EP2715105A1 - Alimentation pour allumage radiofrequence avec amplificateur a double etage - Google Patents

Alimentation pour allumage radiofrequence avec amplificateur a double etage

Info

Publication number
EP2715105A1
EP2715105A1 EP12731053.0A EP12731053A EP2715105A1 EP 2715105 A1 EP2715105 A1 EP 2715105A1 EP 12731053 A EP12731053 A EP 12731053A EP 2715105 A1 EP2715105 A1 EP 2715105A1
Authority
EP
European Patent Office
Prior art keywords
voltage
stage
storage capacitor
ballast
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12731053.0A
Other languages
German (de)
English (en)
Inventor
André AGNERAY
Franck Deloraine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP2715105A1 publication Critical patent/EP2715105A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0876Layout of circuits the storage capacitor being charged by means of an energy converter (DC-DC converter) or of an intermediate storage inductance
    • F02P3/0884Closing the discharge circuit of the storage capacitor with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/06Other installations having capacitive energy storage
    • F02P3/08Layout of circuits
    • F02P3/0876Layout of circuits the storage capacitor being charged by means of an energy converter (DC-DC converter) or of an intermediate storage inductance
    • F02P3/0884Closing the discharge circuit of the storage capacitor with semiconductor devices
    • F02P3/0892Closing the discharge circuit of the storage capacitor with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters

Definitions

  • the present invention relates generally to systems for generating plasma between two electrodes of a spark plug, used in particular for controlled radiofrequency ignition of a gaseous mixture in combustion chambers of an internal combustion engine.
  • the invention relates more particularly to the radiofrequency ignition supply device and finds its application mainly in the automotive field.
  • plasma generation circuits incorporating spark plugs are used to generate multi-filament discharges between their electrodes to initiate combustion of the mixture in the combustion chambers of the engine.
  • the radiofrequency ignition and the multi-spark plug in question here are described in the following patent applications filed in the name of the applicant FR 2 859 830, FR 2 859 869 and FR 2 859 831.
  • such a plug coil is conventionally modeled by a series resonator 1, the resonant frequency f c is greater than 1 MHz, and typically about 5 MHz.
  • the resonator arranged at the level of the spark plug, comprises in series a resistor R, an inductance L and a capacitance C. Ignition electrodes 10 and 12 of the coil-plug are connected to the terminals of the capacitor C.
  • the resonator When the resonator is fed by a periodic high voltage (between 200V and 600V) at its resonant frequency f c "(1 / (2 J (x C)), the amplitude across the capacitance C is amplified, making it possible to develop multi-filament discharges between spark plug electrodes over centimeter distances at high pressure and at peak voltages below 25 kV.
  • This radio frequency ignition application requires the use of a power supply capable of generate voltage pulses, typically of a duration of the order of 100 ns, which can reach amplitudes of the order of 600 V to 1 kV, at a frequency very close to the resonance frequency of the radio frequency resonator of the coil -candle.
  • a power supply capable of generate voltage pulses, typically of a duration of the order of 100 ns, which can reach amplitudes of the order of 600 V to 1 kV, at a frequency very close to the resonance frequency of the radio frequency resonator of the coil -candle.
  • the greater the difference between the resonance frequency of the resonator and the operating frequency of the power supply the higher the resonator overvoltage coefficient (ratio between the amplitude of its output voltage and its input voltage) is high.
  • FIG. 2 diagrammatically illustrates such a feed device referenced 2.
  • FIG. 2 is further detailed in the patent application FR 2 859 869.
  • the feed device comprises a pseudo-class E type output stage for transforming the DC voltage supplied by a power source, in appropriate periodic pulses.
  • the supply device 2 comprises a supply source 3 delivering a DC voltage V a ii m , for example 12 volts, a DC-DC converter 4 for amplifying the DC voltage V a ii m and deliver a voltage Vin te r, called intermediate voltage, on its output.
  • the power supply device also comprises a switching circuit 5 for selectively applying the intermediate voltage to the plasma generating resonator 1 intended to be connected at the output of the supply device.
  • This switching circuit 5 essentially comprises a MOSFET transistor of power M, used as a switch, and a control amplifier 7 intended to generate a control signal VI of the transistor M.
  • the transistor M is connected between the output of the DC-DC converter 4 and an output of the supply device connected to the resonator 1 of the coil-candle.
  • the frequency of the control signal VI is taken substantially equal to the resonance frequency of the resonator 1.
  • the intermediate voltage Vi nter supplied by the DC-DC converter 4 is applied, via the switch M, to an output of the device connected to the series resonator 1 at the resonant frequency of the latter.
  • the intermediate voltage Vi nter is advantageously supplied to the transistor M via a parallel resonant circuit 6, comprising an inductance Lp in parallel with a capacitor Cp and connected between the output of the DC-DC converter 4 and the drain of the transistor M.
  • the parallel resonant circuit 6, the control amplifier 7 and the switching circuit form a radio frequency amplifier.
  • the parallel resonator 6 transforms the supply voltage Vi nter into an amplified voltage Va, corresponding to the supply voltage multiplied by the overvoltage coefficient of the parallel resonator. It is therefore the amplified supply voltage Va which is, in this embodiment, present on the output of the supply circuit at the drain of the transistor M.
  • the switch M controls the excitation frequency of the parallel resonator at the frequency defined by the control signal VI.
  • the resonance frequency of the parallel resonator 6 is preferably substantially equal to the frequency of the control voltage VI and therefore substantially equal to the resonance frequency of the series resonator 1, in order to obtain optimum amplification.
  • the intermediate voltage V INTER and the control signal of the transistor M then constitute essential means for controlling the quality and duration of the spark produced between the electrodes of the coil-candle.
  • Vi nter is produced from a DC voltage V a i im , usually the battery voltage, by a DC-DC converter 4.
  • this converter generally comprises a single amplification stage, Boost type or flyback.
  • the energy in the storage capacitor placed at the output of the amplification stage is used successively by each series resonator.
  • the amplifier must therefore be able to recharge in a relatively short time which is a function of the number of series resonators to be fed successively, which has an impact on the sizing of the converter elements.
  • the control of the amplification stage conventionally comprises two phases:
  • Boost or Flyback type topologies generally make it possible to respect this first condition. Furthermore, it is also essential that, during the discharge phase, the fall of the intermediate voltage in the storage capacitor is low, for example less than 10 or 20 volts, in order to guarantee the generation of a long-lasting spark. in the combustion chamber and thus ensure optimum combustion of the fuel mixture in the combustion chamber. Topologies such as Boost or Flyback do not meet this second condition.
  • the problem that seeks to solve the invention is to ensure optimal combustion on all engine operating points.
  • the power device is capable of providing up to 1 joule to the spark plug and that the voltage drop at the time of the discharge phase is low, typically less than 20 volts.
  • the operation of the feeding device can guarantee the generation of sparks of relatively long excitation duration, typically between 100ys and 500ys, or even 1ms.
  • a first solution is to use a storage capacitor having a high value capacity to maintain the voltage Vi nter at the desired value, typically 250 volts, during the discharge phase.
  • Vi nter an intermediate voltage
  • Vi nter an intermediate voltage
  • 408 yF The energy stored in the capacitor is then of the order of 12.75 joules during the charging phase.
  • This solution has two disadvantages: it is very dangerous (because of the amount of energy stored) and very expensive.
  • a second solution could be to provide a regulated direct supply of the coil-candle from the 12V edge network of the vehicle. But the battery should then provide a current of several hundred amperes, which is unrealistic.
  • the invention proposes to use a two-stage DC-DC converter, namely a DC-DC converter comprising a first voltage booster stage provided with a first storage capacitor followed by a second a voltage regulator stage provided with a second storage capacitor, the storage capacitor of the step-up stage then constituting a reserve of energy arranged between the input of the DC-DC converter and the second storage capacitor of the amplifier during the discharge phases of the supply device, which reduces the voltage drop at the output of the DC-DC converter during the discharge phases.
  • a two-stage DC-DC converter namely a DC-DC converter comprising a first voltage booster stage provided with a first storage capacitor followed by a second a voltage regulator stage provided with a second storage capacitor, the storage capacitor of the step-up stage then constituting a reserve of energy arranged between the input of the DC-DC converter and the second storage capacitor of the amplifier during the discharge phases of the supply device, which reduces the voltage drop at the output of the DC-DC converter during the discharge phases.
  • the invention relates to a device for supplying a radiofrequency ignition, said device for supplying a DC voltage at a predetermined frequency to a series resonator and comprising
  • a power source capable of delivering a continuous supply voltage
  • a DC-DC converter amplifying said DC supply voltage and delivering on an output a DC voltage, said intermediate voltage whose amplitude is greater than said DC supply voltage
  • a power switch controlled by a control signal for selectively applying said intermediate voltage to the series resonator at a control frequency equal to said predefined frequency
  • the DC-DC converter comprises a step-up stage for generating, from the DC supply voltage, a so-called ballast voltage across a first storage capacitor and a voltage regulation stage for generating from said ballast voltage the intermediate voltage across a second storage capacitor, said ballast voltage being greater than the DC supply voltage.
  • the presence of this double stage greatly reduces the voltage drop across the second capacitor present at the output of the DC-DC converter during the discharge phases of the supply device.
  • the first storage capacitor acts as a complementary energy reservoir when the intermediate voltage at the output of the supply device tends to fall.
  • the voltage booster stage is a Boost-type circuit for limiting the resistive losses in this stage.
  • the step-up stage is controlled to charge said first storage capacitor during a charging phase and to generate, at the terminals of said first storage capacitor, a ballast voltage. substantially equal to a predefined value at the end of said charging phase.
  • the control of the voltage booster stage is preferably synchronized to the control signal of the power switch.
  • the predefined voltage ballast value is determined according to the rotational speed of the heat engine in which the radio frequency ignition is installed. This value is for example equal to 340 volts when the rotational speed of the engine is high.
  • the ballast voltage is greater than the intermediate voltage and the voltage regulation stage is a voltage step-down stage.
  • the voltage step-down stage is a Buck type circuit.
  • the voltage regulation stage is controlled to charge, during said charging phase, said second storage capacitor with energy stored in said first storage capacitor and to generate an intermediate voltage substantially equal to a predefined value across said second storage capacitor at the end of said charging phase.
  • This predefined value varies according to the operating point of the motor is typically in a range from 50 to 200 V.
  • the control of the voltage regulation stage is preferably synchronized to the control signal of the power switch.
  • the voltage regulation stage is also controlled to maintain, during a subsequent discharge phase to the charging phase, the intermediate voltage substantially equal to said preset value of intermediate voltage.
  • the invention also relates to a radiofrequency ignition device comprising a supply device as defined above and a plasma generation series resonator connected to the output of the supply device.
  • FIG. 1 is a diagram of a series resonator modeling a plasma generation radiofrequency coil-candle
  • FIG. 2 is a diagram modeling a supply device, used for the control of the series resonator of the spark plug coil of FIG. 1,
  • Fig. 3 is a diagram of a DC-DC converter of the feeder of Fig. 2;
  • FIG. 4 represents curves illustrating the voltage at the terminals of the two storage capacitors and the control signals of the switches of the DC-DC converter of FIG. 3.
  • Boost structure Boost structure
  • Flyback structure forward structure
  • capacitive half-bridge structure a complete bridge structure.
  • the charging phase of the device power supply lasts a maximum of 3.7ms on a four-cylinder, four-stroke engine.
  • discharge phase lasts at most 500 ys, then, under these conditions which are extreme, the first stage works of time.
  • the voltage converter must therefore preferably minimize the resistive losses.
  • the voltage booster stage referenced 41 is of the Boost type. Energy from the power supply 3 is temporarily accumulated in an induction coil 410 and then transferred via a diode 411 into a so-called ballast capacitor 412, across which a voltage V ba n ast is measured. Note V i im the voltage at the power supply terminal 3.
  • a transistor, forming a switch 413, is used to control the energy storage phase in the coil and the transfer phase to the capacitor.
  • the switch 413 is controlled by a control signal C1 of square shape. The operation of such a stage is well known to those skilled in the art.
  • the switch 413 is closed (on state), which causes an increase in current in the coil 410 and the storage of energy in the form of magnetic energy in the coil 410.
  • this accumulation phase the diode 411 is blocked and the capacitor is disconnected from the power source 3.
  • the switch is open, the coil 410 is in series with the power source 3 and its electromotive force s' then add to that of the power source.
  • the current flowing through the coil also flows through diode 411 and capacitor 412. This results in energy transfer between coil 410 and capacitor 412.
  • Induction coil 410 unique is used instead of for example a transformer in the case of a flyback structure.
  • the source of transistor 413 is connected to ground, the transistor is easier to control than if its source was floating.
  • the transistor conduction time 413 must be much greater than the non-conduction time for the charging phase.
  • the charging time of the coil 410 is thus defined to be greater than the discharge time.
  • the average current in the coil is therefore substantially equal to the average current supplied by the power source 3, which is the most favorable situation in terms of resistive losses.
  • the second stage of the DC-DC converter has the main role of rapidly regulating the output voltage of the converter to the desired intermediate voltage Vi nter value . It also has the function of transferring energy between two capacitors having high voltages between their terminals. Several structures are possible for this stage, either a voltage booster or a voltage booster.
  • the first step-up stage converts the voltage V aum into a DC voltage V ba n ast and the second stage converts the voltage V ba n ast to a DC voltage across the terminals.
  • the first step-up stage converts the voltage V to n m into a DC voltage V ba n ast > Vi nte r and the second stage converts the voltage V ba n ast to the Voltage Vi nter -
  • Vinter 250 VOlTS.
  • This second case is a preferred embodiment. Indeed, at maximum energies supplied identical (for example 1 Joule), it is known to those skilled in the art that the peak current flowing in the coil of a Boost stage is greater than that flowing in the coil of a Buck stage. .
  • a second loop-type buck step-down stage is therefore the solution which is the least expensive and which has the lowest resistive losses. This solution is that illustrated in FIG.
  • the second stage is a loop-type buck step-down stage 42.
  • This stage comprises a transistor, forming a switch 423, connected in series with a coil 420 and a capacitor 422.
  • a diode 421 is connected in parallel with the series assembly formed of the coil 420 and the capacitor 422.
  • the switch 423 is controlled by a control signal C2 of rectangular or square shape.
  • FIG. 4 represents curves illustrating the operation of the DC-DC converter of FIG. 3 in the context of a device for supplying a radiofrequency ignition.
  • a first curve represents the control signal VI of the switch M of the supply device 2.
  • the switch M operates in switching mode (alternations of states open and closed).
  • the switch is open (locked state).
  • a second curve represents the evolution of the voltage V ba n ast present at the output of the step-up stage 41 during the charging and discharging phases.
  • a third curve represents the evolution of the voltage Vi nte r present at the output of the voltage step-down stage 42.
  • the fourth and fifth curves show the state of the transistors 413 and 423 during said charging and discharging phases. .
  • the control of the voltage booster stage 41 is relatively simple.
  • the objective is to have at least before the discharge phase of the supply device a voltage V ba ii ast which is constant and strictly greater than the voltage Vi nte r-
  • the voltage V ba n ast is for example between 300 and 400 volts.
  • This voltage V ba n ast is regulated by an integral proportional or proportional control loop well known to those skilled in the art, controlling the control signal C1 of the transistor 413.
  • the transistor 413 operates in commutation during the charging phase of the feeding device.
  • Its control signal C1 is synchronized to the control signal VI of the power transistor M.
  • the signal C1 is a logic signal having a variable frequency and duty cycle.
  • This frequency and this duty cycle are determined by the control loop and are a function of the inductance of the coil 410, the capacity of the capacitor 412 and the state of charge of the latter.
  • the transistor 413 is in a blocked state.
  • the control of the voltage step-down stage 42 is described below.
  • the capacitor 422 is charged and, during the discharge phase of the supply device, it charges and discharges.
  • the desired voltage Vi nter across the capacitor 422 and the available charging time are known.
  • the charging phase lasts maximum 3.7 ms.
  • the available charging time can be calculated from the rotational speed of the motor or the time between the two previous sparks. This available charging time can be calculated as follows:
  • N rotational speed of the engine
  • duration between 2 previous sparks
  • the charge of the capacitor 422 is achieved by a suitable control of the transistor 422.
  • the simplest control is to generate a control signal C2 of constant frequency.
  • a control signal C2 controlled by frequency and duty cycle will be used to minimize the resistive losses in the down-converter stage during this charging phase. It is also conceivable to use a proportional or integral proportional control loop to regulate the voltage Vi nte r during this charging phase.
  • the objective of the voltage step-down stage is to guarantee a constant voltage Vi nter or failing to limit the voltage drop.
  • the step-down stage continues to operate in switching mode.
  • the energy consumed in priority during this phase is the energy available in the capacitor 412 (of the first stage) charged under the voltage V ba n ast .
  • this second stage operates as a voltage step-down, it is possible to draw energy from this capacitor as long as the voltage V ba n ast is greater than the voltage Vi nte r desired.
  • the energy transfer is provided by controlling the transistor 423 with a control signal C2 variable duty cycle during this discharge phase.
  • the coil 420 is dimensioned taking into account this limit to ensure rapid control during the discharge phase.
  • the coil 420 is then chosen such that:
  • iLmax maximum current flowing in the coil 420
  • the capacitor 422 performs a dual filtering and storage function, that is to say it must have a low frequency impedance while having a high capacitance for storage.
  • the capacitor 422 performs a dual filtering and storage function, that is to say it must have a low frequency impedance while having a high capacitance for storage.
  • Capacitor capacity 422 and therefore reduce the cost of the DC-DC converter as a whole.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

L'invention concerne un dispositif d'alimentation d'un allumage radiofréquence, ledit dispositif étant destiné à fournir une tension continue à une fréquence prédéfinie à un résonateur série et comprenant une source d'alimentation (3) apte à délivrer une tension d'alimentation continue (Vaiim), un convertisseur continu-continu (4) amplifiant ladite tension d'alimentation continue (Vaiim) et délivrant sur une sortie une tension continue, dite tension intermédiaire (Vinter) dont l'amplitude est supérieure à ladite tension d'alimentation continue, et un interrupteur de puissance commandé par un signal de commande pour appliquer sélectivement ladite tension intermédiaire (Vinter) sur le résonateur série à une fréquence de commande égale à ladite fréquence prédéfinie. Selon l'invention, le convertisseur continu-continu comprend deux étages, un étage élévateur de tension (41) et un étage de régulation de tension (42) de manière à réduire les chutes de tension à la sortie du convertisseur lorsque l'allumage génère des étincelles.

Description

ALIMENTATION POUR ALLUMAGE RADIOFREQUENCE AVEC AMPLIFICATEUR
A DOUBLE ETAGE
La présente invention concerne, de façon générale, les systèmes de génération de plasma entre deux électrodes d'une bougie, utilisés notamment pour l'allumage radiofréquence commandé d'un mélange gazeux dans des chambres de combustion d'un moteur à combustion interne. L'invention concerne plus particulièrement le dispositif d'alimentation de l'allumage radiofréquence et trouve principalement son application dans le domaine automobile.
Dans les systèmes de génération de plasma, des circuits dits de génération de plasma intégrant des bobines- bougies sont utilisés pour générer des décharges multi- filamentaires entre leurs électrodes afin d'initier la combustion du mélange dans les chambres de combustion du moteur. L'allumage radiofréquence et la bougie multi étincelles dont il est question ici sont décrits dans les demandes de brevet suivantes déposées au nom de la demanderesse FR 2 859 830, FR 2 859 869 et FR 2 859 831.
En référence à la figure 1, une telle bobine-bougie est classiquement modélisée par un résonateur série 1, dont la fréquence de résonance fc est supérieure à 1 MHz, et typiquement voisine de 5 MHz. Le résonateur, disposé au niveau de la bougie, comprend en série une résistance R, une inductance L et une capacité C. Des électrodes d'allumage 10 et 12 de la bobine-bougie sont connectées aux bornes de la capacité C. Lorsque le résonateur est alimenté par une haute tension périodique (comprise entre 200V et 600V) à sa fréquence de résonance fc « (1 / (2 J( x C)) , l'amplitude aux bornes de la capacité C est amplifiée, permettant de développer des décharges multi-filamentaires entre les électrodes de la bougie, sur des distances de l'ordre du centimètre, à forte pression et pour des tensions de crête inférieures à 25 kV.
Cette application à l'allumage radiofréquence nécessite l'utilisation d'une alimentation, capable de générer des impulsions de tension, typiquement d'une durée de l'ordre de 100 ns, pouvant atteindre des amplitudes de l'ordre de 600 V à 1 kV, à une fréquence très proche de la fréquence de résonance du résonateur radiofréquence de la bobine-bougie. Plus la différence entre la fréquence de résonance du résonateur et la fréquence de fonctionnement de l'alimentation est réduite, plus le coefficient de surtension du résonateur (rapport entre l'amplitude de sa tension de sortie et sa tension d'entrée) est élevé.
La figure 2 illustre schématiquement un tel dispositif d'alimentation référencé 2. La figure 2 est détaillée par ailleurs dans la demande de brevet FR 2 859 869. Le dispositif d'alimentation comprend un étage de sortie de type pseudo-classe E pour transformer la tension continue fournie par une source d'alimentation, en impulsions périodiques appropriées. Selon le mode de réalisation de la figure 2, le dispositif d'alimentation 2 comprend une source d'alimentation 3 délivrant une tension continue Vaiim, par exemple 12 volts, un convertisseur continu-continu 4 pour amplifier la tension continue Vaiim et délivrer une tension Vinter , appelée tension intermédiaire, sur sa sortie. Le dispositif d'alimentation comprend également un circuit de commutation 5 destiné à appliquer sélectivement la tension intermédiaire sur le résonateur 1 de génération de plasma destiné à être connecté en sortie du dispositif d'alimentation. Ce circuit de commutation 5 comporte essentiellement un transistor MOSFET de puissance M, utilisé comme interrupteur, et un amplificateur de commande 7 destiné à générer un signal de commande VI du transistor M. Le transistor M est monté entre la sortie du convertisseur continu-continu 4 et une sortie du dispositif d'alimentation connectée au résonateur 1 de la bobine-bougie. La fréquence du signal de commande VI est prise sensiblement égale à la fréquence de résonance du résonateur 1. Ainsi, la tension intermédiaire Vinter fournie par le convertisseur continu- continu 4 est appliquée, via l'interrupteur M, sur une sortie du dispositif connectée au résonateur série 1 à la fréquence de résonance de ce dernier.
Selon le mode de réalisation illustré par la figure 2, la tension intermédiaire Vinter est avantageusement fournie au transistor M via un circuit résonant parallèle 6, comprenant une inductance Lp en parallèle avec une capacité Cp et connecté entre la sortie du convertisseur continu- continu 4 et le drain du transistor M. Le circuit résonant parallèle 6, l'amplificateur de commande 7 et le circuit de commutation forme un amplificateur radiofréquence .
A proximité de sa fréquence de résonance, le résonateur parallèle 6 transforme la tension d'alimentation Vinter en une tension amplifiée Va, correspondant à la tension d'alimentation multipliée par le coefficient de surtension du résonateur parallèle. C'est donc la tension d'alimentation amplifiée Va qui est, dans ce mode de réalisation, présente sur la sortie du circuit d'alimentation au niveau du drain du transistor M. L'interrupteur M pilote la fréquence d'excitation du résonateur parallèle à la fréquence définie par le signal de commande VI. La fréquence de résonance du résonateur parallèle 6 est de préférence sensiblement égale à la fréquence de la tension de commande VI et donc sensiblement égale à la fréquence de résonance du résonateur série 1, pour obtenir une amplification optimale.
Comme on peut ainsi le voir, la tension intermédiaire VINTER et le signal de commande du transistor M constituent alors des moyens essentiels pour contrôler la qualité et la durée de l'étincelle produite entre les électrodes de la bobine-bougie.
Comme décrit précédemment, la tension intermédiaire
Vinter est produite à partir d'une tension continue Vaiim, généralement la tension batterie, par un convertisseur continu-continu 4. Pour des raisons de coût, ce convertisseur comprend généralement un unique étage d'amplification, de type Boost ou Flyback. L'énergie dans le condensateur de stockage placé en sortie de l'étage d'amplification est utilisée successivement par chaque résonateur série. L'amplificateur doit donc être capable de se recharger en un temps relativement court qui est fonction du nombre de résonateurs série à alimenter successivement, ce qui a un impact sur le dimensionnement des éléments du convertisseur.
Le pilotage de l'étage d'amplification comporte classiquement 2 phases:
une phase de recharge pendant laquelle le condensateur de stockage est rechargé jusqu'à la tension Vinter souhaitée nécessaire pour la formation de la prochaine étincelle, et
une phase de décharge ou phase d'étincelle pendant laquelle une commande d'allumage est générée et l'énergie présente dans le condensateur de stockage est consommée par le résonateur série et l'étincelle.
Avant la phase de décharge, l'étage d'amplification doit donc permettre d'atteindre la tension intermédiaire maximum souhaitée même au régime moteur le plus élevé. Les topologies de type Boost ou Flyback permettent généralement de respecter cette première condition. Par ailleurs, il est également indispensable que, pendant la phase de décharge, la chute de la tension intermédiaire dans le condensateur de stockage soit faible, par exemple inférieure à 10 ou 20 volts, afin de garantir la génération d'une étincelle de longue durée dans la chambre de combustion et ainsi garantir une combustion optimale du mélange combustible dans la chambre de combustion. Les topologies de type Boost ou Flyback ne permettent pas de respecter cette deuxième condition .
Aussi, le problème que cherche à résoudre l'invention est de garantir une combustion optimale sur tous les points de fonctionnement moteur. Pour cela, il faut que le dispositif d'alimentation soit capable de fournir jusqu'à 1 joule à la bobine-bougie et que la chute de tension au moment de la phase de décharge soit faible, typiquement inférieure à 20 volts. Il faut également que le fonctionnement du dispositif d'alimentation puisse garantir la génération d'étincelles de durée d'excitation relativement longue, typiquement entre lOOys et 500ys, voire 1 ms .
Diverses solutions ont été envisagées pour atteindre cet objectif. Une première solution consiste à utiliser un condensateur de stockage présentant une capacité de valeur élevée pour maintenir la tension Vinter à la valeur souhaitée, typiquement 250 volts, pendant la phase de décharge. Pour une tension intermédiaire Vinter égale à 250 volts avec une chute de tension maximum de 10 volts de cette tension pendant la phase de décharge et un transfert d'énergie de 1 Joule, il est nécessaire d'utiliser un condensateur ayant une capacité de 408 yF. L'énergie stockée dans le condensateur est alors de l'ordre de 12,75 joules pendant la phase de charge. Cette solution présente deux inconvénients: elle est très dangereuse (en raison de la quantité d'énergie stockée) et très coûteuse.
Une deuxième solution pourrait consister à prévoir une alimentation directe régulée de la bobine-bougie depuis le réseau de bord 12V du véhicule. Mais la batterie devrait alors fournir un courant de plusieurs centaines d'ampères, ce qui est irréaliste.
Aussi, pour résoudre ce problème, l'invention propose d'utiliser un convertisseur continu-continu à deux étages, à savoir un convertisseur continu-continu comprenant un premier étage élévateur de tension muni d'un premier condensateur de stockage suivi d'un deuxième étage régulateur de tension muni d'un second condensateur de stockage, le condensateur de stockage de l'étage élévateur de tension constituant alors une réserve d'énergie disposée entre l'entrée du convertisseur continu-continu et le second condensateur de stockage de l'amplificateur pendant les phases de décharge du dispositif d'alimentation, ce qui permet de réduire les chutes de tension à la sortie du convertisseur continu-continu pendant les phases de décharge.
A cet effet, l'invention concerne un dispositif d'alimentation d'un allumage radiofréquence, ledit dispositif d'alimentation étant destiné à fournir une tension continue à une fréquence prédéfinie à un résonateur série et comprenant
- une source d'alimentation apte à délivrer une tension d'alimentation continue,
- un convertisseur continu-continu amplifiant ladite tension d'alimentation continue et délivrant sur une sortie une tension continue, dite tension intermédiaire dont l'amplitude est supérieure à ladite tension d'alimentation continue,
- un interrupteur de puissance commandé par un signal de commande pour appliquer sélectivement ladite tension intermédiaire sur le résonateur série à une fréquence de commande égale à ladite fréquence prédéfinie,
caractérisé en ce que le convertisseur continu- continu comprend un étage élévateur de tension pour générer, à partir de la tension d'alimentation continue, une tension dite de ballast aux bornes d'un premier condensateur de stockage et un étage de régulation de tension pour générer à partir de ladite tension de ballast la tension intermédiaire aux bornes d'un deuxième condensateur de stockage, ladite tension de ballast étant supérieure à la tension d'alimentation continue.
La présence de ce double étage permet de réduire fortement la chute de tension aux bornes du second condensateur présent à la sortie du convertisseur continu- continu pendant les phases de décharge du dispositif d'alimentation. Le premier condensateur de stockage joue le rôle de réservoir d'énergie complémentaire lorsque la tension intermédiaire à la sortie du dispositif d'alimentation a tendance à baisser.
Selon un mode de réalisation particulier, l'étage élévateur de tension est un montage de type Boost pour limiter les pertes résistives dans cet étage.
Selon l'invention, l'étage élévateur de tension est commandé pour charger ledit premier condensateur de stockage pendant une phase de charge et générer aux bornes dudit premier condensateur de stockage une tension de ballast sensiblement égale à une valeur prédéfinie à l'issue de ladite phase de charge. La commande de l'étage élévateur de tension est de préférence synchronisée sur le signal de commande de l'interrupteur de puissance.
Selon un mode de réalisation particulier, la valeur prédéfinie de tension ballast est déterminée en fonction du régime de rotation du moteur thermique dans lequel est installé l'allumage radiofréquence . Cette valeur est par exemple égale à 340 volts lorsque le régime de rotation du moteur est élevé.
Selon un mode de réalisation avantageux, la tension de ballast est supérieure à la tension intermédiaire et l'étage de régulation de tension est un étage abaisseur de tension .
Selon un mode de réalisation particulier, l'étage abaisseur de tension est un montage du type Buck.
L'étage de régulation de tension est commandé pour charger, pendant ladite phase de charge, ledit second condensateur de stockage avec de l'énergie stockée dans ledit premier condensateur de stockage et pour générer une tension intermédiaire sensiblement égale à une valeur prédéfinie aux bornes dudit second condensateur de stockage à l'issue de ladite phase de charge. Cette valeur prédéfinie varie selon le point de fonctionnement moteur est typiquement comprise dans une plage allant de 50 à 200 V. La commande de l'étage de régulation de tension est de préférence synchronisée sur le signal de commande de l'interrupteur de puissance.
Par ailleurs, l'étage de régulation de tension est également commandé pour maintenir, pendant une phase de décharge consécutive à la phase de charge, la tension intermédiaire sensiblement égale à ladite valeur prédéfinie de tension intermédiaire.
L'invention concerne également un dispositif d'allumage radiofréquence comprenant un dispositif d'alimentation tel que défini précédemment et un résonateur série de génération de plasma connecté à la sortie du dispositif d'alimentation. L'invention sera mieux comprise, et d'autres buts, détails, caractéristiques et avantages apparaîtront plus clairement au cours de la description explicative détaillée qui va suivre, en se référant ci-dessus aux dessins annexés, parmi lesquels:
- la figure 1, déjà décrite, est un schéma d'un résonateur série modélisant une bobine-bougie radiofréquence de génération de plasma,
- la figure 2, déjà décrite, est un schéma modélisant un dispositif d'alimentation, utilisé pour la commande du résonateur série de la bobine bougie de la figure 1,
la figure 3 est un schéma d'un convertisseur continu-continu du dispositif d'alimentation de la figure 2 ; et
- la figure 4 représente des courbes illustrant la tension aux bornes des deux condensateurs de stockage et les signaux de commande des interrupteurs du convertisseur continu-continu de la figure 3.
Comme on l'a vu précédemment, pour obtenir une faible chute de tension à la sortie du dispositif d'alimentation pendant la phase de décharge, on propose d'employer un convertisseur continu-continu à deux étages, comprenant un étage élévateur de tension et un étage de régulation de la tension de sortie. Les deux étages vont maintenant être décrits plus en détail. Premier étage du convertisseur continu-continu
Plusieurs structures d'étage élévateur de tension bien connues de l'homme du métier sont possibles: une structure Boost, une structure Flyback, une structure forward, une structure demi-pont capacitif, une structure pont complet. Au régime de rotation moteur maximum, typiquement de 8200trs/min, et à énergie disponible maximale, de l'ordre de 1 Joule, la phase de recharge du dispositif d'alimentation dure au maximum 3,7ms sur un moteur quatre cylindres, à quatre temps. De plus, si on considère que la phase de décharge dure au maximum 500 ys, alors, dans ces conditions qui sont extrêmes, le premier étage fonctionne du temps. La structure de ce premier
convertisseur de tension doit donc de préférence minimiser les pertes résistives.
Aussi, selon un mode de réalisation préféré illustré par la figure 3, l'étage élévateur de tension référencé 41 est de type Boost. De l'énergie en provenance de la source d'alimentation 3 est accumulée temporairement dans une bobine d'induction 410 puis transférée via une diode 411 dans un condensateur 412 dit de ballast, aux bornes duquel est mesurée une tension Vbanast . On notera Vaiim la tension aux bornes de la source d'alimentation 3. Un transistor, formant interrupteur 413, est utilisé pour contrôler la phase d'accumulation d'énergie dans la bobine puis la phase de transfert vers le condensateur. L'interrupteur 413 est commandé par un signal de commande Cl de forme carrée. Le fonctionnement d'un tel étage est bien connu de l'homme du métier. Pendant la phase d'accumulation d'énergie, l'interrupteur 413 est fermé (état passant), ce qui entraîne une augmentation de courant dans la bobine 410 et le stockage d'énergie sous forme d'énergie magnétique dans la bobine 410. Pendant cette phase d'accumulation, la diode 411 est bloquée et le condensateur est déconnecté de la source d'alimentation 3. Lorsque l'interrupteur est ouvert, la bobine 410 est en série avec la source d'alimentation 3 et sa force électromotrice s'additionne alors à celle de la source d'alimentation. Le courant circulant à travers la bobine circule également à travers la diode 411 et le condensateur 412. Il en résulte un transfert d'énergie entre la bobine 410 et le condensateur 412.
Cette structure est la moins coûteuse et l'une des plus simples à mettre en œuvre. En effet, elle comporte un nombre réduit de composants. Une bobine d'induction 410 unique est utilisée, au lieu par exemple d'un transformateur dans le cas d'une structure flyback. De plus, la source du transistor 413 étant connectée à la masse, le transistor est plus facile à commander que si sa source était flottante.
Pour obtenir une tension Vbanast très supérieure à la tension d'entrée Vaiim, la durée de conduction du transistor 413 doit également être très supérieure à la durée de non-conduction pendant la phase de charge. Le temps de charge de la bobine 410 est donc défini pour être supérieur au temps de décharge. Il en résulte que le courant moyen dans la bobine est donc sensiblement égal au courant moyen fourni par la source d'alimentation 3, ce qui est la situation la plus favorable en termes de pertes résistives. Deuxième étage du convertisseur continu-continu
Le deuxième étage du convertisseur continu-continu a pour rôle principal de réguler rapidement la tension de sortie du convertisseur à la valeur de tension intermédiaire Vinter souhaitée. Il a également pour fonction de transférer de l'énergie entre deux condensateurs ayant des tensions élevées entre leurs bornes. Plusieurs structures sont possibles pour cet étage, soit un montage élévateur de tension, soit un montage abaisseur de tension.
Dans le cas d'un deuxième étage élévateur de tension, le premier étage élévateur de tension convertit la tension Vaûm en une tension continue Vbanast et le deuxième étage convertit la tension Vbanast en une tension continue aux bornes d'un condensateur, notée Vinter à la valeur souhaitée, cette tension Vinter étant supérieure à Vbanast . Le premier étage convertit par exemple la tension Vaiim = 12 volts en une tension Vbanast = 200 volts et le deuxième étage convertit la tension Vbanast en une tension Vinter = 250 volts.
Dans le cas d'un deuxième étage abaisseur de tension, le premier étage élévateur de tension convertit la tension Vanm en une tension continue Vbanast>Vinter et le deuxième étage convertit la tension Vbanast en la tension Vinter - Le premier étage convertit par exemple la tension Vaiim = 12 volts en une tension Vbanast = 340 volts et le deuxième étage convertit la tension Vbanast en une tension
Vinter = 250 VOltS.
Ce deuxième cas constitue un mode de réalisation préféré. En effet, à énergies maximum fournies identiques (par exemple 1 Joule), il est connu de l'homme du métier que le courant crête circulant dans la bobine d'un étage Boost est supérieur à celui circulant dans la bobine d'un étage Buck. Un deuxième étage abaisseur de tension de type Buck est donc la solution qui est la moins onéreuse et qui présente les pertes résistives les plus faibles. Cette solution est celle illustrée par la figure 3.
En référence à la figure 3, le deuxième étage est un étage abaisseur de tension 42 de type Buck. Cet étage comprend un transistor, formant interrupteur 423, monté en série avec une bobine 420 et un condensateur 422. Une diode 421 est montée en parallèle avec l'ensemble série formé de la bobine 420 et du condensateur 422. L'interrupteur 423 est commandé par un signal de commande C2 de forme rectangulaire ou carrée.
Le fonctionnement de cet étage est bien connu de l'homme du métier. Lorsque l'interrupteur 423 est fermé (état passant) , la tension aux bornes de la bobine 420 est égale à la différence entre la tension Vbanast aux bornes du condensateur 412 et la tension Vinter aux bornes du condensateur 422. Le courant circulant à travers la bobine 420 augmente donc linéairement. La tension aux bornes de la diode 421 étant négative, aucun courant ne la traverse. Lorsque l'interrupteur 423 est ouvert (état bloqué), la diode 421 devient passante afin d'assurer la continuité du courant traversant la bobine 420. La tension aux bornes de la bobine vaut alors -Vinter et le courant circulant à travers la bobine décroit . Fonctionnement global du convertisseur continu-continu
La figure 4 représente des courbes illustrant le fonctionnement du convertisseur continu-continu de la figure 3 dans le cadre d'un dispositif d'alimentation d'un allumage radiofréquence .
Une première courbe représente le signal de commande VI de l'interrupteur M du dispositif d'alimentation 2. Pendant les phases de décharge (ou d'étincelle) du dispositif d'alimentation, l'interrupteur M fonctionne en mode commutation (alternances d'états ouvert et fermé). Pendant les phases de charge, l'interrupteur est ouvert (état bloqué) . Une deuxième courbe représente l'évolution de la tension Vbanast présente à la sortie de l'étage élévateur de tension 41 pendant les phases de charge et de décharge. Une troisième courbe représente l'évolution de la tension Vinter présente à la sortie de l'étage abaisseur de tension 42. Enfin, les quatrième et cinquième courbes présentent l'état des transistors 413 et 423 pendant lesdites phases de charge et de décharge.
Le pilotage de l'étage élévateur de tension 41 est relativement simple. L'objectif est d'avoir au moins avant la phase de décharge du dispositif d'alimentation une tension Vbaiiast qui soit constante et strictement supérieure à la tension Vinter- La tension Vbanast est par exemple comprise entre 300 et 400 volts. Cette tension Vbanast est régulée par une boucle de régulation proportionnelle ou proportionnelle intégrale bien connue de l'homme de l'art, contrôlant le signal de commande Cl du transistor 413. Le transistor 413 fonctionne en commutation pendant la phase de charge du dispositif d'alimentation. Son signal de commande Cl est synchronisé sur le signal de commande VI du transistor de puissance M. Le signal Cl est un signal logique ayant une fréquence et un rapport cyclique variables. Cette fréquence et ce rapport cyclique sont déterminés par la boucle de régulation et sont fonction de l'inductance de la bobine 410, de la capacité du condensateur 412 et de l'état de charge de ce dernier. Pendant la phase de décharge du dispositif d'alimentation, le transistor 413 est dans un état bloqué.
Le pilotage de l'étage abaisseur de tension 42 est décrit ci-après. Pendant la phase de charge du dispositif d'alimentation, le condensateur 422 se charge et, pendant la phase de décharge du dispositif d'alimentation, il se charge et se décharge.
Au début de chaque phase de charge, la tension Vinter souhaitée aux bornes du condensateur 422 et le temps de charge disponible sont connus. Au régime de rotation moteur maximum (8200 trs/min) et à énergie disponible maximale ( inter = 250 volts) , la phase de charge dure au maximum 3,7ms. Cependant, pour réduire les pertes résistives, il est préférable d'avoir le temps de recharge le plus long possible tout en garantissant l'obtention de la tension Vinter demandée. Le temps de charge disponible peut être calculé à partir du régime de rotation du moteur ou de la durée entre les deux précédentes étincelles. Ce temps de charge disponible peut être calculé comme suit:
Charge = — δ = ΔΤ x δ
Avec: N = régime de rotation du moteur;
ΔΤ = durée entre 2 étincelles précédentes;
δ = coefficient lié aux accélérations (δ<1) .
Pendant la phase de charge du dispositif d'alimentation, la charge du condensateur 422 est réalisée par un pilotage adapté du transistor 422. A titre d'illustration, le pilotage le plus simple est de générer un signal de commande C2 de fréquence constante. Selon un mode de réalisation plus avantageux, on utilisera un signal de commande C2 asservi en fréquence et en rapport cyclique pour minimiser les pertes résistives dans l'étage abaisseur de fréquence pendant cette phase de charge. Il est également envisageable d'utiliser une boucle de régulation proportionnelle ou proportionnelle intégrale pour réguler la tension Vinter pendant cette phase de charge.
Pendant la phase de décharge, l'objectif de l'étage abaisseur de tension est de garantir une tension Vinter constante ou à défaut de limiter la chute de tension. L'étage abaisseur continue de fonctionner en commutation. Selon l'invention, l'énergie consommée en priorité pendant cette phase est l'énergie disponible dans le condensateur 412 (du premier étage) chargé sous la tension Vbanast . Ce deuxième étage fonctionnant en abaisseur de tension, on peut puiser de l'énergie dans ce condensateur tant que la tension Vbanast est supérieure à la tension Vinter souhaitée.
L'énergie disponible dans le condensateur 412 est alors
1
Eballast ~ ~ x Cballast Vvb2allast - Vvi2nt er
2
avec: Cbaiiast = capacité du condensateur 412;
10 Vbanast = tension aux bornes du condensateur 412;
inter = tension aux bornes du condensateur 422.
A titre indicatif, pour Vbanast = 340V, Vinter = 250V et Cbanast = 40 μ , nous obtenons Ebanast = 1 J, soit la totalité de l'énergie nécessaire à l'allumage dans des
15 conditions extrêmes.
Le transfert d'énergie est assuré en commandant le transistor 423 avec un signal de commande C2 à rapport cyclique variable pendant cette phase de décharge.
Le rapport cyclique maximum est limité par le
20 courant maximum pouvant circuler à travers la bobine 420.
Aussi, selon un mode de réalisation avantageux, on dimensionne la bobine 420 en tenant compte de cette limite pour assurer une régulation rapide pendant la phase de décharge. On choisit alors la bobine 420 telle que:
avec: iLmax = courant maximum circulant dans la bobine 420;
et
loutmax = courant maximum à fournir à la sortie de 1 ' étage 42
30 II est à noter que, dans ce second étage, le condensateur 422 assure une double fonction de filtrage et de stockage, c'est-à-dire qu'il doit présenter une faible impédance à haute fréquence tout en ayant une capacité importante pour le stockage. Dans cette topologie à double
35 étage, le stockage de l'énergie est assuré principalement par le condensateur 412. Cela permet ainsi de diminuer la capacité du condensateur 422 et donc de réduire le coût du convertisseur continu-continu dans son ensemble.
Bien que l'invention ait été décrite en liaison avec un mode de réalisation particulier, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de 1 ' invention .

Claims

REVENDICATIONS
1. Dispositif d'alimentation (2) d'un allumage radiofréquence, ledit dispositif d'alimentation étant destiné à fournir une tension continue à une fréquence prédéfinie à un résonateur série (1) et comprenant
- une source d'alimentation (3) apte à délivrer une tension d'alimentation continue (Vaiim) ,
- un convertisseur continu-continu (4) amplifiant ladite tension d'alimentation continue (Vaiim) et délivrant sur une sortie une tension continue, dite tension intermédiaire (Vinter ) dont l'amplitude est supérieure à ladite tension d'alimentation continue,
- un interrupteur de puissance (M) commandé par un signal de commande (VI) pour appliquer sélectivement ladite tension intermédiaire (Vinter ) sur le résonateur série à une fréquence de commande égale à ladite fréquence prédéfinie, caractérisé en ce que le convertisseur continu- continu comprend un étage élévateur de tension (41) pour générer, à partir de la tension d'alimentation continue, une tension (Vbanast) dite de ballast aux bornes d'un premier condensateur de stockage (412) et un étage de régulation de tension (42) pour générer à partir de ladite tension de ballast la tension intermédiaire aux bornes d'un deuxième condensateur de stockage (422), ladite tension de ballast étant supérieure à la tension d'alimentation continue.
2. Dispositif selon la revendication 1, caractérisé en ce que l'étage élévateur de tension (41) est un montage de type Boost.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que l'étage élévateur de tension (41) est commandé pour charger ledit premier condensateur de stockage (412) pendant une phase de charge et générer aux bornes dudit premier condensateur de stockage une tension de ballast sensiblement égale à une valeur prédéfinie à l'issue de ladite phase de charge.
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la commande de l'étage élévateur de tension est synchronisée sur le signal de commande de l'interrupteur de puissance.
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que ladite valeur prédéfinie de tension ballast est déterminée en fonction du régime de rotation (N) du moteur thermique dans lequel est installé l'allumage radiofréquence .
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la tension de ballast (Vbanast) est supérieure à la tension intermédiaire ( inter ) et en ce que l'étage de régulation de tension (42) est un étage abaisseur de tension.
7. Dispositif selon la revendication 6, caractérisé en ce que l'étage abaisseur de tension est un montage du type Buck .
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étage de régulation de tension est commandé pour charger, pendant ladite phase de charge, ledit second condensateur de stockage avec de l'énergie stockée dans ledit premier condensateur de stockage et générer, aux bornes dudit second condensateur de stockage, une tension intermédiaire sensiblement égale à une valeur prédéfinie à l'issue de ladite phase de charge.
9. Dispositif selon la revendication 6, caractérisé en ce que la commande de l'étage de régulation de tension est synchronisée sur le signal de commande de l'interrupteur de puissance .
10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que l'étage de régulation de tension est commandé pour maintenir, pendant une phase de décharge consécutive à la phase de charge, la tension intermédiaire sensiblement égale à ladite valeur prédéfinie de tension intermédiaire .
11. Dispositif d'allumage radiofréquence comprenant un dispositif d'alimentation (2) selon l'une quelconque des revendications précédentes et un résonateur série (1) de génération de plasma connecté à la sortie du dispositif d ' alimentation .
EP12731053.0A 2011-05-25 2012-05-24 Alimentation pour allumage radiofrequence avec amplificateur a double etage Withdrawn EP2715105A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154546A FR2975863B1 (fr) 2011-05-25 2011-05-25 Alimentation pour allumage radiofrequence avec amplificateur a double etage
PCT/FR2012/051165 WO2012160317A1 (fr) 2011-05-25 2012-05-24 Alimentation pour allumage radiofrequence avec amplificateur a double etage

Publications (1)

Publication Number Publication Date
EP2715105A1 true EP2715105A1 (fr) 2014-04-09

Family

ID=46420369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12731053.0A Withdrawn EP2715105A1 (fr) 2011-05-25 2012-05-24 Alimentation pour allumage radiofrequence avec amplificateur a double etage

Country Status (3)

Country Link
EP (1) EP2715105A1 (fr)
FR (1) FR2975863B1 (fr)
WO (1) WO2012160317A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3001601B1 (fr) * 2013-01-29 2015-02-13 Renault Sa Dispositif de generation de plasma avec reduction de la surtension aux bornes du transistor de commutation, et procede de commande correspondant
JP6796240B2 (ja) * 2016-10-26 2020-12-09 ゼネラルソリューションズ株式会社 昇降圧回路を含む電磁波発振装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827916B1 (fr) * 2001-07-25 2003-10-31 Inst Francais Du Petrole Procede pour controler les parametres d'allumage d'une bougie d'allumage pour moteur a combustion interne et dispositif d'allumage utilisant un tel procede
FR2859869B1 (fr) 2003-09-12 2006-01-20 Renault Sa Systeme de generation de plasma.
FR2859830B1 (fr) 2003-09-12 2014-02-21 Renault Sas Bougie de generation de plasma a inductance integree.
FR2859831B1 (fr) 2003-09-12 2009-01-16 Renault Sa Bougie de generation de plasma.
FR2913297B1 (fr) * 2007-03-01 2014-06-20 Renault Sas Optimisation de la generation d'une etincelle d'allumage radio-frequence
FR2914530B1 (fr) * 2007-03-28 2014-06-20 Renault Sas Pilotage optimal a la frequence de resonance d'un resonateur d'un allumage radiofrequence.
FR2923272B1 (fr) * 2007-11-05 2009-11-13 Renault Sas Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne.
FR2935759B1 (fr) * 2008-09-09 2010-09-10 Renault Sas Dispositif de mesure du courant d'ionisation dans un systeme d'allumage radiofrequence pour un moteur a combustion interne
DE102009022822A1 (de) * 2009-05-27 2010-12-02 Efficient Energy Gmbh Stromversorgungsvorrichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2012160317A1 *

Also Published As

Publication number Publication date
WO2012160317A1 (fr) 2012-11-29
FR2975863B1 (fr) 2013-05-17
FR2975863A1 (fr) 2012-11-30

Similar Documents

Publication Publication Date Title
EP2032383B1 (fr) Dispositif micro-hybride pour vehicule automobile
EP2532069B1 (fr) Systeme d&#39;equilibrage de charge pour batteries
FR2832870A1 (fr) Perfectionnement pour chargeur de type photovoltaique
EP2083511B1 (fr) Alimentation à pile pour èmetteur radiofréquences
EP3227137B1 (fr) Dispositif d&#39;alimentation et convertisseur de tension continue ameliore
FR2899036A1 (fr) Dispositif de suralimentation temporaire en puissance d&#39;organes electriques automobiles
EP2334922A1 (fr) Dispositif et procede de commande d&#39;un injecteur piezo-electrique ultrasonore resonant
EP2715105A1 (fr) Alimentation pour allumage radiofrequence avec amplificateur a double etage
WO2020011768A1 (fr) Procede de declenchement de la mise a l&#39;etat passant d&#39;un transistor
EP3721543A1 (fr) Convertisseur continu-continu avec pre-charge d&#39;un premier reseau electrique a partir d&#39;un deuxieme reseau electrique
FR2923664A1 (fr) Generateur de train d&#39;impulsion de tension, application a la commande d&#39;injecteur piozoelectrique ultrasonore.
FR3039934A1 (fr) Procede de gestion de l’alimentation electrique d’un vehicule automobile
EP1396002B1 (fr) Procédé d&#39;alimentation d&#39;un équipement électrique
FR2674382A1 (fr) Dispositif de regulation de tension de sortie pour alternateur.
EP2418753B1 (fr) Système de conversion d&#39;énergie électrique
WO2019122593A1 (fr) Procédé de régulation de la tension de sortie d&#39;un convertisseur de tension continu-continu d&#39;un calculateur de contrôle d&#39;un moteur de véhicule automobile
FR2901659A1 (fr) Circuit d&#39;allumage de lampe a decharge
EP0995023A1 (fr) Circuit de commande de puissance pour actionneur electromagnetique tel qu&#39;injecteur ou electrovanne
WO2010004190A1 (fr) Poste de soudage a l&#39;arc a onduleur a commutation douce quasi resonant optimise
EP1182341A1 (fr) Dispositif de commande d&#39;une céramique piézoélectrique, notamment pour un actionneur d&#39;injecteur de moteur à combustion interne
FR2884368A1 (fr) Convertisseur tension-tension comportant un circuit d&#39;aide la commutation et procede de fonctionnement dudit convertisseur tension-tension
WO2022189397A1 (fr) Convertisseur de tension continu-continu à découpage pour véhicule automobile
WO2022089963A1 (fr) Dispositif de controle d&#39;un convertisseur dc-dc de chargeur electrique embarque
FR3013533A1 (fr) Commande d&#39;un convertisseur alternatif-continu
FR3096842A1 (fr) Circuit electrique de vehicule automobile comprenant un alterno-demarreur et un dispositif de maintien de tension centralise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131022

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171031