EP2115296B1 - Pilotage d'une pluralite de bobines bougies via un unique etage de puissance - Google Patents

Pilotage d'une pluralite de bobines bougies via un unique etage de puissance Download PDF

Info

Publication number
EP2115296B1
EP2115296B1 EP08762151.2A EP08762151A EP2115296B1 EP 2115296 B1 EP2115296 B1 EP 2115296B1 EP 08762151 A EP08762151 A EP 08762151A EP 2115296 B1 EP2115296 B1 EP 2115296B1
Authority
EP
European Patent Office
Prior art keywords
frequency
plasma generation
resonator
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08762151.2A
Other languages
German (de)
English (en)
Other versions
EP2115296A1 (fr
Inventor
Paulo Barroso
Clément Nouvel
Nabil Meziti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2115296A1 publication Critical patent/EP2115296A1/fr
Application granted granted Critical
Publication of EP2115296B1 publication Critical patent/EP2115296B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P17/00Testing of ignition installations, e.g. in combination with adjusting; Testing of ignition timing in compression-ignition engines
    • F02P17/12Testing characteristics of the spark, ignition voltage or current
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • F02P7/02Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices of distributors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator

Definitions

  • the present invention relates generally to systems for generating plasma between two electrodes of a spark plug, used in particular for radiofrequency ignition control of a gaseous mixture in combustion chambers of an internal combustion engine.
  • plasma generation circuits incorporating coils-candles are used to generate multi-filament discharges between their electrodes, to initiate the combustion of the mixture in the chambers of combustion of the engine.
  • the multi-spark plug is described in detail in the following patent applications in the name of the Applicant FR 03-10766 , FR 03-10767 and FR 03-10768 .
  • Another example of a known system is described in US Patent 5,655,201 .
  • Such a coil-plug is conventionally modeled by a resonator 1, whose resonant frequency F c is greater than 1 MHz, typically close to 5 MHz.
  • the resonator comprises in series a resistor R, an inductance L and a capacitance C. Ignition electrodes 10 and 12 of the coil-plug are connected across the capacitor C.
  • the amplitude across the capacitor C is amplified, making it possible to develop multi-filament discharges between the electrodes of the candle, on distances of the order of one centimeter, at high pressure and for peak voltages below 30 kV.
  • branched sparks These are referred to as branched sparks, insofar as they involve the simultaneous generation of at least several lines or ionization paths in a given volume, their branches being moreover omnidirectional.
  • the control of the supply of such a coil-plug requires the use of a power supply circuit, capable of generating voltage pulses, typically of rise time of 100 ns, and amplitude of the order of 1 kV, at a frequency intended to be very close to the resonant frequency of the radiofrequency resonator of the coil-candle.
  • a power supply circuit capable of generating voltage pulses, typically of rise time of 100 ns, and amplitude of the order of 1 kV, at a frequency intended to be very close to the resonant frequency of the radiofrequency resonator of the coil-candle.
  • the greater the difference between the resonance frequency of the resonator and the operating frequency of the generator the higher the resonator overvoltage coefficient (ratio between the amplitude of its output voltage and its input voltage) is high.
  • Such a feed circuit is schematically represented at figure 2 . It conventionally uses a so-called “Class E power amplifier” assembly. This type of DC / AC converter makes it possible to create the voltage pulses with the aforementioned characteristics.
  • the amplifier 2 comprises switch M for controlling the switches across the resonator 1, made according to this example in the form of a power MOSFET transistor.
  • a control device 5 generates and applies a control signal V1 to a control frequency on the gate of the power MOSFET M, via a control stage 3 shown schematically.
  • the latter is activated by the different ignition commands and is in the form of control pulse trains at the control frequency.
  • a parallel resonant circuit 4 is connected between an intermediate voltage source Vinter and the drain of the transistor M.
  • This circuit 4 comprises an inductance Lp in parallel with a capacitance Cp.
  • the parallel resonator transforms the intermediate voltage Vinter into an amplified voltage Va (illustrated in FIG. figure 5 ), corresponding to the intermediate voltage multiplied by the overvoltage coefficient of the parallel resonator.
  • This amplified voltage is supplied on the drain of the transistor M, which is also connected to the input of the resonator 1.
  • the transistor M therefore acts as a switch and applies (respectively blocks) the voltage Va to the input of the resonator 1 when the control signal V1 is at the logic high (respectively low).
  • the transistor M thus imposes a switching frequency, determined by the control signal V1, which is sought to make as close as possible to the resonant frequency of the coil-plug connected at the output (typically 5 MHz), in order to maintain and maximize the energy transfer between the parallel resonator 4 and the series resonator 1 forming the coil-candle.
  • This phase of energy transfer from the power stage formed by the amplifier to the resonator of the coil-plug must be performed at the resonance frequency of the resonator, to ensure a good performance. Indeed, if the transistor M imposes a different switching frequency of the resonant frequency of the coil-candle, the energy transfer is degraded, because of the narrow bandwidth of the series resonator used for the candle coil .
  • each combustion chamber is equipped with a coil-candle as described above to initiate, on command, combustion.
  • the present invention aims to overcome this disadvantage, by allowing to control a plurality of coils-candles through the same and single amplification channel.
  • each plasma generating circuit comprises a resonator and each resonator comprises a distinct resonance frequency.
  • each plasma generation circuit comprises a resonator, each resonator having an identical resonance frequency, and at least one of the plasma generation circuits further comprises means for shifting the resonance frequency of its resonator.
  • the frequency shift means comprise an impedance matching circuit arranged in series between the output of the supply circuit and the resonator.
  • the impedance matching circuit comprises an inductance.
  • the impedance matching circuit is constituted by an impedant connecting cable ensuring the connection between the output of the supply circuit and each resonator, the length of the portion of cable between the resonators defining the frequency offset. between the resonators.
  • each plasma generation circuit is adapted to achieve ignition in one of the following implementations: controlled ignition in a combustion engine cylinder, ignition in a particle filter, ignition decontamination in an air conditioning system.
  • the present invention therefore aims at controlling a plurality of coil-type plasma generation circuits, using a single amplification channel, in other words by using a single power supply circuit of the class E power amplifier type as previously described. to the figure 2 , for selectively supplying the plurality of plasma generation circuits connected in parallel at the output of this single supply circuit.
  • the principle on which this particular assembly is based consists in exploiting, at the level of the high voltage and high frequency control generated by the supply circuit, the resonance frequency specific to each plasma generation circuit connected at the output of the supply circuit. .
  • each of these plasma generating circuits has a resonant frequency well separated from the others. This is indeed to avoid overlapping resonance frequency resonator domains forming each plasma generation circuit and thus to overcome the problems of multiple simultaneous ignitions.
  • the resonant frequency difference between the plural plasma generation circuits connected in parallel at the output of the single supply circuit must preferably be at least equal to a multiple of the bandwidth of each resonator. For example, it may be possible to shift the resonance frequency of each plasma generating circuit relative to each other by a value equal to two or three times the bandwidth of each circuit.
  • a first way to do this is to use for each plasma generation circuit a coil-candle, as modeled at the figure 1 , different by construction, so that the coils-candles used have sufficiently distinct resonant frequencies in accordance with the principles outlined above.
  • each plasma generation circuit consists of a resonator as shown in FIG. figure 1 and where each resonator has a distinct resonant frequency, however, is not optimal for integration into an industrial process.
  • a preferred embodiment for carrying out the resonance frequency shift between the plurality of plasma generation circuits to be controlled consists in using identical coil-plugs, the resonators of which model them have identical resonance frequencies, and to associate each resonator means for shifting its resonance frequency.
  • the resonance frequency shifting means of a plasma generating circuit comprises an impedance matching circuit 14, arranged to be arranged in series between the output of the supply circuit 2 and the resonator 1.
  • the impedance-resonator pair forming the plasma generation circuit has its resonant frequency shifted with respect to the resonance frequency of the resonator 1 of the insulated coil-candle.
  • the impedance values of the circuits 14 are thus chosen so that the difference in resonance frequency between each plasma generation circuit, each constituted by an impedance-resonator torque, is equal to at least one multiple of the bandwidth of each resonator.
  • the resonance frequency shifting means of a plasma generating circuit relative to another use the connecting cable providing the connection between the output of the supply circuit and each coil-candle as series impedance, the coils -bougies are also identical, namely that their resonator have an identical resonant frequency.
  • it is the length of the cable portion, respectively L1, L2, L3, between the spark-coils, respectively between BB1 and BB2, between BB2 and BB3 and between BB3 and BB4, which acts as an impedance , in particular of inductance, and thus defines the resonator frequency offset between the resonators of the coils-candles.
  • the control method of the single power supply circuit must then take into account the frequency adapted to the channel to be controlled for each ignition.
  • control device 5 of the power supply circuit can have a memory capable of preserving the order of frequency classification corresponding to each of the channels to be controlled.
  • the control device upon receipt of an ignition request, the control device is firstly able to determine the cylinder to be controlled, numbered for example from 1 to 4 in the order of disposition on the motor. Each cylinder number is therefore associated with the resonance frequency, F1, F2, F3 and F4 respectively, specific to the corresponding plasma generating circuit to be controlled.
  • the control device then comprises a module determining the frequency of the control signal to be generated, among these frequencies F1, F2, F3 and F4, as a function of the number of the cylinder to be switched on and the order of classification of the frequencies previously memorized.
  • control device applies the control signal to said frequency on an output interface intended to control the switch M.
  • the selective power transfer to the plasma generating circuit to be controlled for ignition is then naturally managed by the control frequency used for this ignition.
  • the determination of the resonant frequencies to be obtained at the output of the single feed circuit can be controlled by tabulation or servo-control methods as described in the French patent applications filed in the name of the Applicant. FR 05-127669 and FR 05-12770 .
  • control device may be provided with an interface for receiving engine operating parameter measurement signals (engine oil temperature, engine torque, engine speed, ignition angle, air temperature). inlet, pressure in the combustion chamber, etc.) and / or power supply operating parameter measurement signals, as well as a particular memory module storing relationships between measurement signals and the frequency of a control signal to be generated.
  • engine operating parameter measurement signals engine oil temperature, engine torque, engine speed, ignition angle, air temperature
  • power supply operating parameter measurement signals as well as a particular memory module storing relationships between measurement signals and the frequency of a control signal to be generated.
  • the controller determines the frequency of a control signal to be generated based on measurement signals received on the receiving interface and relationships stored in the memory module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Amplifiers (AREA)

Description

  • La présente invention concerne, de façon générale, les systèmes de génération de plasma entre deux électrodes d'une bougie, utilises notamment pour l'allumage radiofréquence commande d'un mélange gazeux dans des chambres de combustion d'un moteur a combustion interne.
  • Pour une telle application à l'allumage automobile à génération de plasma, des circuits de génération de plasma intégrant des bobines-bougies sont utilisées pour générer des décharges multi-filamentaires entre leurs électrodes, permettant d'initier la combustion du mélange dans les chambres de combustion du moteur. La bougie multi étincelles est décrite en détail dans les demandes de brevet suivantes au nom de la demanderesse FR 03-10766 , FR 03-10767 et FR 03-10768 . Un autre exemple de système connu est décrit dans le brevet US 5,655,201 . Une telle bobine-bougie est classiquement modélisée par un résonateur 1, dont la fréquence de résonance Fc est supérieure à 1 MHz, typiquement voisine de 5 MHz. Le résonateur comprend en série une résistance R, une inductance L et une capacité C. Des électrodes d'allumage 10 et 12 de la bobine-bougie sont connectées aux bornes de la capacité C.
  • Lorsque le résonateur est alimenté par une haute tension à sa fréquence de résonance f c ( 1 / 2 π L * C ,
    Figure imgb0001
    l'amplitude aux bornes de la capacité C est amplifiée, permettant de développer des décharges multi-filamentaires entre les électrodes de la bougie, sur des distances de l'ordre du centimètre, à forte pression et pour des tensions de crête inférieures à 30 kV.
  • On parle alors d'étincelles ramifiées, dans la mesure où elles impliquent la génération simultanée d'au moins plusieurs lignes ou chemin d'ionisation dans un volume donné, leurs ramifications étant en outre omnidirectionnelles.
  • Le pilotage de l'alimentation d'une telle bobine-bougie nécessite l'utilisation d'un circuit d'alimentation, capable de générer des impulsions de tension, typiquement de temps de montée de 100 ns, et d'amplitude de l'ordre de 1 kV, à une fréquence prévue pour être très proche de la fréquence de résonance du résonateur radiofréquence de la bobine-bougie. Plus la différence entre la fréquence de résonance du résonateur et la fréquence de fonctionnement du générateur est réduite, plus le coefficient de surtension du résonateur (rapport entre l'amplitude de sa tension de sortie et sa tension d'entrée) est élevé.
  • Un tel circuit d'alimentation, détaillé par ailleurs dans la demande de brevet FR 03-10767 , est représenté schématiquement à la figure 2. Il met classiquement en oeuvre un montage dit « amplificateur de puissance Classe E ». Ce type de convertisseur DC/AC permet de créer les impulsions de tension avec les caractéristiques précitées.
  • Selon le mode de réalisation de la figure 2, l'amplificateur 2 comprend interrupteur M pour commander les commutations aux bornes du résonateur 1, réalisé selon cet exemple sous la forme d'un transistor MOSFET de puissance.
  • Ainsi, un dispositif de commande 5 génère et applique un signal de commande V1 à une fréquence de commande sur la grille du MOSFET de puissance M, par l'intermédiaire d'un étage de commande 3 représenté schématiquement. Afin de contrôler la production d'étincelles entre les électrodes de la bobine-bougie connectée en sortie de l'amplificateur lorsque son résonateur 1 est excité par l'intermédiaire du signal de commande V1, ce dernier est activé par les différents ordres d'allumage et se présente sous la forme de trains d'impulsions de commande à la fréquence de commande.
  • Comme décrit dans la demande de brevet EP-A-1 515 594 , un circuit résonant parallèle 4 est connecté entre une source de tension intermédiaire Vinter et le drain du transistor M. Ce circuit 4 comprend une inductance Lp en parallèle avec une capacité Cp.
  • A proximité de sa fréquence de résonance, le résonateur parallèle transforme la tension intermédiaire Vinter en une tension amplifiée Va (illustrée à la figure 5), correspondant à la tension intermédiaire multipliée par le coefficient de surtension du résonateur parallèle. Cette tension amplifiée est fournie sur le drain du transistor M relié par ailleurs à l'entrée du résonateur 1.
  • Le transistor M agit donc comme un interrupteur et applique (respectivement bloque) la tension Va à l'entrée du résonateur 1 lorsque le signal de commande V1 est à l'état logique haut (respectivement bas). Le transistor M impose ainsi une fréquence de commutation, déterminée par le signal de commande V1, que l'on cherche à rendre la plus proche possible de la fréquence de résonance de la bobine-bougie connectée en sortie (typiquement 5MHz), afin d'entretenir et de maximiser le transfert d'énergie entre le résonateur parallèle 4 et le résonateur série 1 formant la bobine-bougie.
  • A la fréquence de résonance de la bobine-bougie, on retrouve alors aux bornes de la capacité C du résonateur série 1, soit aux bornes des électrodes de la bougie, la tension de sortie Va précédemment évoquée, multipliée par le coefficient de surtension du résonateur série 1.
  • Cette phase de transfert d'énergie de l'étage de puissance formée par l'amplificateur vers le résonateur de la bobine-bougie doit être réalisée à la fréquence de résonance du résonateur, pour assurer un bon rendement. En effet, si le transistor M impose une fréquence de commutation différente de la fréquence de résonance de la bobine-bougie, le transfert d'énergie se dégrade, du fait de l'étroitesse de la bande passante du résonateur série utilisé pour la bobine bougie.
  • Dans une application à l'allumage automobile à génération de plasma, chaque chambre de combustion est équipée d'une bobine-bougie comme décrite précédemment afin d'initier, sur commande, la combustion.
  • En conséquence, pour les moteurs 4 cylindres par exemple, il faut pouvoir disposer de quatre circuits d'alimentation du type amplificateur classe E, comme décrits précédemment en référence à la figure 2, pour alimenter et piloter respectivement les quatre bobines-bougies.
  • Une telle configuration reposant donc sur autant de voies d'amplification qu'il y a de bobines-bougies à commander limite alors le potentiel de développement de ce type d'allumage automobile par génération de plasma, d'une part à cause de l'encombrement provoqué par cette installation sous le capot moteur, mais également, à cause du coût d'installation, qui peut se révéler inabordable pour envisager d'installer ce type d'allumage sur des véhicules de série.
  • La présente invention vise à remédier à cet inconvénient, en permettant de commander une pluralité de bobines-bougies par l'intermédiaire d'une même et unique voie d'amplification.
  • Avec cet objectif en vue, l'invention a pour objet un dispositif générateur de plasma radiofréquence, caractérisé en ce qu'il comprend :
    • un circuit d'alimentation, comprenant un interrupteur commandé par un signal de commande pour appliquer une tension intermédiaire sur une sortie du circuit d'alimentation à une fréquence définie par le signal de commande,
    • au moins deux circuits de génération de plasma connectés en parallèle sur la sortie du circuit d'alimentation, chaque circuit de génération de plasma présentant une fréquence de résonance qui lui est propre et étant apte à générer un plasma lorsqu'un niveau haute tension est appliqué sur la sortie du circuit d'alimentation à une fréquence sensiblement égale à la fréquence de résonance du circuit de génération de plasma,
    • un dispositif de commande du circuit d'alimentation, déterminant la fréquence du signal de commande parmi l'une des fréquences de résonance des circuits de génération de plasma, de façon à commander sélectivement chaque circuit de génération de plasma selon la fréquence de commande utilisée.
  • Selon un mode de réalisation non revendiqué, chaque circuit de génération de plasma comprend un résonateur et chaque résonateur comprend une fréquence de résonance distincte.
  • Selon l'invention, chaque circuit de génération de plasma comprend un résonateur, chaque résonateur présentant une fréquence de résonance identique, et au moins un des circuits de génération de plasma comprend en outre des moyens de décalage de la fréquence de résonance de son résonateur.
  • Avantageusement, les moyens de décalage en fréquence comprennent un circuit d'adaptation d'impédance disposé en série entre la sortie du circuit d'alimentation et le résonateur.
  • De préférence, le circuit d'adaptation d'impédance comprend une inductance.
  • Selon une variante, le circuit d'adaptation d'impédance est constitué par un câble de liaison impédant assurant la connexion entre la sortie du circuit d'alimentation et chaque résonateur, la longueur de la portion de câble entre les résonateurs définissant le décalage de fréquence entre les résonateurs.
  • Avantageusement, chaque circuit de génération de plasma est adapté pour réaliser un allumage dans l'une des mises en oeuvre suivantes : allumage commandé dans un cylindre de moteur à combustion, allumage dans un filtre à particule, allumage de décontamination dans un système de climatisation.
  • L'invention concerne également un procédé de commande de l'alimentation d'un dispositif générateur de plasma comprenant un circuit d'alimentation présentant un interrupteur commandé par un signal de commande pour appliquer une tension intermédiaire à une fréquence définie par le signal de commande sur une sortie du circuit d'alimentation, à laquelle au moins deux circuits de génération de plasma sont connectés en parallèle, chaque circuit de génération de plasma étant prévu pour être commandé sélectivement à une fréquence de résonance qui lui est propre,
    ledit procédé comprenant les étapes de :
    • réception d'une requête de détermination d'une fréquence de commande ;
    • détermination du circuit de génération de plasma à commander ;
    • détermination d'une fréquence de commande sensiblement égale à la fréquence de résonance du circuit de génération de plasma à commander ;
    • génération du signal de commande à la fréquence de commande déterminée.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description suivante donnée à titre d'exemple illustratif et non limitatif et faite en référence aux figures annexées dans lesquelles :
    • la figure 1 est un schéma illustrant un modèle électrique utilisé pour le résonateur modélisant une bobine-bougie de génération de plasma;
    • la figure 2 est un schéma illustrant un dispositif de génération d'une haute tension intégrant un amplificateur, utilisé pour l'alimentation et la commande d'une bobine bougie;
    • la figure 3 illustre un premier mode de réalisation de répartition des fréquences de résonance des bobines-bougies selon l'invention,
    • la figure 4 illustre un deuxième mode de réalisation de répartition des fréquences de résonance des bobines-bougies selon l'invention,
    • la figure 5 illustre un schéma complet d'un allumage radiofréquence comprenant N bougies-bobines selon l'invention ;
    • la figure 6 illustre un organigramme d'un exemple de mise en oeuvre de la commande de l'allumage selon l'invention.
  • La présente invention vise donc à commander une pluralité de circuits de génération de plasma de type bobines-bougies, en utilisant une unique voie d'amplification, autrement dit en utilisant un unique circuit d'alimentation du type amplificateur de puissance classe E comme décrit précédemment à la figure 2, pour alimenter sélectivement la pluralité de circuits de génération de plasma connectés en parallèle en sortie de ce circuit d'alimentation unique.
  • Le principe sur lequel repose ce montage particulier consiste à exploiter, au niveau de la commande haute tension et haute fréquence générée par le circuit d'alimentation, la fréquence de résonance propre à chaque circuit de génération de plasma connecté en sortie du circuit d'alimentation.
  • En effet, il apparaît qu'une répartition judicieuse des fréquences de résonance des circuits de génération de plasma permet de déterminer naturellement le transfert de puissance souhaitée du circuit d'alimentation vers l'un ou l'autre des circuits de génération de plasma. Ainsi, une même haute tension, appliquée simultanément en sortie du circuit d'alimentation aux bornes de la pluralité de circuits de génération de plasma qui y sont connectés, permet de commander sélectivement l'un parmi ces circuits de génération de plasma, selon que la fréquence de commande utilisée au niveau du circuit d'alimentation est calquée sensiblement sur la fréquence de résonance propre à celui-ci.
  • La condition pour permettre de commander de façon indépendante la pluralité de circuits de génération de plasma par l'intermédiaire d'un unique circuit d'alimentation est donc que chacun de ces circuits de génération de plasma présente une fréquence de résonance bien séparée des autres. Il s'agit en effet d'éviter les superpositions des domaines fréquentiels de résonance des résonateurs formant chaque circuit de génération de plasma et ainsi de s'affranchir des problèmes de multiples allumages simultanés.
  • L'écart de fréquence de résonance entre les multiples circuits de génération de plasma connectés en parallèle en sortie du circuit d'alimentation unique doit être, de préférence, au minimum égal à un multiple de la bande passante de chaque résonateur. On pourra par exemple choisir de décaler la fréquence de résonance de chaque circuit de génération de plasma les uns par rapport aux autres d'une valeur égale à deux ou trois fois la bande passante de chaque circuit.
  • Plusieurs modes de réalisation sont envisageables pour réaliser un tel décalage de fréquence entre les fréquences de résonance de chaque circuit de génération de plasma.
  • Une première façon de faire est d'utiliser pour chaque circuit de génération de plasma une bobine-bougie, comme modélisée à la figure 1, différente par construction, de sorte à ce que les bobines-bougies employées présentent des fréquences de résonance suffisamment distinctes conformément aux principes exposés ci-dessus.
  • Ce mode de réalisation où chaque circuit de génération de plasma est constitué d'un résonateur tel que représenté à la figure 1 et où chaque résonateur présente une fréquence de résonance distincte, n'est toutefois pas optimale en vue de son intégration à un processus industriel.
  • En effet, il requiert l'adaptation du processus industriel à la production d'une pluralité de types bobines-bougies distincts et nécessite alors autant de références de bobines-bougies qu'il y a de voies à commander.
  • Aussi, en référence aux figures 3 et 4, un mode de réalisation préférentiel pour réaliser le décalage de fréquence de résonance entre la pluralité de circuits de génération de plasma à commander, consiste à utiliser des bobines-bougies identiques, dont les résonateurs les modélisant présentent des fréquences de résonance identiques, et à associer à chaque résonateur des moyens de décalage de sa fréquence de résonance.
  • Comme illustré à la figure 3, les moyens de décalage en fréquence de résonance d'un circuit de génération de plasma comprennent un circuit d'adaptation d'impédance 14, prévu pour être disposé en série entre la sortie du circuit d'alimentation 2 et le résonateur 1. De cette manière, le couple impédance - résonateur formant le circuit de génération de plasma, voit sa fréquence de résonance décalée par rapport à la fréquence de résonance du résonateur 1 de la bobine-bougie isolée.
  • Comme illustré à la figure 5, l'insertion de tels circuits d'impédance, de valeurs respectives différentes, respectivement Z1, Z2, Z3 et Z4, en série entre la sortie du circuit d'alimentation unique et chaque bobine-bougie, respectivement BB1, BB2, BB3 et BB4, permet alors de réaliser la répartition souhaitée des fréquences de résonance des circuits de génération de plasma connectés en parallèle en sortie du circuit d'alimentation unique, selon les principes exposés plus haut.
  • Les valeurs d'impédance des circuits 14 sont donc choisies pour que l'écart de fréquence de résonance entre chaque circuit de génération de plasma, constitué chacun par un couple impédance - résonateur, soit égal à au moins un multiple de la bande passante de chaque résonateur.
  • On pourra par exemple utiliser pour les circuits d'impédance ajoutés, des inductances telles que la fréquence de résonance de chaque circuit de génération de plasma soit décalée de la valeur souhaitée.
  • Dans l'optique d'un rendement optimal du circuit d'alimentation ainsi que d'un fonctionnement optimal des bobines-bougies, on pourra utiliser des bobines-bougies identiques dont la fréquence de résonance est plus élevée que la fréquence de résonance à laquelle on souhaite commander les bobines-bougies. Dans ce cas, si les circuits d'impédance ajoutés sont des inductances, l'effet de cet ajout doit correspondre à baisser la valeur de la fréquence de résonance globale de chaque couple inductance/bobine-bougie.
  • En variante, on pourra utiliser, pour l'une des voies à commander, une connexion simple sans ajout d'élément passif supplémentaire, tel qu'une inductance, en série avec la bobine-bougie.
  • Selon un autre mode de réalisation illustré à la figure 4, les moyens de décalage en fréquence de résonance d'un circuit de génération de plasma par rapport à un autre, utilisent le câble de liaison assurant la connexion entre la sortie du circuit d'alimentation et chaque bobine-bougie comme impédance série, les bobines-bougies étant par ailleurs identiques, à savoir que leur résonateur présentent une fréquence de résonance identique. Dans ce cas, c'est la longueur de la portion de câble, respectivement L1, L2, L3, entre les bobines-bougies, respectivement entre BB1 et BB2, entre BB2 et BB3 et entre BB3 et BB4, qui fait office d'impédance, en particulier d'inductance, et définit ainsi le décalage de fréquence de résonateur entre les résonateurs des bobines-bougies.
  • Le fait d'utiliser un câble impédant entre les bobines-bougies permet avantageusement de s'affranchir de l'utilisation de composants supplémentaires pour le décalage des bobines-bougies en fréquence, comme nécessité par le mode de réalisation de la figure 3.
  • Les fréquences de résonance des différentes voies étant réparties de façon indépendante selon les principes exposés précédemment, le procédé de commande de l'unique circuit d'alimentation doit alors tenir compte de la fréquence adaptée à la voie à commander pour chaque allumage.
  • Pour ce faire, selon un mode de réalisation, le dispositif de commande 5 du circuit d'alimentation peut disposer d'une mémoire apte à conserver l'ordre de classement des fréquences correspondant à chacune des voies à commander.
  • Ainsi, selon l'exemple de la figure 6 faisant référence à une application d'allumage automobile pour un moteur à combustion à quatre cylindres, à la réception d'une demande d'allumage, le dispositif de commande est tout d'abord à même de déterminer le cylindre à commander, numéroté par exemple de 1 à 4 dans l'ordre de disposition sur le moteur. A chaque numéro de cylindre est donc associée la fréquence de résonance, respectivement F1, F2, F3 et F4, propre au circuit de génération de plasma correspondant devant être commandé.
  • Le dispositif de commande comprend alors un module déterminant la fréquence du signal de commande à générer, parmi ces fréquences F1, F2, F3 et F4, en fonction du numéro de cylindre à allumer et de l'ordre de classement des fréquences préalablement mémorisé.
  • Une fois la fréquence de commande déterminée, le dispositif de commande applique le signal de commande à ladite fréquence sur une interface de sortie, destiné à la commande de l'interrupteur M.
  • Le transfert de puissance sélectif vers le circuit de génération de plasma à commander pour l'allumage est alors naturellement géré par la fréquence de commande utilisée pour cet allumage.
  • Selon un mode de réalisation particulier, la détermination des fréquences de résonance à obtenir en sortie du circuit d'alimentation unique peut être maîtrisée par des méthodes de tabulation ou d'asservissement comme décrites dans les demandes de brevet français déposées au nom de la demanderesse FR 05-127669 et FR 05-12770 .
  • Par exemple, le dispositif de commande peut être doté d'une interface de réception de signaux de mesures de paramètres de fonctionnement du moteur (température d'huile moteur, couple moteur, régime moteur, angle d'allumage, température de l'air d'admission, pression dans la chambre de combustion, etc.) et/ou de signaux de mesures de paramètres de fonctionnement de l'alimentation, ainsi que d'un module mémoire particulier mémorisant des relations entre des signaux de mesures et la fréquence d'un signal de commande à générer. Le dispositif de commande détermine alors la fréquence d'un signal de commande à générer en fonction de signaux de mesures reçus sur l'interface de réception et des relations mémorisées dans le module de mémoire.
  • D'autres applications que la réalisation d'un allumage commandé de moteur à combustion peuvent être envisagées sans pour autant sortir du cadre de la présente invention, telles que la réalisation d'un allumage dans un filtre à particule, ou d'un allumage de décontamination dans un système de climatisation.

Claims (6)

  1. Dispositif générateur de plasma radiofréquence, caractérisé en ce qu'il comprend :
    - un circuit d'alimentation (2), comprenant un interrupteur (M) commandé par un signal de commande (V1) pour appliquer une tension intermédiaire (Vinter) sur une sortie du circuit d'alimentation à une fréquence définie par le signal de commande,
    - au moins deux circuits de génération de plasma (BB1, BB2, BB3, BB4) connectés en parallèle sur la sortie du circuit d'alimentation, chaque circuit de génération de plasma présentant une fréquence de résonance qui lui est propre et étant apte à générer un plasma lorsqu'un niveau haute tension est appliqué sur la sortie du circuit d'alimentation à une fréquence sensiblement égale à la fréquence de résonance du circuit de génération de plasma,
    - un dispositif de commande (5) du circuit d'alimentation, déterminant la fréquence du signal de commande parmi l'une des fréquences de résonance (F1, F2, F3, F4) des circuits de génération de plasma, de façon à commander sélectivement chaque circuit de génération de plasma selon la fréquence de commande utilisée, caractérisé en ce que chaque circuit de génération de plasma comprend un résonateur (1), chaque résonateur présentant une fréquence de résonance identique, et en ce qu'au moins un des circuits de génération de plasma comprend en outre des moyens de décalage de la fréquence de résonance de son résonateur.
  2. Dispositif selon la revendication 1, caractérisé en ce que les moyens de décalage en fréquence comprennent un circuit d'adaptation d'impédance (14) disposé en série entre la sortie du circuit d'alimentation et le résonateur.
  3. Dispositif selon la revendication 2, caractérisé en ce que le circuit d'adaptation d'impédance comprend une inductance.
  4. Dispositif selon la revendication 3, caractérisé en ce que le circuit d'adaptation d'impédance est constitué par un câble de liaison impédant assurant la connexion entre la sortie du circuit d'alimentation et chaque résonateur, la longueur (L1, L2, L3) de la portion de câble entre les résonateurs définissant le décalage de fréquence entre les résonateurs.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque circuit de génération de plasma est adapté pour réaliser un allumage dans l'une des mises en oeuvre suivantes : allumage commandé dans un cylindre de moteur à combustion, allumage dans un filtre à particule, allumage de décontamination dans un système de climatisation.
  6. Procédé de commande de l'alimentation d'un dispositif générateur de plasma comprenant un circuit d'alimentation (2) présentant un interrupteur (M) commandé par un signal de commande (V1) pour appliquer une tension intermédiaire (Vinter) à une fréquence définie par le signal de commande sur une sortie du circuit d'alimentation, à laquelle au moins deux circuits de génération de plasma sont connectés en parallèle, chaque circuit de génération de plasma comprenant un résonateur (1), chaque résonateur présentant une fréquence de résonance identique, au moins un des circuits de génération de plasma comprenant en outre des moyens de décalage de la fréquence de résonance de son résonateur, chaque circuit de génération de plasma étant prévu pour être commandé sélectivement à une fréquence de résonance qui lui est propre,
    ledit procédé comprenant les étapes de :
    - réception d'une requête de détermination d'une fréquence de commande ;
    - détermination du circuit de génération de plasma à commander ;
    - détermination d'une fréquence de commande sensiblement égale à la fréquence de résonance du circuit de génération de plasma à commander ;
    - génération du signal de commande à la fréquence de commande déterminée.
EP08762151.2A 2007-03-01 2008-02-25 Pilotage d'une pluralite de bobines bougies via un unique etage de puissance Not-in-force EP2115296B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0701499A FR2913298B1 (fr) 2007-03-01 2007-03-01 Pilotage d'une pluralite de bobines bougies via un unique etage de puissance
PCT/FR2008/050310 WO2008113955A1 (fr) 2007-03-01 2008-02-25 Pilotage d'une pluralite de bobines bougies via un unique etage de puissance

Publications (2)

Publication Number Publication Date
EP2115296A1 EP2115296A1 (fr) 2009-11-11
EP2115296B1 true EP2115296B1 (fr) 2017-09-06

Family

ID=38566150

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08762151.2A Not-in-force EP2115296B1 (fr) 2007-03-01 2008-02-25 Pilotage d'une pluralite de bobines bougies via un unique etage de puissance

Country Status (9)

Country Link
US (1) US8547020B2 (fr)
EP (1) EP2115296B1 (fr)
JP (1) JP5036830B2 (fr)
KR (1) KR20090115947A (fr)
CN (1) CN101622442B (fr)
BR (1) BRPI0807707A2 (fr)
FR (1) FR2913298B1 (fr)
RU (1) RU2009136346A (fr)
WO (1) WO2008113955A1 (fr)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2934942B1 (fr) * 2008-08-05 2010-09-10 Renault Sas Controle de la frequence d'excitation d'une bougie radiofrequence.
DE102010015344B4 (de) * 2010-04-17 2013-07-25 Borgwarner Beru Systems Gmbh Verfahren zum Zünden eines Brennstoff-Luft-Gemisches einer Verbrennungskammer, insbesondere in einem Verbrennungsmotor durch Erzeugen einer Korona-Entladung
DE102011052096B4 (de) * 2010-09-04 2019-11-28 Borgwarner Ludwigsburg Gmbh Verfahren zum Erregen eines HF-Schwingkreises, welcher als Bestandteil einen Zünder zum Zünden eines Brennstoff-Luft-Gemisches in einer Verbrennungskammer hat
JP2012159033A (ja) * 2011-01-31 2012-08-23 Imagineering Inc エンジン
WO2012161231A1 (fr) * 2011-05-24 2012-11-29 イマジニアリング株式会社 Dispositif à émission d'ondes électromagnétiques
DE202012004602U1 (de) * 2012-05-08 2013-08-12 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Hochfrequenz-Plasmazündvorrichtung
CN104426411B (zh) * 2013-08-28 2018-02-23 贵阳帕斯玛环保技术有限公司 一种单谐振高频高压电源
KR20160097339A (ko) 2013-12-12 2016-08-17 페더럴-모굴 이그니션 컴퍼니 코로나 점화 시스템 내에서의 공진 주파수 검출 방법
US9525274B2 (en) 2014-04-29 2016-12-20 Federal-Mogul Ignition Company Distribution of corona igniter power signal
US9531167B2 (en) 2014-06-02 2016-12-27 Nxp Usa, Inc. Device and method for connecting an RF generator to a coaxial conductor
JP6190793B2 (ja) * 2014-11-13 2017-08-30 三菱電機株式会社 内燃機関用点火装置
US9518555B2 (en) * 2014-12-04 2016-12-13 Freescale Semiconductor, Inc. Radiation devices
JPWO2016108283A1 (ja) * 2014-12-29 2017-11-02 イマジニアリング株式会社 点火システム、及び内燃機関
JP6449736B2 (ja) * 2015-08-05 2019-01-09 三菱電機株式会社 内燃機関点火装置
AT518968B1 (de) 2016-07-08 2019-05-15 Ge Jenbacher Gmbh & Co Og Steuervorrichtung für eine Vielzahl von Aktuatoren einer Brennkraftmaschine
JP2018025190A (ja) * 2016-08-09 2018-02-15 サンケン電気株式会社 点火装置
WO2018225169A1 (fr) * 2017-06-07 2018-12-13 イマジニアリング株式会社 Dispositif d'allumage
NL2022938B1 (en) * 2019-04-12 2020-10-20 Vitalfluid B V Plasma activated fluid processing system
CN116982138A (zh) * 2021-12-31 2023-10-31 源多可股份有限公司 用于多工作站的等离子体处理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655210A (en) * 1994-08-25 1997-08-05 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
US20060132360A1 (en) * 2004-10-15 2006-06-22 Caimi Frank M Method and apparatus for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4317068A (en) * 1979-10-01 1982-02-23 Combustion Electromagnetics, Inc. Plasma jet ignition system
JPS5859376A (ja) * 1981-10-05 1983-04-08 Nissan Motor Co Ltd プラズマ点火装置
EP0228840B1 (fr) * 1986-01-07 1991-07-17 LUCAS INDUSTRIES public limited company Circuit générateur d'impulsion pour système d'allumage
US5587630A (en) * 1993-10-28 1996-12-24 Pratt & Whitney Canada Inc. Continuous plasma ignition system
DE19953710B4 (de) * 1999-11-08 2010-06-17 Robert Bosch Gmbh Verfahren und Vorrichtung zur Meßfenster-Positionierung für die Ionenstrommessung
DE10331418A1 (de) * 2003-07-10 2005-01-27 Bayerische Motoren Werke Ag Plasmastrahl-Zündkerze
FR2859869B1 (fr) * 2003-09-12 2006-01-20 Renault Sa Systeme de generation de plasma.
DE102005036968A1 (de) * 2005-08-05 2007-02-15 Siemens Ag Plasma-Zündsystem und Verfahren zu dessen Betrieb
JP2007221252A (ja) * 2006-02-14 2007-08-30 General Res Of Electronics Inc 受信機入力回路
FR2913297B1 (fr) * 2007-03-01 2014-06-20 Renault Sas Optimisation de la generation d'une etincelle d'allumage radio-frequence
FR2913299B1 (fr) * 2007-03-01 2009-04-17 Renault Sas Pilotage d'une pluralite de bobines bougies via un unique etage de puissance.
US8104444B2 (en) * 2007-10-31 2012-01-31 Caterpillar Inc. Pre-chamber igniter having RF-aided spark initiation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5655210A (en) * 1994-08-25 1997-08-05 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
US20060132360A1 (en) * 2004-10-15 2006-06-22 Caimi Frank M Method and apparatus for adaptively controlling antenna parameters to enhance efficiency and maintain antenna size compactness

Also Published As

Publication number Publication date
US20100194279A1 (en) 2010-08-05
CN101622442A (zh) 2010-01-06
BRPI0807707A2 (pt) 2014-05-27
JP5036830B2 (ja) 2012-09-26
CN101622442B (zh) 2011-12-28
KR20090115947A (ko) 2009-11-10
EP2115296A1 (fr) 2009-11-11
RU2009136346A (ru) 2011-04-10
WO2008113955A1 (fr) 2008-09-25
US8547020B2 (en) 2013-10-01
FR2913298B1 (fr) 2009-04-17
JP2010520399A (ja) 2010-06-10
FR2913298A1 (fr) 2008-09-05

Similar Documents

Publication Publication Date Title
EP2115296B1 (fr) Pilotage d'une pluralite de bobines bougies via un unique etage de puissance
FR2913299A1 (fr) Pilotage d'une pluralite de bobines bougies via un unique etage de puissance.
EP2134959B1 (fr) Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence
EP2126341B1 (fr) Optimisation de la generation d'une etincelle d'allumage radio-frequence
EP2153056B1 (fr) Dispositif de mesure dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
EP2205858B1 (fr) Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
EP1961279B1 (fr) Optimisation de la frequence d'excitation d'un resonateur
EP2250366B1 (fr) Optimisation de la frequence d'excitation d'une bougie radiofrequence
EP2315932B1 (fr) Controle de la frequence d'excitation d'une bougie radiofrequence
EP2156160A1 (fr) Diagnostic de l'etat d'encrassement des bougies d'un systeme d'allumage radiofrequence
EP2321524B1 (fr) Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
EP1446843A2 (fr) Dispositif de commande d'un actuateur piezo-electrique ultrasonore pilote electroniquement, et son procede de mise en oeuvre
FR3047573A1 (fr) Procede de commande en tension d'un equipement monte dans un vehicule automobile
FR2946190A1 (fr) Procede de detection du type d'etincelle generee par une bobine-bougie d'allumage radiofrequence, et dispositif correspondant.
EP2715105A1 (fr) Alimentation pour allumage radiofrequence avec amplificateur a double etage
EP1420156A2 (fr) Dispositif de pilotage d'injecteurs de carburant pour véhicule automobile
FR2920633A1 (fr) Procede de commande de la puissance moyenne dissipee par une lampe dans un vehicule automobile
FR2476755A1 (fr) Systeme d'allumage pour des moteurs a combustion interne
EP0171523A2 (fr) Dispositif éléctronique propre à être monté sur les véhicules automobiles fonctionnant à l'essence ou au gaz
FR2920613A1 (fr) Dispositif de commande d'un transistor haute tension
FR2969222A1 (fr) Procede de commande de l'allumage d'un moteur a combustion interne et systeme de commande de l'allumage d'un moteur a combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170301

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 926189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008052022

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170906

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 926189

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171206

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008052022

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

26N No opposition filed

Effective date: 20180607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180225

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080225

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220217

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220217

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008052022

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901