has the paraffin inhibitor component in a fine and stable distribution, which is supported by the emulsifier component.
  • a paraffin inhibitor formulation can be obtained which has a comparatively high proportion of paraffin inhibitor component, so that the formulation can be stored and transported in a space-saving manner and, moreover, a simple metered addition is made possible.
  • a phase separation can be avoided, which leads to an increased storage stability.
  • the solids content of the formulation to be used can be adjusted individually by subsequent addition of water or by addition of an at least partially water-miscible organic solvent component (IV) in which the paraffin inhibitor component is insoluble.
  • the pour point of the pour point or Paraffininhibitor- Depressant- formulation itself by adding the organic solvent component (IV) may be adjusted, whereby it is possible to obtain a pour point of -50 0 C.
  • the term “inhibitor” or “inhibition” means that the paraffin crystal formation in oil as such and / or an undesired orientation and / or shape of the crystals is avoided or at least reduced. This leads to a reduction or absence of deposition or precipitation of paraffin or to a reduction of the pour point.
  • step (a) the production of a mixture is carried out - A -
  • melting point is also used for simplifying purposes when the paraffin inhibitor component has a melting range, in which case the limit of the range represents the melting point in the sense of the present invention, which leaves the component as completely liquid or completely solid.
  • waxy in the context of the present invention is to be understood as meaning that component (i) has waxy properties, which are characterized in particular by the fact that the substances or mixtures melt without decomposition and have a relatively low viscosity and high already above the melting point These include substances or mixtures of substances that are of natural, semi-synthetic or synthetic origin, but waxes in the narrower sense are not just those.Waxes in the narrower sense are mixtures of substances with as main component esters of higher fatty acids contain higher primary alcohols.
  • paraffin inhibitor component has several inhibitors, so that multiple melting point and / or melting ranges are possible. Again, the component should be completely liquid (melted) or solid.
  • step (a) of the process according to the invention for preparing a paraffin inhibitor formulation all melting points must be above 0 ° C.
  • the mixture according to the invention contains an emulsifier component (ii) which may contain one or more emulsifiers or surfactants.
  • the mixture may already contain water, the optionally present water having a weight fraction which is less than the sum of the weight proportions of the components (i) and (ii).
  • This serves for the purpose of initially introducing a water-in-oil (w / o) emulsion before adding further water in step (b) of the process according to the invention for preparing a paraffin inhibitor formulation.
  • step (b) of the process of the invention for preparing a paraffin inhibitor formulation typically, the desired amount of water will be partially charged to produce an emulsion and the remainder added after obtaining the mixture in step (b) of the process of the invention for preparing a paraffin inhibitor formulation.
  • step (a) of the process of the present invention for preparing a paraffin inhibitor formulation prior to performing step (b), it is required that the paraffin inhibitor component be in a molten state. Therefore, to produce an emulsion, a corresponding temperature must be selected that is above the melting point of the paraffin inhibitor component.
  • step (a) of the process according to the invention for the preparation of a paraffin inhibitor formulation can be effected, for example, by initially introducing a portion of water and then adding the paraffin inhibitor component (i) and the emulsifier component (ii).
  • the paraffin inhibitor component (i) and the emulsifier component (ii) can be added.
  • the desired temperature may be adjusted by simply heating before and / or during and / or after the addition of components (i) and (ii). It is not necessary that the temperature remains constant.
  • the formulation may have further constituents which are advantageously present in dissolved form. It is also possible that these components are added in a later step. These may be active substances required in the production of crude oil, such as, for example, corrosion inhibitors or scale inhibitors.
  • step (b) of the process according to the invention for preparing a paraffin inhibitor formulation water is added to the mixture, after complete addition of the water an oil-in-water (o / w) emulsion is present. Care must be taken here that no precipitations occur. This can be ensured by the fact that the water to be added already has the desired temperature.
  • step (c) of the process according to the invention for preparing a paraffin inhibitor formulation the cooling of the resulting o / w emulsion from step (b) to a temperature in a second temperature range, which is below the melting point of component (i).
  • step (d) of the process according to the invention for preparing a paraffin inhibitor formulation an organic solvent component (iv) which is at least partially miscible with water and in which the paraffin inhibitor component is insoluble can be added.
  • the paraffin inhibitor component should preferably be less than 1% by weight soluble in component (iv). This serves to ensure that the paraffin inhibitor component is still present as a fine distribution of a solid.
  • the paraffin inhibitor formulation thus obtained thus contains at least one paraffin inhibitor component (i), an emulsifier component (ii), water and optionally an organic solvent component (iv).
  • the paraffin inhibitor formulation may also contain further constituents which are expediently present in dissolved form.
  • the choice of the organic solvent component (iv) and its content in the formulation may optionally be such that further substances are present in dissolved form in the formulation.
  • the paraffin inhibitor component (i) may be a paraffin inhibitor known in the art or a mixture thereof.
  • polymeric paraffin inhibitors are typically not pure single compounds. Rather, it is usually a production-related mixture of very similar individual compounds.
  • inhibitors are polymers based on ethylene / vinyl acetate, acrylic acid, methacrylic acid, olefin / maleic acid or their anhydride or fatty acids which are reacted with fatty alcohols or their amines to give esters, amides or imides.
  • paraffin inhibitors are described by D. Alvares et al., Petroleum Science and Technology 18 (2000), 195-202 and by H. S. Ashbaugh et al., Energy and Fuels 19 (2005), 138-144.
  • paraffin inhibitors are branched hydrocarbons which have carboxylate groups which are partially or completely esterified with a linear paraffin alcohol or mixtures of fatty alcohols.
  • the branched hydrocarbons are copolymers of Cio-C 4 o- ⁇ -olefins with maleic anhydride having a molecular weight of 2 to 40 kDa, preferably 5 to 30 kDa.
  • C 2 -C 3 O- ⁇ -olefins especially C 2 ° C 24 olefins.
  • the linear paraffin alcohol is preferably a Cio-C 4 -alcohol or a mixture thereof. More preferred are C 5 -C 30 -alcohols.
  • the at least partially esterified polymers preferably have a degree of esterification which depends on the basic skeleton used. Thus, it makes sense if at least 50% of the carboxylate functions in the case of poly (meth) acrylates and copolymers containing maleic anhydride are at least 25% esterified.
  • the paraffin inhibitor component may have further constituents in addition to the inhibitor itself. These may be, for example, solvents. Here, in particular organic, water-immiscible solvents can be used, which can also partially solve the inhibitor. In the context of the present invention, it is only necessary for the paraffin inhibitor component to have a melting point or melting range as indicated above. If the paraffin inhibitor component has multiple ingredients, it is necessary for the emulsion to have all ingredients in a molten or dissolved state, with at least the paraffin inhibitor in the prepared formulation not being in dissolved form.
  • the emulsifier component (ii) may contain one or more surfactants (surfactant mixture).
  • the surfactants used may be anionic, nonionic, amphoteric or cationic. It is also possible to use mixtures of the surfactants mentioned. Preferred formulations contain nonionic surfactants and mixtures thereof with other surfactants.
  • Suitable anionic surfactants are sulfates, sulfonates, carboxylates, phosphates and mixtures thereof.
  • Suitable cations here are alkali metals, such as sodium or potassium or alkaline earth metals, such as. For example, calcium or magnesium and ammonium, substituted ammonium compounds including mono-, di- or triethanolammonium cations and mixtures thereof.
  • alkyl ester sulfonates, alkyl sulfates, alkyl ether sulfates, alkylbenzenesulfonates, secondary alkanesulfonates and soaps are preferred. These are described below.
  • Alkyl ester sulfonates include linear esters of C 8 -C 2 o-carboxylic acids (fatty acids) which are sulfonated with gaseous SO 3, as for example in "The Journal of the American OiI Chemists Society," 52 (1975), p. 323- 329, is described.
  • Suitable starting materials are natural fats such. As sebum, coconut oil and palm oil, but also be fats of a synthetic nature.
  • Preferred alkyl ester sulfonates are compounds of the formula
  • R 1 is a C 8 -C 2 o-hydrocarbon radical, preferably alkyl, and R a -C 6 - hydrocarbon radical, preferably alkyl.
  • M is a cation which forms a water-soluble salt with the alkyl ester sulfonate. Suitable cations are sodium, potassium, lithium or ammonium cations such as monoethanolamine, diethanolamine and triethanolamine.
  • R 1 C O -C 6 alkyl and R is methyl, ethyl or isopropyl. Most preferred are methyl ester sulfonates in which R 1 is Cio-Ci 6 alkyl.
  • Alkyl sulfates are water-soluble salts or acids of the formula ROSO3M, wherein R is a C 1 0-C 24 hydrocarbon radical, preferably an alkyl or hydroxyalkyl radical with Cio-C 2O - alkyl, more preferably a Ci 2 -Ci 8 alkyl or hydroxyalkyl radical , M is hydrogen or a suitable cation, for example an alkali metal cation, preferably sodium, potassium, lithium or an ammonium or substituted ammonium cation, preferably a methyl, dimethyl and trimethylammonium cation or a quaternary ammonium cation, such as the tetramethylammonium and dimethylpiperidinium cations and alkylamines such as ethylamine, diethylamine, triethylamine and mixtures thereof derived quaternary ammonium cations.
  • R is a C 1 0-C 24 hydrocarbon radical, preferably an alkyl or
  • Alkyl ether sulfates are water soluble salts or acids of the formula RO (A) m SO3M wherein R is an O unsubstitu believingCi -C 24 alkyl or hydroxyalkyl group, preferably a C 2 -C 20 alkyl or hydroxyalkyl, more preferably a C 2 -C 8 Alkyl or hydroxyalkyl radical.
  • A is an ethoxy or propoxy moiety
  • m is a number greater than 0, preferably between about 0.5 and about 6, more preferably between about 0.5 and about 3
  • M is a hydrogen atom or a cation such as, for example, , For example, sodium, potassium, lithium, calcium, magnesium, ammonium or a substituted ammonium cation.
  • substituted ammonium cations include methyl, dimethyl, trimethylammonium and quaternary ammonium cations such as tetramethylammonium and dimethylpiperidinium cations and those derived from alkylamines such as ethylamine, diethylamine, triethylamine or mixtures thereof.
  • alkylamines such as ethylamine, diethylamine, triethylamine or mixtures thereof.
  • Ci 2 -Ci8 fatty alcohol ether sulfates wherein the content at ethylene oxide units is 1, 2, 2.5, 3 or 4 moles per mole of the fatty alcohol ether sulfate and in which M is sodium or potassium.
  • the alkyl group may be either saturated or unsaturated, branched or linear and optionally substituted with a hydroxyl group.
  • the sulfo group can be at any position of the C chain, with the primary methyl groups at the beginning and end of the chain having no sulfonate groups.
  • the preferred secondary alkanesulfonates contain linear alkyl chains of about 9 to 25 carbon atoms, preferably about 10 to about 20 carbon atoms and more preferably about 13 to 17 carbon atoms.
  • the cation is, for example, sodium, potassium, ammonium, mono-, di- or triethanolammonium, calcium or magnesium and mixtures thereof. Sodium as a cation is preferred.
  • alkenyl or alkylbenzenesulfonates are alkenyl or alkylbenzenesulfonates.
  • the alkenyl or alkyl group may be branched or linear and may optionally be substituted by a hydroxyl group.
  • the preferred alkylbenzenesulfonates contain linear alkyl chains of about 9 to 25 carbon atoms, preferably from about 10 to about 13 carbon atoms, the cation being sodium, potassium, ammonium, mono-, di- or triethanolammonium, calcium or magnesium and mixtures thereof.
  • anionic surfactants also includes olefinsulfonates by sulfonation tion of C 2 -C 24-6 - ⁇ -olefins are obtained with sulfur trioxide and subsequent neutralization, preferably C 4 -C. Due to the preparation process, these olefin sulfonates may contain minor amounts of hydroxyalkanesulfonates and alkanedisulfonates. Specific blends of alpha-olefin sulfonates are described in U.S. 3,332,880.
  • anionic surfactants are carboxylates, eg. B. fatty acid soaps and comparable surfactants.
  • the soaps may be saturated or unsaturated and may contain various substituents such as hydroxyl groups or ⁇ -sulfonate groups.
  • Preferred are linear saturated or unsaturated hydrocarbon radicals as hydrophobic moiety with about 6 to about 30, preferably about 10 to about 18 carbon atoms.
  • Suitable anionic surfactants are also: salts of acylaminocarboxylic acids; the acylsarcosinates formed by reaction of fatty acid chlorides with sodium sarcosinate in alkaline medium; Fatty acid-protein condensation products obtained by reacting fatty acid chlorides with oligopeptides; Salts of alkylsulfamide midocarboxylic acids; Salts of alkyl and alkylaryl ether carboxylic acids; Cs-C 24 - olefin; sulfonated polycarboxylic acids prepared by sulfonation of the pyrolysis products of alkaline earth metal citrates, such as.
  • alkylglycerol As described in GB 1,082,179; alkylglycerol; acylglycerol sulfates; alkylphenol; primary paraffin sulfonate; alkyl phosphates; alkyl ether; Isethionates, such as acyl isethionates; N-acyl taurides; alkyl succinates; sulfosuccinates; Monoester of sulfosuccinates (especially saturated and unsaturated C 2 -C 8 monoesters) and diesters of sulfosuccinates (especially saturated and ungesrelijanippoCi 2 -C 8 diesters); acyl sarcosinates; Sulfates of alkylpolysaccharides such as sulfates of alkyl polyglycosides, branched primary alkyl sulfates and alkyl polyglycol ethoxycarboxylates as those of the formula RO
  • Suitable nonionic surfactants are, for example, the following compounds:
  • Polyethylene, polypropylene and polybutylene oxide condensates of alkylphenols.
  • These compounds include the condensation products of alkylphenols with a C -C 20 alkyl group, which may be either linear or branched, with alkene oxides. Preference is given to compounds having about 5 to 25 mol of alkene oxide per mole of alkylphenol.
  • the alkyl chain of the aliphatic alcohols may be linear or branched, primary or secondary, and generally contains from about 8 to about 22 carbon atoms. Particularly preferred are the condensation products of Ci 0 - to C 20 alcohols with about 2 to about 18 mol ethylene oxide per mole of alcohol.
  • the alkyl chain can be saturated or unsaturated.
  • the alcohol ethoxylates may have a narrow range (“narrow range ethoxylates") or a broad homolog distribution of the ethylene oxide (“broad range ethoxylates").
  • nonionic surfactants of this type are, for example, the Lutensol ® brands from BASF Aktiengesellschaft.
  • C 6 -C 8 fatty alcohol ethoxylates as constituent of components (ii). Still possible
  • the hydrophobic part of these compounds preferably has a molecular weight of between about 1,500 and about 1,800.
  • the addition of ethylene oxide to this hydrophobic part leads to an improvement in water solubility.
  • the product is liquid up to a polyoxyethylene content of about 50% of the total weight of the condensation product, which corresponds to a condensation with up to about 40 moles of ethylene oxide.
  • Commercially available examples of this product class are, for example, Pluronic ® brands from BASF Aktiengesellschaft.
  • the hydrophobic moiety of these compounds consists of the reaction product of ethylenediamine with excess propylene oxide and generally has a molecular weight of about 2,500 to 3,000. Ethylene oxide is added to this hydrophobic unit to a content of about 40 to about 80 wt .-% polyoxyethylene and a molecular weight of about 5,000 to 1 1,000.
  • this class of compounds are, for example, the Tetronic ® brands from BASF Corp.
  • nonionic compounds includes water-soluble amine oxides, water-soluble phosphine oxides, and water-soluble sulfoxides each having an alkyl group of about 10 to about 18 carbon atoms.
  • Semi-polar nonionic surfactants are also minoxides of the formula
  • R (OR 2 ) N (R 1 ) 2 R here is an alkyl, hydroxyalkyl or alkylphenol group having a chain length of about 8 to about 22 carbon atoms.
  • R 2 is an alkylene or hydroxyalkylene group having about 2 to 3 carbon atoms or mixtures thereof
  • each R 1 is an alkyl or hydroxyalkyl group having from about 1 to about 3 carbon atoms or a polyethylene oxide group having from about 1 to about 3 ethylene oxide units
  • x represents a number from 0 to about 10.
  • the R 1 groups may be linked together via an oxygen or nitrogen atom and thus form a ring.
  • Amine oxides of this type are especially C 1 0-C 1 8 alkyl dimethyl amine oxides and C 8 -C 2 -AI koxiethyl-dihydroxyethylamine.
  • Fatty acid amides have the formula
  • R is an alkyl group having from about 7 to about 21, preferably about 9 to about 17 carbon atoms and R 1 is independently hydrogen, Ci-C 4 alkyl, Ci-C 4 -Hydroxyalkyl or (C 2 H 4 O ) x H, where x varies from about 1 to about 3.
  • R 1 is independently hydrogen, Ci-C 4 alkyl, Ci-C 4 -Hydroxyalkyl or (C 2 H 4 O ) x H, where x varies from about 1 to about 3.
  • Preferred are C 8 -C 20 amides, - monoethanolamides and diethanol amides -isopropanolamides.
  • nonionic surfactants are alkyl and alkenyl oligoglycosides and fatty acid polyglycol esters or fatty amine polyglycol esters each having 8 to 20, preferably 12 to 18, carbon atoms in the fatty alkyl radical, alkoxylated triglycamides, mixed ethers or mixed formals, alkyloligoglycosides, alkenyloligoglycosides, fatty acid N-alkylglucamides, phosphine oxides, Dialkyl sulfoxides and protein hydrolysates.
  • amphoteric or zwitterionic surfactants are alkylbetaines, alkylamide betaines, aminopropionates, aminoglycinates or amphoteric imidazolinium compounds of the formula R 3
  • R 1 is C 8 -C 22 alkyl or alkenyl
  • R 2 is hydrogen or CH 2 CO 2 M
  • R 3 is CH 2 CH 2 OH or CH 2 CH 2 OCH 2 CH 2 CO 2 M
  • R 4 is hydrogen, CH 2 CH 2 OH or CH 2 CH 2 COOM
  • Z is CO 2 M or CH 2 CO 2 M
  • n is 2 or 3, preferably 2
  • M is hydrogen or a cation such as an alkali metal, alkaline earth metal, ammonium or alkanolammonium cation.
  • Preferred amphoteric surfactants of this formula are monocarboxylates and dicarboxylates. Examples of these are cocoamphocarboxypropionate, cocoamidocarboxypropionic acid, cocoamphocarboxyglycinate (also known as cocoamphodiacetate) and cocoamphoacetate.
  • amphoteric surfactants are alkyldimethylbetaines and alkyldipolyethoxybetaines having an alkyl radical having from about 8 to about 22 carbon atoms which may be linear or branched, preferably having from 8 to 18 carbon atoms and more preferably having from 12 to 18 carbon atoms.
  • Suitable cationic surfactants are substituted or unsubstituted straight-chain or branched quaternary ammonium salts of the type R 1 N (CH 3 ) 3 + X " , R 1 R 2 N (CH 3 ) 2 + X " , R 1 R 2 R 3 N (CHa) + X " or R 1 R 2 R 3 R 4 N + X " .
  • the radicals R 1, R 2, R 3 and R 4 are independently preferably an unsubstituted alkyl having a chain length of 8 to 24 carbon atoms, especially from 10 to 18 carbon atoms, hydroxyalkyl having 1 to 4 C-atoms, Phe nyl, C 2 -C 8 -alkenyl, C 7 -C 24 -aralkyl, (C 2 H 4 O) x H, where x is an integer from 1 to 3, one or more ester groups containing alkyl radicals or cyclic quaternary amino be niumsalze.
  • X is a suitable anion known to those skilled in the art.
  • the organic solvent component (iv) may contain one or more organic solvents, wherein at least one of these solvents, but preferably all solvents, are at least partially miscible with water. Further preferred is complete miscibility with water in the desired concentration range.
  • the organic solvent component (iv) is a monohydric or polyhydric alcohol. At least it is preferred if such an alcohol is included in component (iv).
  • mono- or polyhydric alcohols examples include methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, i-butanol, tert-butanol, glycols such as ethylene glycol, propylene glycol, dipropylene glycol, glycerol , Polyalkylene glycols such as polyethylene glycol. Particularly preferred are methanol and ethanol. Very particular preference is given to methanol.
  • the melting point of the component (i) is in the range of 5 ° C to 200 0 C.
  • a range of 10 0 C to 100 ° C Further preferred is a range of 30 0 C to 80 0 C and particularly preferred is a range of 40 0 C to 60 0 C.
  • the first temperature range is in the range of more than 10 ° C and less than 250 ° C. More preferably, the first temperature range is in the range of more than 30 0 C and less than 200 0 C. More preferably, the first temperature range is in the range of more than 50 ° C and less than 150 ° C. Most preferably, the first temperature range is in the range of more than 60 0 C and less than 100 ° C.
  • the second temperature range in the range from more than 1 ° C to less than 100 0 C. Further preferably, the second temperature range is in the range of more than 1 ° C and less than 75 ° C. More preferably, the second temperature range is in the range of more than 1 ° C and less than 60 0 C. More preferably, the second temperature range is in the range of 1 ° C to less than 40 ° C.
  • the second temperature range is at room temperature.
  • the melting point of the paraffin inhibitor component is below the temperature of the first temperature range and above the temperature of the second temperature range. If this is complied with, a temperature stability with the addition of components is not required, but preferred.
  • the component proportions are preferably chosen such that a paraffin inhibitor Formulation is formed in which the components (i) to (iv) are contained with the following proportions by weight, based in each case on the total weight of the formulation:
  • An advantage of the method according to the invention for the preparation of a paraffin inhibitor formulation is that the paraffin inhibitor component is finely divided in the formulation.
  • the paraffin inhibitor component in the formulation preferably has a mean particle diameter of less than 100 ⁇ m. Further more preferably, an average particle diameter of less than 10 microns and especially less than 1 micron is obtained. The small particle size avoids the particles separating despite the low viscosity of the formulation, i. swim up and coagulate / coalesce.
  • the determination of the average particle diameter can be determined by measuring methods known in the art. This can be done for example by means of light scattering.
  • steps (a) to (d) take place in the process according to the invention for the preparation of a paraffin inhibitor formulation with stirring.
  • paraffin inhibitor formulation of this invention may serve as an additive in oil or oil refines, as well as in the transportation or storage of crude oil or crude raffinates.
  • the formulation according to the invention can be used in particular in a process for paraffin inhibition / pour point reduction of crude oil or crude raffinates, this process comprising the step:
  • the formulation is heated to a temperature above the melting point of the paraffin inhibitor component prior to addition. This can be done, for example, with the help of a water heater.
  • wax, surfactant and 1/3 of the required pH-adjusted amount of water are submitted. These are heated to 85 ° C and emulsified at 2000 rpm with a propeller stirrer (Janke & Kunkel IKA Plant RW20). After 10 minutes, the remaining, 85 ° C warm water is added and stirred for 5 more minutes. Thereafter, the sample is cooled at 700 rpm to room temperature (at least below the melting temperature). Then the pH is checked and possibly readjusted. The pH adjustment of the water phase is carried out with HCl or N, N-dimethylethanolamine.
  • Ci 6 -C 8 fatty alcohol ethoxylate mixture with an HLB of about 15 has been proven.
  • the commercially available Basoflux PI was used 40, which has a melting range of about 50 0 C.
  • the components are emulsified only at elevated temperature and stirred with a propeller stirrer, a particle distribution is produced which has larger particles, which is detrimental to the stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lubricants (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Paraffininhibitorformulierung die Schritte enthaltend (a) Erzeugen einer Mischung enthaltend (i) eine wachsförmige Paraffininhibitor-Komponente mit einem Schmelzpunkt > 0°C; (ii) eine Emulgatorkomponente und (iii) gegebenenfalls Wasser bei einer Temperatur in einem ersten Temperaturbereich, wobei der erste Temperaturbereich über dem Schmelzpunkt der Komponente (i) liegt und wobei das gegebenenfalls vorhandene Wasser eine w/o Emulsion erzeugt und einen Gewichtsanteil aufweist, der geringer als die Summe der Gewichtsanteile der Komponenten (i) und (ii) ist; (b) Zugeben von Wasser zu der Mischung, wobei nach vollständiger Zugabe des Wassers eine o/w Emulsion vorliegt; (c) Abkühlen der o/w Emulsion aus Schritt (b) auf eine Temperatur in einem zweiten Temperaturbereich, der unterhalb des Schmelzpunktes der Komponente (i) liegt; und (d) gegebenenfalls Zugeben einer mit Wasser zumindest teilweise mischbaren organischen Lösemittelkomponente (iv), in der die Paraffininhibitor-Komponente nicht löslich ist. Weiterhin betrifft die vorliegende Erfindung Formulierungen erhältlich aus einem Herstellverfahren sowie deren Verwendung und Einsatz zur Paraffininhibition/Stockpunktherabsetzung von Rohöl oder Rohölraffinaten.

Description

Herstellung und Verwendung von Paraffininhibitorformulierungen
Die vorliegende Erfindung betrifft Paraffininhibitorformulierungen, deren Herstellung, Verwendung sowie Verfahren zur Paraffininhibition/Stockpunktherabsetzung mit Hilfe solcher Formulierungen.
Bei der Ölproduktion kommt es aufgrund von Temperatur- und Druckveränderungen zur Auskristallisation von Paraffinmolekülen, die einen Bestandteil des Rohöls und der Rohölraffinate darstellen. Aufgrund dieses Kristallisationsprozesses können sich diese Paraffine in Produktionsbohrungen, Fördersonden, Pipelines oder Anlagenteilen, wie Tanks, anlagern, was nachteilig für die Produktivität bei der Ölförderung sowie bei der Öllagerung oder dem Transport sein kann.
Weiterhin führt die Kristallisation der Paraffinmoleküle bei Unterschreitung des sog. Pour Points zum Stocken des Rohöles. Das Öl kann dann nicht mehr transportiert werden, was zur Folge hat, dass die Ölproduktion zum Erliegen kommen kann.
Zur Verhinderung solcher Paraffinablagerungen oder des Stockens des Öles werden den entsprechenden Systemen im Allgemeinen Paraffininhibitoren oder Pour Point Depres- sants zugesetzt. In der Regel bestehen die Paraffininhibitoren und Pour Point Depressants aus polymeren Strukturen, die hinsichtlich ihrer Konsistenz wachsförmig sind. Auch nach Mischung der wachsförmigen Produkte mit organischen Lösemitteln sind die resultierenden Mischungen bei niedrigen Temperaturen von wachsförmiger Konsistenz. Dies gilt auch für verdünnte Lösungen von Paraffininhibitoren oder Pour Point Depressants.
Diese wachsartigen Produkte können in unterschiedlicher weise appliziert werden.
Eine Möglichkeit besteht darin, diese wachsartigen Produkte vor Ort aufzuschmelzen und dann als Schmelze in den Rohölstrom oder in die Ölanlagenteile einzudosieren. Der Nach- teil dieser Methode liegt darin, dass aufwendiges Equipment zur Aufschmelzung sowie Dosierung vorgehalten beziehungsweise instandgehalten werden muss. Im Falle eines Ausfalles von Vorrichtungen zum Aufschmelzen, wie einer Heizung, ist die Dosierung des Paraffininhibitors oder Pour Point Depressants nicht mehr möglich, was zu den oben genannten Problemen führt. Alternativ hierzu können die Paraffininhibitoren in Lösungsmitteln gelöst und dann das fertige Produkt in Form einer Lösung zugeführt werden. Eine solche Vorgehensweise wird beispielsweise in WO-A 00/32720 beschrieben.
Hierbei sind die Paraffininhibitoren jedoch nur in geringer Konzentration löslich oder die Lösung als solche weist eine sehr hohe Viskosität auf. Dies gilt insbesondere bei niedrigen Temperaturen, bei denen die formulierten Polymere nicht mehr löslich sind, d.h. entweder ausfallen oder die Produkte fest werden.
Für Länder wie z.B. Russland ist es notwendig, dass Produkte auch bei -500C noch flüssig und dosierbar sein sollen.
Es besteht daher ein Bedarf an geeigneten Formulierungen, die Paraffininhibitoren enthalten, welche die oben beschriebenen Nachteile zumindest teilweise nicht aufweisen.
Eine Aufgabe der vorliegenden Erfindung liegt somit darin, eine Paraffininhibitorformulierung sowie Verfahren zu deren Herstellung bereitzustellen, die die oben genannten Nachteile zumindest teilweise vermeidet.
Die Aufgabe wird gelöst durch ein Verfahren zur Herstellung einer Paraffininhibitorformulierung die Schritte enthaltend
(a) Erzeugen einer Mischung enthaltend
(i) eine wachsförmige Paraffininhibitor-Komponente mit einem Schmelzpunkt > 00C;
(ii) eine Emulgatorkomponente und
(iii) gegebenenfalls Wasser
bei einer Temperatur in einem ersten Temperaturbereich, wobei der erste Temperaturbe- reich über dem Schmelzpunkt der Komponente (i) liegt und wobei das gegebenenfalls vorhandene Wasser eine w/o Emulsion erzeugt und einen Gewichtsanteil aufweist, der geringer als die Summe der Gewichtsanteile der Komponenten (i) und (ii) ist;
(b) Zugeben von Wasser zu der Mischung, wobei nach vollständiger Zugabe des Was- sers eine o/w Emulsion vorliegt; (c) Abkühlen der o/w Emulsion aus Schritt (b) auf eine Temperatur in einem zweiten Temperaturbereich, der unterhalb des Schmelzpunktes der Komponente (i) liegt; und
(d) gegebenenfalls Zugeben einer mit Wasser zumindest teilweise mischbaren organi- sehen Lösemittelkomponente (iv), in der die Paraffininhibitor-Komponente nicht löslich ist.
Die vorliegende Aufgabe wird ebenfalls gelöst durch eine Paraffininhibitorformulierung erhältlich aus dem erfindungsgemäßen Herstellverfahren.
Es wurde nämlich gefunden, dass aufgrund des erfindungsgemäßen Herstellverfahrens eine Formulierung erhalten werden kann, die die Paraffininhibitor-Komponente in feiner und stabiler Verteilung aufweist, was durch die Emulgatorkomponente unterstützt wird. Auf diese Weise kann eine Paraffininhibitorformulierung erhalten werden, die einen vergleichs- weise hohen Anteil an Paraffininhibitor-Komponente aufweist, so dass die Formulierung platzsparend gelagert und transportiert werden kann und zudem eine einfache Zudosie- rung ermöglicht ist. Darüber hinaus kann eine Phasenseparation vermieden werden, was zu einer erhöhten Lagerstabilität führt.
Der Feststoffgehalt der anzuwendenden Formulierung kann individuell durch nachträgliche Wasserzugabe oder durch Zugabe einer mit Wasser zumindest teilweise mischbaren organischen Lösemittelkomponente (IV), in der die Paraffininhibitor-Komponente nicht löslich ist, eingestellt werden.
Darüber hinaus kann der Stockpunkt der Paraffininhibitor- bzw. Pour Point Depressant- Formulierung selbst durch Zugeben der organischen Lösemittelkomponente (IV) eingestellt werden, wobei es möglich ist, einen Stockpunkt von bis zu -500C zu erhalten.
Im Rahmen der vorliegenden Erfindung ist unter dem Begriff "Inhibitor" oder "Inhibierung" zu verstehen, dass die Paraffinkristallbildung in Öl als solche und/oder eine unerwünschte Orientierung und/oder Form der Kristalle vermieden oder zumindest vermindert wird. Dies führt zu einer Verringerung bzw. einem Ausbleiben der Ablagerung bzw. Ausfällung von Paraffin bzw. zu einer Herabsetzung des Pour Points.
In dem erfindungsgemäßen Verfahren zur Herstellung einer Paraffininhibitorformulierung erfolgt in Schritt (a) die Erzeugung einer Mischung enthaltend - A -
(i) eine wachsförmige Paraffininhibitor-Komponente mit einem Schmelzpunkt > 00C.
Im Rahmen der vorliegenden Erfindung wird der Begriff Schmelzpunkt auch vereinfachend dann verwendet, wenn die Paraffininhibitor-Komponente einen Schmelzbereich aufweist, wobei hier derjenige Grenzwert des Bereichs den Schmelzpunkt im Sinne der vorliegenden Erfindung darstellt, der die Komponente als vollständig flüssig oder vollständig fest vorliegen lässt.
Der Begriff „wachsförmig" ist im Rahmen der vorliegenden Erfindung dahingehend zu ver- stehen, dass die Komponente (i) wachsartige Eigenschaften aufweist. Diese kennzeichnen sich insbesondere dadurch, dass die Stoffe oder Stoffgemische ohne Zersetzung schmelzen und schon oberhalb des Schmelzpunktes verhältnismäßig niedrigviskos und stark temperaturabhängig in Konsistenz und Löslichkeit sind. Dies umfasst Stoffe oder Stoffgemische, die natürlichen, teilsynthetischen oder synthetischen Ursprungs sind. Hierbei sind auch Wachse im engeren Sinne aber nicht nur solche zu verstehen. Wachse im engeren Sinne sind Stoffgemische, die als Hauptkomponente Ester höherer Fettsäuren mit höheren primären Alkoholen enthalten.
Darüber hinaus ist es möglich, dass die Paraffininhibitor-Komponente mehrere Inhibitoren aufweist, so dass mehrere Schmelzpunkt und/oder Schmelzbereiche möglich sind. Auch hier soll die Komponente vollständig flüssig (geschmolzen) oder fest vorliegen.
Für Schritt (a) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung müssen sämtliche Schmelzpunkte oberhalb 00C liegen.
Darüber hinaus enthält die erfindungsgemäße Mischung eine Emulgatorkomponente (ii), die einen oder mehrere Emulgatoren beziehungsweise Tenside enthalten kann.
Schließlich kann die Mischung bereits Wasser enthalten, wobei das gegebenenfalls vor- handene Wasser einen Gewichtsanteil aufweist, der geringer als die Summe der Gewichtsanteile der Komponenten (i) und (ii) ist. Dies dient dazu, dass vor Zugabe von weiterem Wasser in Schritt (b) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung zunächst eine Wasser-in-ÖI (w/o)-Emulsion vorliegt.
Typischerweise wird die gewünschte Menge an Wasser teilweise vorgelegt, um eine Emulsion zu erzeugen und der Rest nach Erhalt der Mischung in Schritt (b) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung zugegeben. In Schritt (a) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung ist es vor Ausführung des Schrittes (b) erforderlich, dass die Paraffininhibitor- Komponente in geschmolzenem Aggregatszustand vorliegt. Deshalb muss zur Erzeugung einer Emulsion eine entsprechende Temperatur gewählt werden, die oberhalb des Schmelzpunktes der Paraffininhibitor-Komponente liegt.
Das Erzeugen einer Mischung in Schritt (a) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung kann beispielsweise dadurch erfolgen, dass zunächst ein Teil an Wasser vorgelegt wird, und dann die Paraffininhibitor-Komponente (i) und die Emulgatorkomponente (ii) zugegeben werden. Für den Fachmann ist es jedoch ersichtlich, dass auch eine andere Reihenfolge der einzelnen genannten Schritte erfolgen kann.
Die gewünschte Temperatur kann durch einfaches Erwärmen vor und/oder während und/oder nach der Zugabe der Komponenten (i) und (ii) eingestellt werden. Es ist nicht erforderlich, dass die Temperatur konstant bleibt.
Darüber hinaus kann die Formulierung weitere Bestandteile aufweisen, die vorteilhafterweise in gelöster Form vorliegen. Es ist ebenfalls möglich, dass diese Bestandteile in ei- nem späteren Schritt erst zugegeben werden. Hierbei kann es sich um bei der Produktion von Rohöl benötigte Wirkstoffe wie beispielsweise Korrosionsinhibitoren oder Scale- Inhitiboren handeln.
In Schritt (b) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorfor- mulierung wird zu der Mischung Wasser zugegeben, wobei nach vollständiger Zugabe des Wassers eine Öl-in-Wasser- (o/w)-Emulsion vorliegt. Hierbei muss darauf geachtet werden, dass keine Ausfällungen erfolgen. Dies kann dadurch gewährleistet werden, dass das zuzugebende Wasser bereits die gewünschte Temperatur aufweist.
Anschließend erfolgt in Schritt (c) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung die Abkühlung der so erhaltenen o/w-Emulsion aus Schritt (b) auf eine Temperatur in einem zweiten Temperaturbereich, der unterhalb des Schmelzpunktes der Komponente (i) liegt.
Hierdurch verfestigt sich die Paraffininhibitor-Komponente, so dass diese als feinverteilter Feststoff in der Formulierung vorliegt. Darüber hinaus kann in einem Schritt (d) des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung eine organische Lösemittelkomponente (iv) zugegeben werden, welche zumindest teilweise mit Wasser mischbar ist und in der die Paraffininhibitor-Komponente nicht löslich ist. Die Paraffininhibitor-Komponente sollte vorzugs- weise zu weniger als 1 Gew.-% in der Komponente (iv) löslich sein. Dies dient dazu, dass die Paraffininhibitor-Komponente nach wie vor als feine Verteilung eines Feststoffes vorliegt.
Die so erhaltene Paraffininhibitorformulierung enthält also zumindest eine Paraffininhibitor- Komponente (i), eine Emulgatorkomponente (ii), Wasser sowie gegebenenfalls eine organische Lösemittelkomponente (iv).
Wie oben bereits ausgeführt wurde, kann die Paraffininhibitorformulierung auch noch weitere Bestandteile aufweisen, die zweckmäßigerweise in gelöster Form vorliegen. Die Wahl der organischen Lösemittelkomponente (iv) sowie deren Gehalt in der Formulierung kann gegebenenfalls derart erfolgen, dass weitere Stoffe in gelöster Form in der Formulierung vorliegen.
Bei der Paraffininhibitor-Komponente (i) kann es sich um einen im Stand der Technik be- kannten Paraffininhibitor bzw. ein Gemisch davon handeln. Insbesondere polymere Paraffininhibitoren sind typischerweise keine reinen Einzelverbindungen. Es handelt sich normalerweise vielmehr herstellungsbedingt um ein Gemisch sehr ähnlicher Einzelverbindungen.
Beispiele solcher Inhibitoren sind Polymere auf Basis von Ethylen/Vinylacetat, Acrylsäure, Methacrylsäure, Olefin/Maleinsäure bzw. deren Anhydrid oder Fettsäuren, welche mit Fettalkoholen oder deren Aminen zu Estern, Amiden oder Imiden umgesetzt sind, enthält.
Weitere Beispiele von Paraffininhibitoren sind von D. Alvares et al., Petroleum Science and Technology 18 (2000), 195-202 und von H. S. Ashbaugh et al., Energy and Fuels 19 (2005), 138-144 beschrieben.
Als Paraffininhibitor besonders bevorzugt sind verzweigte Kohlenwasserstoffe, die Carbo- xylatgruppen aufweisen, welche teilweise oder vollständig mit einem linearen Paraffinalkohol oder Mischungen von Fettalkoholen verestert sind. Vorzugsweise handelt es sich bei den verzweigten Kohlenwasserstoffen um Copolymere von Cio-C4o-α-Olefinen mit Maleinsäureanhydrid mit einem Molekulargewicht von 2 bis 40 kDa, vorzugsweise 5 bis 30 kDa. Weiterhin bevorzugt sind Ci2-C3o-α-Olefine, insbesondere C2o-C24-Olefine. Der lineare Paraffinalkohol ist vorzugsweise ein Cio-C4o-Alkohol oder ein Gemisch davon. Mehr bevorzugt sind Ci5-C30-Alkohole.
Die zumindest teilweise veresterten Polymere weisen vorzugsweise einen Vereste- rungsgrad auf, der vom verwendeten Grundgerüst abhängt. So ist es sinnvoll, wenn mindestens 50 % der Carboxylatfunktionen bei Poly(meth-)acrylaten und bei Maleinsäureanhydrid enthaltenden Copolymeren mindestens 25 % verestert sind.
Die Paraffininhibitor-Komponente kann neben dem Inhibitor selbst weitere Bestandteile aufweisen. Diese können beispielsweise Lösemittel sein. Hierbei sind insbesondere organische, mit Wasser nicht mischbare Lösemittel einsetzbar, die den Inhibitor auch teilweise lösen können. Im Rahmen der vorliegenden Erfindung ist es lediglich erforderlich, dass die Paraffininhibitor-Komponente einen Schmelzpunkt beziehungsweise Schmelzbereich wie oben angegeben aufweist. Sofern die Paraffininhibitor-Komponente mehrere Bestandteile aufweist, ist es für die Emulsion erforderlich, dass sämtliche Bestandteile in geschmolzenem oder gelöstem Zustand vorliegen, wobei zumindest der Paraffininhibitor in der hergestellten Formulierung nicht in gelöster Form vorliegt.
Die Emulgatorkomponente (ii) kann ein Tensid oder mehrere Tenside (Tensidgemisch) enthalten.
Die verwendeten Tenside können anionisch, nichtionisch, amphoter oder kationisch sein. Es können auch Mischungen der genannten Tenside verwendet werden. Bevorzugte Formulierungen enthalten nichtionische Tenside und deren Mischungen mit weiteren Tensi- den.
Als anionische Tenside kommen Sulfate, Sulfonate, Carboxylate, Phosphate und deren Mischungen in Betracht. Geeignete Kationen sind hierbei Alkalimetalle, wie beispielsweise Natrium oder Kalium oder Erdalkalimetalle, wie z. B. Calcium oder Magnesium sowie Am- monium, substituierte Ammoniumverbindungen einschließlich Mono-, Di- oder Triethano- lammoniumkationen und Mischungen daraus. Unter den anionischen Tensiden sind Alky- lestersulfonate, Alkylsulfate, Alkylethersulfate, Alkylbenzolsulfonate, sekundäre Alkansulfo- nate und Seifen bevorzugt. Diese werden nachfolgend beschrieben.
Alkylestersulfonate sind unter anderem lineare Ester von Ci8-C2o-Carboxylsäuren (Fettsäuren), welche mittels gasförmigem SO3 sulfoniert werden, wie dies beispielsweise in „The Journal of the American OiI Chemists Society" 52 (1975), p. 323-329, beschrieben wird. Geeignete Ausgangsmaterialien sind natürliche Fette wie z. B. Talg, Kokosöl und Palmöl, aber auch Fette synthetischer Natur sein. Bevorzugte Alkylestersulfonate sind Verbindungen der Formel
R1— CH-COR
SO3M
worin R1 einen C8-C2o-Kohlenwasserstoffrest, bevorzugt Alkyl und R einen CrC6- Kohlenwasserstoffrest, bevorzugt Alkyl, darstellt. M steht für ein Kation, das ein was- serlösliches Salz mit dem Alkylestersulfonat bildet. Geeignete Kationen sind Natrium, Kalium, Lithium oder Ammoniumkationen wie beispielsweise Monoethanolamin, Diethanolamin und Triethanolamin. Bevorzugt bedeuten R1 CiO-Ci6-Alkyl und R Methyl, Ethyl oder Isopro- pyl. Meist bevorzugt sind Methylestersulfonate, in denen R1 Cio-Ci6-Alkyl bedeutet.
Alkylsulfate sind wasserlösliche Salze oder Säuren der Formel ROSO3M, worin R ein C10- C24-Kohlenwasserstoffrest, bevorzugt ein Alkyl- oder Hydroxyalkylrest mit Cio-C2O- Alkylkomponente, besonders bevorzugt ein Ci2-Ci8-Alkyl- oder Hydroxyalkylrest ist. M ist Wasserstoff oder ein geeignetes Kation, z.B. ein Alkalimetallkation, vorzugsweise Natrium, Kalium, Lithium oder ein Ammonium- oder substituiertes Ammoniumkation, vorzugsweise ein Methyl-, Dimethyl- und Trimethylammoniumkation oder ein quaternäres Ammoniumkationen, wie beispielsweise das Tetramethylammonium- und Dimethylpiperidiniumkationen und von Alkylaminen wie Ethylamin, Diethylamin, Triethylamin und Mischungen davon abgeleitete quartäre Ammoniumkationen.
Alkylethersulfate sind wasserlösliche Salze oder Säuren der Formel RO(A)m SO3M, worin R einen unsubstituiertenCiO-C24-Alkyl- oder Hydroxyalkylrest, bevorzugt einen Ci2-C20-Alkyl- oder Hydroxyalkylrest, besonders bevorzugt einen Ci2-Ci8-Alkyl- oder Hydroxyalkylrest darstellt. A ist eine Ethoxy- oder Propoxyeinheit, m ist eine Zahl größer als 0, vorzugsweise zwischen ca. 0,5 und ca. 6, besonders bevorzugt zwischen ca. 0,5 und ca. 3 und M ist ein Wasserstoffatom oder ein Kation wie z. B. Natrium, Kalium, Lithium, Calcium, Magnesium, Ammonium oder ein substituiertes Ammoniumkation. Beispiele von substituierten Ammoniumkationen umfassen Methyl-, Dimethyl-, Trimethylammonium- und quaternäre Ammoniumkationen wie Tetramethylammonium und Dimethylpiperidiniumkationen sowie solche, die von Alkylaminen wie Ethylamin, Diethylamin, Triethylamin oder Mischungen davon ab- geleitet sind. Als Beispiele seien Ci2-Ci8-Fettalkoholethersulfate genannt, wobei der Gehalt an Ethylenoxideinheiten 1 , 2, 2,5, 3 oder 4 mol pro mol des Fettalkoholethersulfats beträgt und in denen M Natrium oder Kalium ist.
In sekundären Alkansulfonaten kann die Alkylgruppe entweder gesättigt oder ungesättigt, verzweigt oder linear und gegebenenfalls mit einer Hydroxylgruppe substituiert sein. Die Sulfogruppe kann an einer beliebigen Position der C-Kette sein, wobei die primären Methylgruppen am Kettenanfang und Kettenende keine Sulfonatgruppen besitzen. Die bevorzugten sekundären Alkansulfonate enthalten lineare Alkylketten mit ca. 9 bis 25 Kohlenstoffatomen, bevorzugt ca. 10 bis ca. 20 Kohlenstoffatomen und besonders bevorzugt ca. 13 bis 17 Kohlenstoffatomen. Das Kation ist beispielsweise Natrium, Kalium, Ammonium, Mono-, Di- oder Triethanolammonium, Calcium oder Magnesium und Mischungen davon. Natrium als Kation ist bevorzugt.
Weitere geeignete anionische Tenside sind Alkenyl- oder Alkylbenzolsulfonate. Die Alke- nyl- oder Alkylgruppe kann verzweigt oder linear und gegebenenfalls mit einer Hydroxylgruppe substituiert sein. Die bevorzugten Alkylbenzolsulfonate enthalten lineare Alkylketten mit ca. 9 bis 25 Kohlenstoffatomen, bevorzugt von ca. 10 bis ca. 13 Kohlenstoffatome, das Kation ist Natrium, Kalium, Ammonium, Mono-, Di- oder Triethanolammonium, Calcium oder Magnesium und Mischungen davon.
Der Begriff anionische Tenside schließt auch Olefinsulfonate mit ein, die durch Sulfonie- rung von Ci2-C24-, vorzugsweise Ci4-Ci6-α-Olefinen mit Schwefeltrioxid und anschließende Neutralisation erhalten werden. Bedingt durch das Herstellverfahren, können diese Olefinsulfonate kleinere Mengen an Hydroxyalkansulfonaten und Alkandisulfonaten enthalten. Spezielle Mischungen von α-Olefinsulfonaten sind in US-3,332,880 beschrieben.
Weitere bevorzugte anionische Tenside sind Carboxylate, z. B. Fettsäureseifen und vergleichbare Tenside. Die Seifen können gesättigt oder ungesättigt sein und können verschiedene Substituenten wie Hydroxylgruppen oder α-Sulfonatgruppen enthalten. Bevor- zugt sind lineare gesättigte oder ungesättigte Kohlenwasserstoffreste als hydrophober Anteil mit ca. 6 bis ca. 30, bevorzugt ca. 10 bis ca. 18 Kohlenstoffatomen.
Als anionische Tenside kommen weiterhin in Frage: Salze von Acylaminocarbonsäuren; die durch Umsetzung von Fettsäurechloriden mit Natriumsarkosinat im alkalischen Medium entstehenden Acylsarkosinate; Fettsäure-Eiweiß-Kondensationsprodukte, die durch Umsetzung von Fettsäurechloriden mit Oligopeptiden erhalten werden; Salze von Alkylsulfa- midocarbonsäuren; Salze von Alkyl- und Alkylarylethercarbonsäuren; Cs-C24- Olefinsulfonate; sulfonierte Polycarboxylsäuren, hergestellt durch Sulfonierung der Pyrolyseprodukte von Erdalkalimetallcitraten, wie z. B. beschrieben in GB 1.082.179; Alkylglycerinsulfate; Oleylglycerinsulfate; Alkylphenolethersulfate; primäre Paraffinsulfona- te; Alkylphosphate; Alkyletherphosphate; Isethionate, wie Acylisethionate; N-Acyltauride; Alkylsuccinate; Sulfosuccinate; Monoester der Sulfosuccinate (besonders gesättigte und ungesättigte Ci2-Ci8-Monoester) und Diester der Sulfosuccinate (besonders gesättigte und ungesättigteCi2-Ci8-Diester); Acylsarkosinate; Sulfate von Alkylpolysacchariden wie beispielsweise Sulfate von Alkylpolyglycosiden, verzweigte primäre Alkylsulfate und Alkylpoly- ethoxycarboxylate wie die der Formel RO(CH2CH2)kCH2COO"M+, worin R C8 bis C22-Alkyl, k eine Zahl von 0 bis 10 und M ein Kation ist; Harzsäuren oder hydrierte Harzsäuren wie beispielsweise Rosin oder hydriertes Rosin oder Tallölharze und Tallölharzsäuren. Weitere Beispiele sind in "Surface Active Agents and Detergents" (Vol. I und II, Schwartz, Perry und Berch) beschrieben.
Als nichtionische Tenside kommen beispielsweise folgende Verbindungen in Frage:
Polyethylen-, Polypropylen- und Polybutylenoxidkondensate von Alkylphenolen.
Diese Verbindungen umfassen die Kondensationsprodukte von Alkylphenolen mit einer Ce- C20-Alkylgruppe, die entweder linear oder verzweigt sein kann, mit Alkenoxiden. Bevorzugt sind Verbindungen mit ca. 5 bis 25 mol Alkenoxid pro mol Alkylphenol.
Kondensationsprodukte von aliphatischen Alkoholen mit ca. 1 bis ca. 25 mol Ethy- lenoxid.
Die Alkylkette der aliphatischen Alkohole kann linear oder verzweigt, primär oder sekundär sein und enthält im Allgemeinen ca. 8 bis ca. 22 Kohlenstoffatome. Besonders bevorzugt sind die Kondensationsprodukte von Ci0- bisC20-Alkoholen mit ca. 2 bis ca. 18 mol Ethy- lenoxid pro mol Alkohol. Die Alkylkette kann gesättigt oder auch ungesättigt sein. Die Alko- holethoxylate können eine enge („Narrow Range Ethoxylates") oder eine breite Homologenverteilung des Ethylenoxides ("Broad Range Ethoxylates") aufweisen.
Beispiele von kommerziell erhältlichen nichtionischen Tensiden dieses Typs sind beispielsweise die Lutensol®-Marken der BASF Aktiengesellschaft.
Bevorzugt sind insbesondere Ci6-Ci8-Fettalkoholethoxylate als Bestandteil der Komponenten (ii). Weiterhin möglich sind
Kondensationsprodukte von Ethylenoxid mit einer hydrophoben Basis, gebildet durch
Kondensation von Propylenoxid mit Propylenglykol.
Der hydrophobe Teil dieser Verbindungen weist bevorzugt ein Molekulargewicht zwischen ca. 1.500 und ca. 1.800 auf. Die Anlagerung von Ethylenoxid an diesen hydrophoben Teil führt zu einer Verbesserung der Wasserlöslichkeit. Das Produkt ist flüssig bis zu einem Polyoxyethylengehalt von ca. 50 % des Gesamtgewichtes des Kondensationsproduktes, was einer Kondensation mit bis zu ca. 40 mol Ethylenoxid entspricht. Kommerziell erhältliche Beispiele dieser Produktklasse sind beispielsweise die Pluronic®-Marken der BASF Aktiengesellschaft.
Kondensationsprodukte von Ethylenoxid mit einem Reaktionsprodukt von Propyleno- xid und Ethylendiamin.
Die hydrophobe Einheit dieser Verbindungen besteht aus dem Reaktionsprodukt von Ethylendiamin mit überschüssigem Propylenoxid und weist im Allgemeinen ein Molekulargewicht von ca. 2.500 bis 3.000 auf. An diese hydrophobe Einheit wird Ethylenoxid bis zu einem Gehalt von ca. 40 bis ca. 80 Gew.-% Polyoxyethylen und einem Molekulargewicht von ca. 5.000 bis 1 1.000 addiert. Kommerziell erhältliche Beispiele dieser Verbindungsklasse sind beispielsweise die Tetronic®-Marken der BASF Corp.
Semipolare nichtionische Tenside
Diese Kategorie von nichtionischen Verbindungen umfasst wasserlösliche Aminoxide, wasserlösliche Phosphinoxide und wasserlösliche Sulfoxide, jeweils mit einem Alkylrest von ca. 10 bis ca. 18 Kohlenstoffatomen. Semipolare nichtionische Tenside sind auch A- minoxide der Formel
O
R(OR2) N(R1)2 R ist hierbei eine Alkyl-, Hydroxyalkyl- oder Alkylphenolgruppe mit einer Kettenlänge von ca. 8 bis ca. 22 Kohlenstoffatomen. R2 ist eine Alkylen- oder Hydroxyalkylengruppe mit ca. 2 bis 3 Kohlenstoffatomen oder Mischungen hiervon, jeder Rest R1 ist eine Alkyl- oder Hydroxyalkylgruppe mit ca. 1 bis ca. 3 Kohlenstoffatomen oder eine Polyethylenoxidgruppe mit ca. 1 bis ca. 3 Ethylenoxideinheiten, und x bedeutet eine Zahl von 0 bis etwa 10. Die R1-Gruppen können miteinander über ein Sauerstoff- oder Stickstoffatom verbunden sein und somit einen Ring bilden. Aminoxide dieser Art sind besonders C10-C18- Alkyldimethylaminoxide und C8-Ci2-AI koxiethyl-Dihydroxyethylaminoxide.
- Fettsäureamide
Fettsäureamide besitzen die Formel
worin R eine Alkylgruppe mit ca. 7 bis ca. 21 , bevorzugt ca. 9 bis ca. 17 Kohlenstoffatomen ist und R1 unabhängig voneinander Wasserstoff, Ci-C4-Alkyl, Ci-C4-Hydroxyalkyl oder (C2H4O)xH bedeutet, wobei x von ca. 1 bis ca. 3 variiert. Bevorzugt sind C8-C20-Amide, - Monoethanolamide, -Diethanolamide und -Isopropanolamide.
Weitere geeignete nichtionische Tenside sind Alkyl- und Alkenyloligoglycoside sowie Fett- säurepolyglykolester oder Fettaminpolyglykolester mit jeweils 8 bis 20, vorzugsweise 12 bis 18 C-Atomen im Fettalkylrest, alkoxylierte Triglycamide, Mischether oder Mischformale, Alkyloligoglycoside, Alkenyloligoglycoside, Fettsäure-N-alkylglucamide, Phosphinoxide, Dialkylsulfoxide und Proteinhydrolysate.
Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkyla- midbetaine, Aminopropionate, Aminoglycinate oder amphotere Imidazolinium- Verbindungen der Formel R3
R1 (γ|)
worin R1 C8-C22-Alkyl- oder -Alkenyl, R2 Wasserstoff oder CH2CO2M, R3 CH2CH2OH oder CH2CH2OCH2CH2CO2M, R4 Wasserstoff, CH2CH2OH oder CH2CH2COOM, Z CO2M oder CH2CO2M, n 2 oder 3, bevorzugt 2, M Wasserstoff oder ein Kation wie ein Alkalimetall-, Erdalkalimetall-, Ammonium- oder Alkanolammoniumkation bedeutet.
Bevorzugte amphotere Tenside dieser Formel sind Monocarboxylate und Dicarboxylate. Beispiele hierfür sind Cocoamphocarboxypropionat, Cocoamidocarboxypropionsäure, Co- coamphocarboxyglycinat (auch als Cocoamphodiacetat bezeichnet) und Cocoamphoace- tat.
Weitere bevorzugte amphotere Tenside sind Alkyldimethylbetaine und Alkyldipolyethoxybe- taine mit einem Alkylrest mit ca. 8 bis ca. 22 Kohlenstoffatomen der linear oder verzweigt sein kann, bevorzugt mit 8 bis 18 Kohlestoffatomen und besonders bevorzugt mit 12 bis 18 Kohlenstoffatomen.
Geeignete kationische Tenside sind substituierte oder unsubstituierte geradkettige oder verzweigte quartäre Ammoniumsalze vom Typ R1N(CH3)3 +X", R1R2N(CH3)2 +X", R1R2R3N(CHa)+X" oder R1R2R3R4N+X". Die Reste R1, R2, R3 und R4 sind unabhängig voneinander vorzugsweise unsubstituiertes Alkyl mit einer Kettenlänge von 8 bis 24 C- Atomen, insbesondere von 10 bis 18 C-Atomen, Hydroxyalkyl mit 1 bis 4 C-Atomen, Phe- nyl, C2-Ci8-Alkenyl, C7-C24-Aralkyl, (C2H4O)xH, wobei x eine ganze Zahl von 1 bis 3 bedeutet, ein oder mehrere Estergruppen enthaltende Alkylreste oder cyclische quartäre Ammo- niumsalze sein. X ist ein geeignetes, dem Fachmann bekanntes Anion.
Die organische Lösemittelkomponente (iv) kann ein oder mehrere organische Lösemittel enthalten, wobei zumindest eines dieser Lösemittel, vorzugsweise jedoch alle Lösemittel, zumindest teilweise mit Wasser mischbar sind. Weiterhin bevorzugt liegt eine vollständige Mischbarkeit mit Wasser im gewünschten Konzentrationsbereich vor. Vorzugsweise handelt es sich bei der organischen Lösemittelkomponente (iv) um einen ein- oder mehrwertigen Alkohol. Zumindest ist es bevorzugt, wenn ein solcher Alkohol in der Komponente (iv) enthalten ist.
Beispiele für ein- oder mehrwertige Alkohole sind Methanol, Ethanol, n-Propanol, i-Pro- panol, n-Butanol, sec-Butanol, i-Butanol, tert.-Butanol, Glykole wie Ethylenglykol, Propy- lenglykol, Dipropylenglkcol, Glycerin, Polyalkylenglykole wie Polyethylenglykol. Besonders bevorzugt sind Methanol und Ethanol. Ganz besonders bevorzugt ist Methanol.
Vorzugsweise liegt der Schmelzpunkt der Komponente (i) im Bereich von 5°C bis 2000C.
Weiterhin bevorzugt ist ein Bereich von 100C bis 100°C. Weiter bevorzugt ist ein Bereich von 300C bis 800C und insbesondere bevorzugt ist ein Bereich von 400C bis 600C.
Dementsprechend ist bevorzugt, dass der erste Temperaturbereich im Bereich von mehr als 10°C und weniger als 250°C liegt. Weiter bevorzugt ist der erste Temperaturbereich im Bereich von mehr als 300C und weniger als 2000C. Weiter bevorzugt liegt der erste Temperaturbereich im Bereich von mehr als 50°C und weniger als 150°C. Insbesondere bevorzugt liegt der erste Temperaturbereich im Bereich von mehr als 600C und weniger als 100°C.
Darüber hinaus ist bevorzugt, dass der zweite Temperaturbereich im Bereich von mehr als 1 °C bis weniger als 1000C liegt. Weiterhin bevorzugt liegt der zweite Temperaturbereich im Bereich von mehr als 1 °C und weniger als 75°C. Weiter bevorzugt liegt der zweite Tempe- raturbereich im Bereich von mehr als 1 °C und weniger als 600C. Insbesondere bevorzugt liegt der zweite Temperaturbereich im Bereich von 1 °C bis weniger als 40°C.
Ganz besonders bevorzugt liegt der zweite Temperaturbereich bei Raumtemperatur.
Bei der Wahl von erstem und zweitem Temperaturbereich muss jedoch beachtet werden, dass der Schmelzpunkt der Paraffininhibitor-Komponente unterhalb der Temperatur des ersten Temperaturbereichs und oberhalb der Temperatur des zweiten Temperaturbereichs liegt. Sofern dies eingehalten wird, ist eine Temperaturkonstanz bei Zugabe von Komponenten nicht erforderlich, jedoch bevorzugt.
In dem erfindungsgemäßen Verfahren zur Herstellung einer Paraffininhibitorformulierung werden die Komponentenanteile vorzugsweise derart gewählt, dass eine Paraffininhibitor- formulierung entsteht, bei der die Komponenten (i) bis (iv) mit den folgenden Gewichtsanteilen jeweils bezogen auf das Gesamtgewicht der Formulierung enthalten sind:
(i) 10 bis 70 Gew.-%, mehr bevorzugt 10 bis 60 Gew.-%, weiter mehr bevorzugt 20 bis 55 Gew.-% Paraffininhibitor-Komponente;
(ii) 1 bis 30 Gew.-%, mehr bevorzugt 1 bis 20 Gew.-%, weiter mehr bevorzugt 1 bis 10 Gew.-% Emulgatorkomponente;
(iii) 1 bis 89 Gew.-%, mehr bevorzugt 20 bis 89 Gew.-%, weiter mehr bevorzugt 40 bis 89 Gew.-%, insbesondere 45 bis 80 Gew.-% Wasser;
(iv) 0 bis 88 Gew.-%, mehr bevorzugt 1 bis 80 Gew.-%, mehr bevorzugt 5 bis 75 Gew.-%, weiter mehr bevorzugt 10 bis 70 Gew.-%, insbesondere 20 bis 60 Gew.-% Lösemit- telkomponente.
Ein Vorteil des erfindungsgemäßen Verfahrens zur Herstellung einer Paraffininhibitorformulierung liegt darin, dass die Paraffininhibitor-Komponente in der Formulierung fein verteilt vorliegt. Bevorzugt weist die Paraffininhibitor-Komponente in der Formulierung einen mittle- ren Teilchendurchmesser von weniger als 100 μm auf. Weiterhin mehr bevorzugt wird ein mittlerer Teilchendurchmesser von weniger als 10 μm und insbesondere weniger als 1 μm erhalten. Durch die geringe Teilchengröße wird vermieden, dass die Teilchen trotz der niedrigen Viskosität der Formulierung separieren, d.h. aufschwimmen und koagulie- ren/koaleszieren.
Die Bestimmung des mittleren Teilchendurchmessers kann durch im Stand der Technik bekannte Messmethoden ermittelt werden. Dies kann beispielsweise mit Hilfe von Lichtstreuung erfolgen.
Es ist zweckdienlich, dass die Schritte (a) bis (d) im erfindungsgemäßen Verfahren zur Herstellung einer Paraffininhibitorformulierung unter Rühren stattfinden.
Ebenso kann es zweckdienlich sein, wenn vor Schritt (d) eine pH-Justierung erfolgt. Hierbei ist ein alkalischer pH-Bereich bevorzugt. Die so erhaltene erfindungsgemäße Paraffininhibitorformulierung kann als Additiv in Öl oder Ölraffinaten sowie bei dem Transport oder der Lagerung von Rohöl oder Rohölraffinaten dienen.
Die erfindungsgemäße Formulierung kann insbesondere in einem Verfahren zur Paraffininhibition/Stockpunktherabsetzung von Rohöl oder Rohölraffinaten eingesetzt werden, wobei dieses Verfahren den Schritt enthält:
Zugeben einer erfindungsgemäßen Formulierung zu Rohöl oder einem Rohölraffinat, wobei das Rohöl oder Rohölraffinat vorzugsweise eine Temperatur aufweist, die o- berhalb des Schmelzpunktes der Paraffininhibitor-Komponente liegt.
Hierbei ist bevorzugt, dass die Formulierung vor dem Zugeben auf eine Temperatur oberhalb des Schmelzpunktes der Paraffininhibitor-Komponente erwärmt wird. Dies kann bei- spielsweise mit Hilfe eines Durchlauferhitzers erfolgen.
Beispiel
Herstellverfahren:
Zuerst werden Wachs, Tensid und 1/3 der benötigten, pH-eingestellten Wassermenge vorgelegt. Diese werden auf 85°C erwärmt und bei 2000 rpm mit einem Propellerrührer (Janke & Kunkel IKA Werk RW20) emulgiert. Nach 10 Minuten wird das restliche, 85°C warme Wasser zugegeben und 5 weitere Minuten gerührt. Danach wird die Probe bei 700 rpm auf Raumtemperatur (mindestens aber unter die Schmelztemperatur) abgekühlt. Anschließend wird der pH geprüft und eventuell nachgestellt. Die pH-Einstellung der Wasserphase erfolgt mit HCl oder N,N-Dimethylethanolamin.
Als Tensidsystem hat sich eine Ci6-Ci8-Fettalkoholethoxylat-Mischung mit einem HLB von ca. 15 bewährt.
Als Wachs wurde das kommerziell erhältliche Basoflux PI 40 eingesetzt, welches einen Schmelzbereich von etwa 50 0C aufweist.
Im Anschluss an das Erkalten wurden die Teilchengrößen mit dem Beckman Coulter LS13 320 Laser Diffraction Particle Size Analyzer bestimmt. Dabei ergaben sich folgende Resultate:
Lagerversuch:
Eine Lagerung bei 20 0C sowie 60 0C über eine Woche ergibt keine Veränderung der Teilchengrößenverteilung. Das erfindungsgemäß hergestellte Produkt bleibt stabil.
Werden in einem nicht erfindungsgemäßen Verfahren die Komponenten lediglich bei erhöhter Temperatur emulgiert und mit einem Propellerrührer gerührt, entsteht eine Teilchenverteilung, die größere Teilchen aufweist, was nachteilig für die Stabilität ist.

Claims

- 1 -Patentansprüche
1. Verfahren zur Herstellung einer Paraffininhibitorformulierung die Schritte enthaltend
(a) Erzeugen einer Mischung enthaltend
(i) eine wachsförmige Paraffininhibitor-Komponente mit einem Schmelzpunkt
> 0°C;
(ii) eine Emulgatorkomponente und (iii) gegebenenfalls Wasser
bei einer Temperatur in einem ersten Temperaturbereich, wobei der erste Temperaturbereich über dem Schmelzpunkt der Komponente (i) liegt und wobei das gegebenenfalls vorhandene Wasser eine w/o Emulsion erzeugt und einen Gewichtsanteil aufweist, der geringer als die Summe der Gewichtsanteile der Komponenten (i) und
(ü) ist;
(b) Zugeben von Wasser zu der Mischung, wobei nach vollständiger Zugabe des Wassers eine o/w Emulsion vorliegt;
(c) Abkühlen der o/w Emulsion aus Schritt (b) auf eine Temperatur in einem zweiten Temperaturbereich, der unterhalb des Schmelzpunktes der Komponente (i) liegt; und
(d) gegebenenfalls Zugeben einer mit Wasser zumindest teilweise mischbaren organischen Lösemittelkomponente (iv), in der die Paraffininhibitor-Komponente nicht löslich ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Komponente (i) Polymere auf Basis von Ethylen/Vinylacetat, Acrylsäure, Methacrylsäure, Ole- fin/Maleinsäure bzw. deren Anhydrid oder Fettsäuren, welche mit Fettalkoholen oder deren Aminen zu Estern, Amiden oder Imiden umgesetzt sind, enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Komponente (ii) ein nicht-ionisches Tensid oder Tensidgemisch enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Komponente (iv) einen ein- oder mehrwertigen Alkohol enthält. - 2 -
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Schmelzpunkt der Komponente (i) im Bereich von 5 0C bis 200 0C liegt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der erste Temperaturbereich im Bereich von mehr als 10 0C und weniger als 250 0C liegt.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der zweite Temperaturbereich im Bereich von mehr als 1 °C bis weniger als 1000C liegt.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Paraffininhibitorformulierung die Komponenten (i) bis (iv) mit den folgenden Gewichtsanteilen jeweils bezogen auf das Gesamtgewicht der Formulierung enthält:
(i) 10 bis 70 Gew.-% Paraffininhibitor-Komponente;
(ii) 1 bis 30 Gew.-% Emulgatorkomponente;
(iii) 1 bis 89 Gew.-% Wasser;
(iv) 0 bis 88 Gew.-% Lösemittelkomponente, wobei der Gewichtsanteil an Wasser größer als die Summe der Gewichtsanteile der Komponenten (i) und (ii) ist.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Paraffininhibitor-Komponente in der Formulierung einen mittleren Teilchendurchmesser von < 100 μm aufweist.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Schritte (a) bis (d) unter Rühren erfolgen.
1 1. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass vor Schritt (d) eine pH-Justierung erfolgt.
12. Paraffininhibitorformulierung erhältlich aus dem Herstellverfahren nach einem der Ansprüche 1 bis 11.
13. Verwendung einer Formulierung nach Anspruch 12 als Additiv in Ölfeldern sowie beim Transport oder der Lagerung von Rohöl oder Rohölraffinaten. - 3 -
14. Verfahren zur Paraffininhibition/Stockpunktherabsetzung von Rohöl oder Rohölraffinaten den Schritt enthaltend
- Zugeben einer Formulierung nach Anspruch 12 zu Rohöl oder einem Rohölraffi- nat.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass die Formulierung vor dem Zugeben auf eine Temperatur oberhalb des Schmelzpunktes der Paraffininhibitor-Komponente erwärmt wird.
EP08736064A 2007-04-13 2008-04-10 Herstellung und verwendung von paraffininhibitorformulierungen Withdrawn EP2137279A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08736064A EP2137279A1 (de) 2007-04-13 2008-04-10 Herstellung und verwendung von paraffininhibitorformulierungen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP07106132 2007-04-13
EP08736064A EP2137279A1 (de) 2007-04-13 2008-04-10 Herstellung und verwendung von paraffininhibitorformulierungen
PCT/EP2008/054343 WO2008125588A1 (de) 2007-04-13 2008-04-10 Herstellung und verwendung von paraffininhibitorformulierungen

Publications (1)

Publication Number Publication Date
EP2137279A1 true EP2137279A1 (de) 2009-12-30

Family

ID=39683565

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08736064A Withdrawn EP2137279A1 (de) 2007-04-13 2008-04-10 Herstellung und verwendung von paraffininhibitorformulierungen

Country Status (6)

Country Link
US (1) US20100130385A1 (de)
EP (1) EP2137279A1 (de)
CN (1) CN101668828A (de)
CA (1) CA2682144A1 (de)
RU (1) RU2009141773A (de)
WO (1) WO2008125588A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008523B2 (en) 2014-10-17 2021-05-18 Cameron International Corporation Chemical inhibitors with sub-micron materials as additives for enhanced flow assurance

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2718363T3 (da) * 2011-06-10 2016-07-04 Dow Global Technologies Llc Vandig flydepunktnedsættende additivsammensætning
EP2718364B1 (de) * 2011-06-10 2016-11-02 Dow Global Technologies LLC Verfahren zur herstellung einer wässrigen stockpunkterniedrigenden dispersionszusammensetzung
GB201114332D0 (en) 2011-08-19 2011-10-05 Nufarm Uk Ltd Novel inhibitor compositions and methods of use
ITMI20122248A1 (it) * 2012-12-28 2014-06-29 Eni Spa "metodo per ridurre la caduta di pressione associata ad un fluido sottoposto ad un flusso turbolento"
RU2509096C1 (ru) * 2013-02-11 2014-03-10 Общество с ограниченной ответственностью "ВМПАВТО" Пенообразующая водная композиция
US20160230103A1 (en) * 2013-11-22 2016-08-11 Dow Global Technologies Llc Aqueous pour point depressant dispersion composition
US10113101B2 (en) * 2014-10-27 2018-10-30 Ecolab Usa Inc. Composition and method for dispersing paraffins in crude oils
CN104357039B (zh) * 2014-10-31 2018-09-18 中国石油化工股份有限公司 一种聚合物微球乳液驱油剂及其制备方法
CN106590563A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 耐盐排水采气用泡排剂组合物及其制备方法与应用
CN106590583B (zh) * 2015-10-20 2020-05-05 中国石油化工股份有限公司 耐高矿化度排水采气用泡排剂组合物及其制备方法与应用
CN106590568A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 耐矿化度排水采气用泡排剂组合物及其制备方法与应用
US10280714B2 (en) * 2015-11-19 2019-05-07 Ecolab Usa Inc. Solid chemicals injection system for oil field applications
AR107305A1 (es) 2016-01-06 2018-04-18 Ecolab Usa Inc Composiciones de inhibidores de parafina estables a la temperatura
WO2017120286A1 (en) 2016-01-06 2017-07-13 Ecolab Usa Inc. Temperature-stable paraffin inhibitor compositions
SG11201806673QA (en) 2016-02-17 2018-09-27 Ecolab Usa Inc Alkyl diols for crude oil treatment
US10465854B2 (en) * 2016-04-07 2019-11-05 Ecolab Usa Inc. Temperature-stable paraffin inhibitor compositions
CA3036559A1 (en) 2016-09-16 2018-03-22 Ecolab Usa Inc. Fatty alcohols and esters for crude oil treatment
WO2018064270A1 (en) 2016-09-29 2018-04-05 Ecolab USA, Inc. Paraffin inhibitors, and paraffin suppressant compositions and methods
RU2752630C2 (ru) 2016-09-29 2021-07-29 ЭКОЛАБ ЮЭсЭй, ИНК. Композиции парафинового супрессанта и способы
CA3041834A1 (en) 2016-12-07 2018-06-14 Basf Se Aqueous compositions of paraffin inhibitors
CN108730770A (zh) * 2017-04-13 2018-11-02 通用电气公司 用于油的防蜡剂以及用防蜡剂来减少油产生蜡沉积的方法
AR111953A1 (es) 2017-05-23 2019-09-04 Ecolab Usa Inc Patín de dilución y sistema de inyección para sustancias químicas sólidas / líquidas de alta viscosidad
AR112058A1 (es) 2017-05-23 2019-09-18 Ecolab Usa Inc Sistema de inyección para administración controlada de sustancias químicas sólidas de campos petrolíferos
US10858575B2 (en) 2017-06-02 2020-12-08 Championx Usa Inc. Temperature-stable corrosion inhibitor compositions and methods of use
US11254861B2 (en) 2017-07-13 2022-02-22 Baker Hughes Holdings Llc Delivery system for oil-soluble well treatment agents and methods of using the same
US12060523B2 (en) 2017-07-13 2024-08-13 Baker Hughes Holdings Llc Method of introducing oil-soluble well treatment agent into a well or subterranean formation
WO2019048663A1 (en) 2017-09-11 2019-03-14 Basf Corporation AQUEOUS POLYMER DISPERSIONS, PROCESS FOR PREPARING THEM AND USE THEREOF AS FLOW POINT IMPELLERS FOR CRUDE OIL, OIL AND PETROLEUM PRODUCTS
WO2019057396A1 (de) 2017-09-20 2019-03-28 Clariant International Ltd Dispersionen polymerer öladditive
EP3704206A1 (de) 2017-11-03 2020-09-09 Baker Hughes Holdings Llc Behandlungsverfahren unter verwendung von wässrigen flüssigkeiten mit öllöslichen behandlungsmitteln
CN107987818A (zh) * 2017-11-23 2018-05-04 克拉玛依新科澳石油天然气技术股份有限公司 油基清蜡剂及其制备方法
US11084970B2 (en) 2017-12-04 2021-08-10 Multi-Chem Group, Llc Additive to decrease the pour point of paraffin inhibitors
CN109401745B (zh) * 2018-11-21 2021-03-12 西南石油大学 一种自适应流度控制体系及其在高温高盐油藏的应用
WO2020231994A1 (en) * 2019-05-15 2020-11-19 M-I L.L.C. Environmentally friendly flow improvers with improved formulation stability at low temperatures
US10961444B1 (en) 2019-11-01 2021-03-30 Baker Hughes Oilfield Operations Llc Method of using coated composites containing delayed release agent in a well treatment operation
US20220282148A1 (en) * 2021-03-08 2022-09-08 Pilot Polymer Technologies, Inc. Paraffin inhibitor formulations for oil and gas applications
CN115466607B (zh) * 2021-06-10 2023-07-04 中国石油化工股份有限公司 微乳液清防蜡剂及其制备方法和应用
MX2024002463A (es) 2021-08-27 2024-03-12 Basf Se Dispersiones acuosas de inhibidores de parafina.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2612757C3 (de) * 1976-03-25 1980-11-27 Chemische Fabriek Servo B.V., Delden (Niederlande) Flüssige Mischung, Verfahren zu ihrer Herstellung und ihre Verwendung
US4110283A (en) * 1977-05-10 1978-08-29 Chemische Fabriek Servo B.V. Crystallization inhibitor for paraffin
US5851429A (en) * 1996-04-08 1998-12-22 The Lubrizol Corporation Dispersions of waxy pour point depressants
US5858927A (en) * 1996-08-29 1999-01-12 Baker Hughes, Incorporated Aqueous external crystal modifier dispersion
JP2001525867A (ja) * 1997-05-14 2001-12-11 インフィニューム ホールディングス ベスローテン フェンノートシャップ ポリマー組成物
FR2859211B1 (fr) * 2003-08-28 2006-01-21 Ceca Sa Compositions sous forme d'emulsions stables, leurs preparations et leurs utilisation pour l'abaissement du point d'ecoulement des huiles brutes et l'inhibition du depot de paraffines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008125588A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008523B2 (en) 2014-10-17 2021-05-18 Cameron International Corporation Chemical inhibitors with sub-micron materials as additives for enhanced flow assurance

Also Published As

Publication number Publication date
US20100130385A1 (en) 2010-05-27
CA2682144A1 (en) 2008-10-23
WO2008125588A1 (de) 2008-10-23
RU2009141773A (ru) 2011-05-20
CN101668828A (zh) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2008125588A1 (de) Herstellung und verwendung von paraffininhibitorformulierungen
EP2106433B1 (de) Dispersionen polymerer öladditive
EP2935346B1 (de) Polymere zusammensetzungen aus ethylen-vinylester-copolymeren alkyl(meth)acrylaten, verfahren zu deren herstellung und deren verwendung als pour-point-depressants für rohöle, mineralöle oder mineralölprodukte
EP2935345B1 (de) Polymerformulierungen in lösemitteln mit hohem flammpunkt, verfahren zu deren herstellung und deren verwendung als pour-point-depressants für rohöle, mineralöle oder mineralölprodukte
EP3380589B1 (de) Copolymere umfassend -olefine und olefindicarbonsäureester, deren herstellung und verwendung als pour-point-depressants für rohöle, mineralöle oder mineralölprodukte
DE69708459T2 (de) Mikroemulsionen und emulsionen mit kontinuierlicher ölphase, mit hohem wassergehalt, niedriger viskosität und ihre verwendung in reinigungsanwendungen
DE3317909A1 (de) Perlglanz-dispersion
EP3071546A1 (de) Teilkristalline glucamid-zusammensetzungen und verfahren zu deren herstellung
DE2921366A1 (de) Konzentrierte waessrige oberflaechenaktive zubereitung
EP0439427B1 (de) Wässrige Emulsionen, enthaltend Antioxidantien
DE3830913A1 (de) Neue waessrige emulsionscopolymerisate, insbesondere in wasser- und oel-verduennbarer form zur verbesserung der fliesseigenschaften und stockpunktserniedrigung von erdoelen und erdoelfraktionen sowie ihre verwendung
EP0618995B1 (de) Verwendung ausgewählter inhibitoren gegen die ausbildung fester inkrustationen auf organischer basis aus fliessfähigen kohlenwasserstoffgemischen
WO2017162545A1 (de) Verfahren zur herstellung von atbs und copolymeren daraus
EP0531807B1 (de) Verfahren zur Lagerung bzw. zum Transport von flüssigen Kohlenwasserstoffen
ITUB20156295A1 (it) Emulsioni acquose contenenti copolimeri etilene-vinilacetato, loro procedimento di preparazione e loro impiego come additivi anti-gelificanti di greggi petroliferi.
EP0585286A1 (de) Konzentriertes wässriges flüssigwaschmittel
EP3551718B1 (de) Wässrige zusammensetzungen von paraffininhibitoren
JP2008255077A (ja) パール光沢組成物の製造方法
DE2249360A1 (de) Verfahren zur herstellung sulfonierter detergentien
DE392337C (de)
DE1768298A1 (de) Schmiermittelzusaetze
EP3525924A1 (de) WASCHMITTELZUSAMMENSETZUNG MIT FLIEßGRENZE
DE602004004915T2 (de) Verfahren zur herstellung von waschmitteln
EP2081673A1 (de) Verfahren zur kontinuierlichen herstellung von dispersionen in mikrostrukturierten apparaten
WO2024125887A1 (de) Herstellverfahren für wasch- oder reinigungsmittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20091113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20100805