EP2108051A2 - Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität - Google Patents

Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität

Info

Publication number
EP2108051A2
EP2108051A2 EP08701266A EP08701266A EP2108051A2 EP 2108051 A2 EP2108051 A2 EP 2108051A2 EP 08701266 A EP08701266 A EP 08701266A EP 08701266 A EP08701266 A EP 08701266A EP 2108051 A2 EP2108051 A2 EP 2108051A2
Authority
EP
European Patent Office
Prior art keywords
particles
type
stagnation chamber
nozzle
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08701266A
Other languages
English (en)
French (fr)
Other versions
EP2108051B1 (de
Inventor
Axel Arndt
Uwe Pyritz
Heike Schiewe
Raymond Ullrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2108051A2 publication Critical patent/EP2108051A2/de
Application granted granted Critical
Publication of EP2108051B1 publication Critical patent/EP2108051B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • B05B7/1626Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing

Definitions

  • the invention relates to a method for cold gas spraying in which particles of a first type are fed together with particles of a second type into a stagnation chamber and are accelerated together with a carrier gas through a nozzle downstream of the stagnation chambers onto a substrate to be coated.
  • the particles of the first type remain deformed and to form a layer adhere, wherein the particles of the second type, which have a higher Festig ⁇ resistance and / or a lower ductility than the particles of the first type are incorporated into the layer.
  • the aforementioned method is known for example from US 2003/0126800 Al.
  • particles of a hard material are deposited on the surface of turbine blades by cold gas spraying together with particles of a metallic material.
  • a proportion of 15 to 20% of the hard particles is in the nestled in cold gas fuel ⁇ zen forming matrix of the metal matrix material.
  • the hard particles remain unchanged due to their high strength and low ductility in the matrix.
  • the incorporation rate of hard materials with proportions of more than 20% is not possible. Namely, the hard material particles do not automatically adhere to the surface of the substrate to be coated, since the kinetic energy input of the cold gas spraying is insufficient and the particles do not have sufficient ductility. Rather, the particles of hard material are incorporated into the just that forms the matrix of the me ⁇ -metallic material with, so that the adhesion in- is ensured directly by the component with the lower strength or higher ductility.
  • the object of the invention is to provide a method for cold gas spraying, with which, when using particles of different types, those particles having the higher strength and / or low ductility with a comparatively high layer proportion can be brought into the layer.
  • This object is achieved in that the particles of the first kind are fed in a first region of the stagnation ⁇ onshunt, which is closer to the nozzle, as a second region in which the particles of the second type are fed.
  • This energy input is primarily caused by the preheated Trä ⁇ gergas the cold gas jet. Namely, a temperature compensation takes place between the molecules of the carrier gas and the particles located in the stagnation chamber. The ⁇ water is the stronger, the longer the particles remain in the stagnation chamber.
  • the energy input into the particles of the second type RESIZE ⁇ SSER advantageously improves the conditions for a separation of the particles of the second type.
  • the additional heating of the stronger or less ductile particles can, as has been shown, influence the coating process in different ways.
  • the particles of the second kind of a brittle material, in particular of a ceramic material can be produced.
  • Tungsten carbide is particularly suitable as a ceramic material, it being possible to deposit it on the blade of a compressor or a turbine in order to increase its service life.
  • the additional heating of brittle materials in the stagnation chamber basically does not change their properties. Nevertheless, it has been shown that the heated Parti ⁇ kel allow higher incorporation rates in a ductile matrix. This is explained by the fact that the particles of the second type are used as thermal energy stores, this thermal energy improving the interaction between the particles of the first and second type at the moment of incorporation of the brittle particles into the ductile matrix. The contribution of energy to the brittle particles is thus made indirectly available to the layer structure with the ductile particles.
  • the particles of the second type are produced from a metal or a metal alloy which is ductile above a transition temperature and below this temperature brittle, the particles of the second type in the stagnation chamber are heated far, that they behave ductile. If it is possible to bring about by preheating the particles of the second type, that these are also ductile, so deposition of these particles is advantageously possible, without these having to be incorporated in a matrix of walls ⁇ ren material. This results in advantageous that the proportion of the brittle material itself can be arbitrarily increased, as a matrix enclosing these particles of the other layer component not more is necessary. This advantageously leads to the fact that with the cold gas spraying a larger range of alloy compositions can be deposited.
  • the carrier gas is heated in the stagnation chamber.
  • a heatable outer wall can be provided in the stagnation chamber .
  • the invention relates to a device for cold ⁇ gas spraying.
  • a device for cold ⁇ gas spraying Such devices are well known and known, for example, in US 2004/0037954 A1.
  • Such a device has a stagnation chamber with a feed opening for a carrier gas and a first feed line for particles intended for coating, these particles being referred to below as first particles.
  • the stagnation chamber is followed by a nozzle, by means of which the carrier gas with the particles is expanded in the direction of a substrate to be coated .
  • the carrier gas cools adiabatically, wherein the amount of energy which is released here by ⁇ is converted into an acceleration of Tooga ⁇ ses and the particles provided for coating.
  • the object of the invention is also to specify a device for cold gas spraying, with which layers can be produced in which a comparatively high proportion of particles having a higher strength and / or a lower ductility than the particles of the first type (hereinafter Particles of the second kind called) can be installed.
  • a second feed line is pre see ⁇ , wherein the first feed line opens into a ers ⁇ th region of the stagnation chamber, which is closer to the nozzle than a second area in which the second em- feed line opens.
  • This device is suitable for a Be ⁇ operating according to the detail above described method, since it has two Emspeisungs effeten, and are brought in this way the particles of the second type to Kings ⁇ NEN, attributable to travel farther by the stagnation chamber when the Particles of the first kind. In this way, a preheating of the particles of the second type associated with the above-mentioned advantages can be achieved.
  • the device is provided with a heater attached to the stagnation chamber.
  • a heater attached to the stagnation chamber.
  • the wall of the stagnation chamber or the interior of the chamber is allowed to warm stagnation ⁇ directly, whereby an additional amount of heat can be introducedtient- in the particles of the second type or the carrier gas.
  • a further embodiment of the invention provides that the heating device is integrated in the wall of the stagnation chamber. This has the advantage that the flow conditions in Inside the stagnation chamber are not affected and on the other hand, a short heat transfer path is ensured by the Schuein ⁇ direction to the wall of the stagnation chamber.
  • a particular embodiment of the invention is obtained if the first feed line and / or second feed line can be moved in the device in such a way that the distance from the first area and / or the second area to the nozzle is variable.
  • This has the advantage that the transmittable by the carrier gas heat quantity can be characterized ge ⁇ controls that the feed points are variable for the particles in the direction of carrier gas flow. This directly influences the length of the path the Parti ⁇ kel have to travel to the nozzle through the stagnation chamber, this pathway is crucial for the transferable heat ⁇ quantitative.
  • Figure 1 shows the schematic cross section through an embodiment of the apparatus for cold gas spraying
  • Figure 2 is a plot of impact energy versus temperature for metals having a transition temperature.
  • a cold gas spray gun 11 as a device for cold gas spraying represents the core of a thermal spray device, as described for example in US 2004/00347954 Al.
  • the cold gas spray gun 11 consists essentially of a single housing 13, in which a La val-nozzle 14 and a stagnation chamber 15 are formed.
  • a heating coil 16 is embedded, which causes the Behei ⁇ wetting a carrier gas, which is supplied by a Zumoni ⁇ convergence opening 17 of the stagnation chamber 15 °.
  • the carrier gas passes through the feed opening 17 first into the stagnation chamber 15 and leaves it through the Laval nozzle 14.
  • the carrier gas in the stagnation chamber can be warmed up to 800 ° C.
  • a second feed line 18a and a first feed line 19 the particles intended for coating are fed.
  • a cooling of the carrier gas flow is effected, which has temperatures below 300 ° C in the region of the nozzle opening.
  • This Temperaturverringe ⁇ tion is due to a substantially aliabatische expansion of the carrier gas, having, for example in the stagnation chamber a pressure of 30 bar and is expanded outside the die orifice to atmospheric pressure.
  • the second feed line 19 opens in a very near the nozzle area in the stagnation chamber.
  • the part of the cold spray gun which initially narrows in cross-section and then expands again (indicated by the reference numeral 14) is considered a nozzle.
  • the region of the cold spray gun, which serves as a stagnation ⁇ chamber is terized ⁇ with the bracket to the reference numeral 15 °. It is clear from FIG. 1 that the conical region adjoining the cylindrical region of the stagnation chamber can be attributed to both the stagnation chamber 15 and the nozzle 14.
  • the flow conditions Zvi ⁇ 's stagnation chamber and nozzle namely go into each other, wherein the adjoining cylindrical region conical wall parts initially have such a large cross- form that the flow conditions rather correspond to those in the stagnation chamber, ie, a significant acceleration of the carrier gas and the particles occurs only in the much narrower conical region. Therefore, the second feed line 19 also opens into this conical region, so that the particles fed in are accelerated as far as possible without a time delay in the part which significantly acts as a nozzle 14.
  • the first feed line 18a opens into the part of the stagnation chamber 15 facing away from the nozzle 14, so that the particles have to pass through the entire stagnation chamber and are primarily heated by the carrier gas.
  • a first region 20 and a second region 21 for feeding in the particles of the first type 22 and of the particles of the second type 23 are formed by the two feed points of the feed lines 18a, 19.
  • the particles of the first type 22 and second type 23 are then mixed and are deposited on a substrate 25 as a layer 26.
  • feed line 18a it is also possible to provide a feed line 18b which is axially displaceable. By a shift in the direction of the indicated double arrow so that the feed point 21 can be moved toward the nozzle 14 and away from her. As a result, the cold spray gun 11 can be adapted to the particular application and the amount of heat necessary for preheating the particles 23.
  • FIG. 2 schematically shows the temperature-dependent behavior of metals with a transition temperature T u .
  • the temperature T is plotted on the X axis and the impact energy A v on the Y axis. This is in the so-called Kerbschlagbiege Basket determined in which a notched sample is exposed to a beating stress (for example, DIN EN 10045).
  • the behavior of the metals can be divided into three areas depending on the fracture behavior. In region I, a brittle fracture occurs because the metal loses its ductile properties at low temperatures. In area III, the metal behaves ductile and therefore unfolds the mechanical properties known per se for metals.
  • the area I and the area III is the area II, in which so-called mixing breaks occur which exhibit brittle and ductile components.
  • the dot-dashed lines there is a great deal of variation in the area II in the determination of the notch impact work, since the conditions in the structure are chaotic.
  • the transition temperature T u is therefore a value that can not be determined accurately.
  • Typical metals that have a transition temperature are the following:
  • Cubic body centered lattice metals unalloyed and low alloyed steels, chromium, molybdenum), metals with hexagonal lattices (aluminum)

Abstract

Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen von Partikeln mit unterschiedlich hoher Festigkeit und/oder Duktilität sowie eine Vorrichtung (11) zum Kaltgasspritzen, die für dieses Verfahren geeignet ist. Um einen vergleichsweise hohen Anteil an Partikeln (23) mit der verglichen mit den anderen Partikeln (22) höheren Festigkeit und/oder geringeren Duktilität zu erreichen, wird erfindungsgemäss vorgesehen, dass diese Partikel in einem Bereich (21) der Stagnationskammer (15) der Kaltspritzeinrichtung eingespeist werden, der weit von der Düse (14) entfernt ist. Daher müssen die Partikel (23) vorteilhaft einen weiteren Weg durch die Stagnationskammer zurücklegen und werden daher vorgewärmt. Hierdurch lässt sich eine Abscheidung dieser Partikel (23) auf einem Substrat (25) verbessern. Insbesondere können Metalle mit einer Übergangstemperatur zwischen sprödem und duktilem Verhalten durch die Vorwärmung mit duktilen Eigenschaften ausgestattet werden, was deren Abscheidung vereinfacht.

Description

Beschreibung
Verfahren und Vorrichtung zum Kaltgasspritzen von Partikeln unterschiedlicher Festigkeit und/oder Duktilität
Die Erfindung betrifft ein Verfahren zum Kaltgasspritzen, bei dem Partikel einer ersten Art zusammen mit Partikeln einer zweiten Art in eine Stagnationskammer eingespeist werden und zusammen mit einem Trägergas durch eine der Stagnationskam- mern nachgeschaltete Düse auf ein zu beschichtendes Substrat beschleunigt werden. Dabei verformen sich die Partikel der ersten Art und bleiben unter Ausbildung einer Schicht haften, wobei die Partikel der zweiten Art, die eine höhere Festig¬ keit und/oder eine geringere Duktilität als die Partikel der ersten Art aufweisen, in die Schicht eingebaut werden.
Das eingangs genannte Verfahren ist beispielsweise aus der US 2003/0126800 Al bekannt. Gemäß diesem Verfahren werden durch Kaltgasspritzen Partikel eines Hartstoffes zusammen mit Par- tikeln eines metallischen Werkstoffes auf der Oberfläche von Turbinenschaufeln abgeschieden. Dabei wird ein Anteil von 15 bis 20 % der Hartstoffpartikel in die sich beim Kaltgassprit¬ zen ausbildende Matrix des metallischen Matrixwerkstoffes eingebettet. Die Hartstoffpartikel bleiben aufgrund ihrer ho- hen Festigkeit und geringen Duktilität in der Matrix unverändert. Hierdurch lässt sich auch die Tatsache erklären, dass die Einbaurate von Hartstoffen mit Anteilen von mehr als 20 % nicht möglich ist. Die Hartstoffpartikel bleiben nämlich nicht selbstständig auf der Oberfläche des zu beschichtenden Substrates haften, da hierzu der kinetische Energieeintrag des Kaltgasspritzens nicht ausreicht und die Partikel keine genügende Duktilität aufweisen. Vielmehr werden die Partikel des Hartstoffes in die gerade sich ausbildende Matrix des me¬ tallischen Werkstoffes mit eingebaut, so dass die Haftung in- direkt durch die Komponente mit der geringeren Festigkeit bzw. höheren Duktilität gewährleistet wird.
Die Aufgabe der Erfindung liegt darin, ein Verfahren zum Kaltgasspritzen anzugeben, mit dem sich bei der Verwendung von Partikeln unterschiedlicher Art diejenigen Partikel mit der höheren Festigkeit und/oder der geringen Duktilität mit einem vergleichsweise hohen Schichtanteil in die Schicht ein¬ bringen lassen.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Partikel der ersten Art in einem ersten Bereich der Stagnati¬ onskammer eingespeist werden, der näher an der Düse liegt, als ein zweiter Bereich, in dem die Partikel der zweiten Art eingespeist werden. Hierdurch wird vorteilhaft erreicht, dass die Partikel der zweiten Art, die aufgrund der höheren Fes¬ tigkeit und/oder der geringeren Duktilität problematisch hinsichtlich einer Abscheidung in hohen Raten sind, einen stärkeren Energieeintrag in der Stagnationskammer erfahren. Die- ser Energieeintrag wird vorrangig durch das vorgeheizte Trä¬ gergas des Kaltgasstrahls bewirkt. Zwischen den Molekülen des Trägergases und den in der Stagnationskammer befindlichen Partikeln findet nämlich ein Temperaturausgleich statt. Die¬ ser fällt um so stärker aus, je länger die Partikel in der Stagnationskammer verbleiben. Da der zweite Bereich, in dem die Partikel der zweiten Art eingespeist werden, in Fluss¬ richtung des Trägergases weiter von der Düse entfernt ist, ist der Energieeintrag in die Partikel der zweiten Art grö¬ ßer. Dadurch verbessern sich vorteilhaft die Voraussetzungen für eine Abscheidung der Partikel der zweiten Art.
Die zusätzliche Erwärmung der festeren bzw. weniger duktilen Partikel kann, wie sich gezeigt hat, den Beschichtungsprozess auf unterschiedliche Weise beeinflussen. Gemäß einer Ausges- taltung der Erfindung können die Partikel der zweiten Art aus einem spröden Werkstoff, insbesondere aus einem keramischen Werkstoff, hergestellt werden. Als keramischer Werkstoff kommt insbesondere Wolframcarbid in Frage, wobei dieser be- vorzugt auf der Schaufel eines Verdichters oder eine Turbine abgeschieden werden kann, um deren Standzeit zu erhöhen.
Die zusätzliche Erwärmung von spröden Werkstoffen in der Stagnationskammer ändert deren Eigenschaften grundsätzlich nicht. Dennoch hat es sich gezeigt, dass die erwärmten Parti¬ kel höhere Einbauraten in eine duktile Matrix erlauben. Dies wird damit erklärt, dass die Partikel der zweiten Art als thermische Energiespeicher zum Einsatz kommen, wobei diese thermische Energie im Augenblick des Einbaus der spröden Par- tikel in die duktile Matrix das Zusammenspiel zwischen den Partikeln der ersten und zweiten Art verbessert. Der in die spröden Partikel eingebrachte Energiebeitrag wird insofern indirekt dem Schichtaufbau mit den duktilen Partikeln zur Verfügung gestellt.
Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass die Partikel der zweiten Art aus einem Metall oder einer Metalllegierung hergestellt werden, welches/welche oberhalb einer Übergangstemperatur duktil und unterhalb die- ser Temperatur spröde ist, wobei die Partikel der zweiten Art in der Stagnationskammer so weit erwärmt werden, dass diese sich duktil verhalten. Gelingt es, durch eine Vorwärmung der Partikel der zweiten Art zu bewirken, dass diese ebenfalls duktil werden, so ist vorteilhaft eine Abscheidung dieser Partikel möglich, ohne dass diese in eine Matrix eines ande¬ ren Werkstoffes eingebaut werden müssten. Hierdurch ergibt sich vorteilhaft, dass der Anteil des an sich spröden Materials beliebig gesteigert werden kann, da eine diese Partikel umschließende Matrix des anderen Schichtbestandteils nicht mehr notwendig ist. Dies führt vorteilhaft dazu, dass mit dem Kaltgasspritzen eine stärkere Bandbreite von Legierungszusammensetzungen abgeschieden werden kann.
Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass das Trägergas in der Stagnationskammer geheizt wird. Hierzu kann in der Stagnationskammer beispielsweise ei¬ ne beheizbare Außenwand vorgesehen werden. Durch die zusätz¬ liche Beheizung des Trägergases in der Stagnationskammer kann der Energiebetrag, der in die Partikel der zweiten Art einge¬ bracht wird, vor der Entspannung des Trägergases in der Düse zumindest zum Teil ersetzt werden. Auch lässt sich ein gewis¬ ser Energieeintrag von der Heizung in die Partikel der zwei¬ ten Art selbst erreichen.
Weiterhin betrifft die Erfindung eine Vorrichtung zum Kalt¬ gasspritzen. Derartige Vorrichtungen sind allgemein bekannt und beispielsweise in der US 2004/0037954 Al bekannt. Eine solche Vorrichtung weist eine Stagnationskammer mit einer Zu- führöffnung für ein Trägergas und einer ersten Einspeisungs- leitung für zur Beschichtung vorgesehene Partikel auf, wobei diese Partikel im Folgenden als erste Partikel bezeichnet werden. Außerdem ist der Stagnationskammer gesehen in Fluss¬ richtung des Trägergases eine Düse nachgeschaltet, durch die das Trägergas mit den Partikeln in Richtung eines zu be¬ schichtenden Substrates entspannt wird. Dabei kühlt sich das Trägergas adiabatisch ab, wobei der Energiebetrag, der hier¬ durch freigesetzt wird, in eine Beschleunigung des Trägerga¬ ses sowie der zur Beschichtung vorgesehenen Partikel umge- setzt wird.
Wie bereits erläutert, ist eine Abscheidung von Partikeln mit unterschiedlich hoher Festigkeit und/oder Duktilität nur unter Einschränkungen möglich. Die Aufgabe der Erfindung besteht weiterhin darin, eine Vorrichtung zum Kaltgasspritzen anzugeben, mit der sich Schichten herstellen lassen, in denen ein vergleichsweise hoher An- teil an Partikeln mit einer höheren Festigkeit und/oder einer geringeren Duktilität als die Partikel der ersten Art (im Folgenden Partikel der zweiten Art genannt) eingebaut werden können .
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, dass in der Stagnationskammer eine zweite Einspeisungsleitung vorge¬ sehen ist, wobei die erste Einspeisungsleitung in einen ers¬ ten Bereich der Stagnationskammer mündet, der näher an der Düse liegt als ein zweiter Bereich, in den die zweite Em- speisungsleitung mündet. Diese Vorrichtung ist für einen Be¬ trieb nach dem oben genauer geschilderten Verfahren geeignet, da diese zwei Emspeisungsleitungen aufweist, und auf diese Weise die Partikel der zweiten Art dazu gebracht werden kön¬ nen, einen weiteren Weg durch die Stagnationskammer zurückzu- legen, als die Partikel der ersten Art. Auf diese Weise lässt sich eine Vorwärmung der Partikel der zweiten Art verbunden mit den oben bereits genannten Vorteilen erreichen.
Gemäß einer weiteren Ausgestaltung dieser Erfindung ist die Vorrichtung mit einer Heizeinrichtung versehen, die an der Stagnationskammer angebracht ist. Hierdurch lässt sich die Wand der Stagnationskammer bzw. das Innere der Stagnations¬ kammer direkt erwärmen, wodurch ein zusätzlicher Wärmebetrag in die Partikel der zweiten Art bzw. des Trägergases einge- bracht werden kann.
Eine weitere Ausgestaltung der Erfindung sieht vor, dass die Heizeinrichtung in die Wand der Stagnationskammer integriert ist. Dies hat den Vorteil, dass die Strömungsverhältnisse im Inneren der Stagnationskammer nicht beeinträchtigt werden und andererseits ein kurzer Wärmeübertragungsweg von der Heizein¬ richtung zu der Wand der Stagnationskammer gewährleistet ist.
Eine besondere Ausgestaltung der Erfindung wird erhalten, wenn sich die erste Emspeisungsleitung und/oder zweite Em- speisungsleitung derart in der Vorrichtung verschieben lassen, dass die Entfernung vom ersten Bereich und/oder zweiten Bereich zur Düse veränderlich ist. Dies hat den Vorteil, dass die durch das Trägergas übertragbare Wärmemenge dadurch ge¬ steuert werden kann, dass die Einspeisungsstellen für die Partikel in Richtung des Trägergasstromes veränderlich sind. Diese beeinflussen direkt die Länge des Weges, den die Parti¬ kel durch die Stagnationskammer zur Düse zurücklegen müssen, wobei dieser Weg ausschlaggebend für die übertragbare Wärme¬ menge ist.
Weitere Einzelheiten der Erfindung werden im Folgenden anhand der Zeichnung beschrieben. Es zeigen
Figur 1 den schematischen Querschnitt durch ein Ausführungsbeispiel der Vorrichtung zum Kaltgasspritzen und
Figur 2 ein Diagramm der Kerbschlagarbeit über der Temperatur bei Metallen, die eine Übergangstemperatur haben .
Eine Kaltgasspritzpistole 11 als Vorrichtung zum Kaltgas- spritzen stellt das Kernstück einer thermischen Spritzvorrichtung dar, wie sie beispielsweise in der US 2004/00347954 Al beschrieben ist. Die Kaltgasspritzpistole 11 besteht im Wesentlichen aus einem einzigen Gehäuse 13, in dem eine La- val-Düse 14 und eine Stagnationskammer 15 ausgebildet sind. Im Bereich der Stagnationskammer 15 ist in die Wand des Ge¬ häuses 13 eine Heizspirale 16 eingebettet, welche die Behei¬ zung eines Trägergases bewirkt, welches durch eine Zufüh¬ rungsöffnung 17 der Stagnationskammer 15 zugeführt wird.
Das Trägergas gelangt durch die Zuführöffnung 17 zunächst in die Stagnationskammer 15 und verlässt diese durch die Laval- Düse 14. Dabei kann das Trägergas in der Stagnationskammer bis zu 800° C aufgewärmt werden. Durch eine zweite Einspei- sungsleitung 18a sowie eine erste Emspeisungsleitung 19 werden die zur Beschichtung vorgesehenen Partikel eingespeist. Durch eine Entspannung des mit den Partikeln beaufschlagten Trägergasstromes durch die Laval-Düse 14 wird eine Abkühlung des Trägergasstroms bewirkt, der im Bereich der Düsenöffnung Temperaturen unter 300° C aufweist. Diese Temperaturverringe¬ rung ist auf eine im Wesentlichen aliabatische Expansion des Trägergases zurückzuführen, welches in der Stagnationskammer beispielsweise einen Druck von 30 Bar aufweist und außerhalb der Düsenöffnung auf Atmosphärendruck entspannt wird.
Die zweite Einspeisungsleitung 19 mündet in einem sehr düsennahen Bereich in die Stagnationskammer. Als Düse wird im Rahmen dieser Anmeldung der Teil der Kaltspritzpistole aufge- fasst, der sich im Querschnitt zunächst verengt und dann wie- der erweitert (angedeutet durch die Klammer zum Bezugszeichen 14) . Der Bereich der Kaltspritzpistole, der als Stagnations¬ kammer dient, ist mit der Klammer zum Bezugszeichen 15 ge¬ kennzeichnet. Aus Figur 1 wird deutlich, dass der an den zylindrischen Bereich der Stagnationskammer anschließende koni- sehe Bereich sowohl der Stagnationskammer 15 als auch der Düse 14 zugerechnet werden kann. Die Strömungsverhältnisse zwi¬ schen Stagnationskammer und Düse gehen nämlich ineinander über, wobei die an den zylindrischen Bereich anschließenden konischen Wandteile anfänglich noch einen derart großen Quer- schnitt bilden, dass die Strömungsverhältnisse eher denen in der Stagnationskammer entsprechen, d. h. eine signifikante Beschleunigung des Trägergases und der Partikel erst in dem wesentlich engeren konischen Bereich auftritt. Daher mündet die zweite Einspeisungsleitung 19 auch in diesen konischen Bereich, damit die eingespeisten Partikel möglichst ohne Zeitverzögerung in dem signifikant als Düse 14 wirkenden Teil beschleunigt werden.
Die erste Einspeisungsleitung 18a mündet in den der Düse 14 abgewendeten Teil der Stagnationskammer 15, so dass die Partikel die gesamte Stagnationskammer durchlaufen müssen und dabei vorrangig vom Trägergas aufgeheizt werden. Durch die beiden Emspeisungsstellen der Emspeisungsleitungen 18a, 19 entsteht ein erster Bereich 20 und ein zweiter Bereich 21 für die Einspeisung der Partikel erster Art 22 und der Partikel zweiter Art 23 (in Figur 1 nur angedeutet) . In dem in der Düse erzeugten Kaltgasstrahl 24 liegen die Partikel erster Art 22 und zweiter Art 23 dann gemischt vor und werden auf einem Substrat 25 als Schicht 26 abgeschieden.
Alternativ zur Einspeisungsleitung 18a lässt sich auch eine Einspeisungsleitung 18b vorsehen, welche axial verschieblich ist. Durch eine Verschiebung in Richtung des angedeuteten Doppelpfeiles kann damit die Einspeisungsstelle 21 zur Düse 14 hin und von ihr weg bewegt werden. Hierdurch kann die Kaltspritzpistole 11 an den jeweiligen Anwendungsfall und die notwendige Wärmemenge zur Vorwärmung der Partikel 23 ange- passt werden.
In Figur 2 ist das temperaturabhängige Verhalten von Metallen mit einer Übergangstemperatur Tu schematisch dargestellt. Auf der X-Achse ist die Temperatur T aufgetragen und auf der Y- Achse die Kerbschlagarbeit Av. Diese wird im sogenannten Kerbschlagbiegeversuch ermittelt, bei dem eine gekerbte Probe einer schlagenden Beanspruchung ausgesetzt wird (beispielsweise DIN EN 10045) . Das Verhalten der Metalle kann abhängig vom Bruchverhalten in drei Bereiche eingeteilt werden. In Be- reich I erfolgt ein Sprödbruch, da das Metall seine duktilen Eigenschaften bei tiefen Temperaturen verliert. Im Bereich III verhält sich das Metall duktil und entfaltet daher die an sich für Metalle bekannten mechanischen Eigenschaften. Zwi¬ schen dem Bereich I und dem Bereich III liegt der Bereich II, in denen sogenannte Mischbrüche auftreten, die spröde und duktile Anteile aufweisen. Wie den strichpunktierten Linien entnommen werden kann, liegt in dem Bereich II eine große Streuung bei der Ermittlung der Kerbschlagarbeit vor, da die Verhältnisse im Gefüge chaotisch sind. In den Bereichen I und III lassen sich die Werte für die Kerbschlagarbeit genauer ermitteln. Die Übergangstemperatur Tu ist daher ein Wert, der sich nicht genau ermitteln lässt.
Typische Metalle, die eine Übergangstemperatur aufweisen, sind die folgenden:
Metalle mit kubisch raumzentriertem Gitter (unlegierte und niedrig legierte Stähle, Chrom, Molybdän) , Metalle mit hexagonalen Gittern (Aluminium)
Beispielsweise haben unlegierte Stähle mit einem Anteil von mehr als 0,6 Masse-% Kohlenstoff bereits eine Übergangstempe¬ ratur zwischen 100 und 200° C, so dass diese für das erfin¬ dungsgemäße Verfahren prädestiniert sind. Ein anderes Bei¬ spiel ist die Erzeugung einer Kupfer-Chrom-Legierung mittels Kaltgasspritzen. Außerdem können auch Turbinenschaufeln beschichtet werden, wobei beispielsweise Wolframcarbid als Hartstoff zusammen mit einer MCrAlY-Legierung abgeschieden werden. Be zugs ze ichenl i ste
11 Partikel 1
12 Partikel 2
14 Düse
15 Stagnationskammer
16 Heizspirale
17 ZuführÖffnung
18a, 18b Einspeisungsleitung
19 Einspeisungsleitung
20 1. Bereich
21 2. Bereich
22 1. Partikel
23 2. Partikel
25 Substrat
26 Schicht

Claims

Patentansprüche
1. Verfahren zum Kaltgasspritzen, bei dem Partikel (22) einer ersten Art zusammen mit Partikeln (23) einer zweiten Art in eine Stagnationskammer (15) eingespeist werden und zusammen mit einem Trägergas durch eine der Stagnationskammer (15) nachgeschaltete Düse (14) auf ein zu beschichtendes Substrat (25) beschleunigt werden, wobei sich die Partikel (22) der ersten Art verformen und auf dem Substrat (25) unter Ausbil- düng einer Schicht (26) haften bleiben und wobei die Partikel (23) der zweiten Art, die eine höhere Festigkeit und/oder ei¬ ne geringere Duktilität als die Partikel (22) der ersten Art aufweisen, in die Schicht (26) eingebaut werden dadurch gekennzeichnet, dass die Partikel (22) der ersten Art in einem ersten Bereich (20) der Stagnationskammer (15) eingespeist werden, der näher an der Düse (14) liegt als ein zweiter Bereich (21), in dem die Partkiel (23) der zweiten Art eingespeist werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel (23) der zweiten Art aus einem spröden Werkstoff, insbesondere aus einem keramischen Werkstoff her¬ gestellt werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Partikel (23) der zweiten Art aus einem Hartstoff, insbesondere Wolframcarbid (WoC) hergestellt werden und dass als Substrat eine Schaufel für einen Verdichter oder eine Turbine beschichtet wird.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Partikel (23) der zweiten Art aus einem Metall oder einer Metalllegierung hergestellt werden, welches/welche o- berhalb einer Übergangstemperatur duktil und unterhalb dieser Temperatur spröde ist, wobei die Partikel (23) der zweiten Art in der Stagnationskammer so weit erwärmt werden, dass diese sich duktil verhalten.
5. Verfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass das Trägergas in der Stagnationskammer (15) geheizt wird.
6. Vorrichtung zum Kaltgasspritzen, aufweisend
- eine Stagnationskammer (15) mit einer Zuführόffnung (17) für ein Trägergas und einer ersten Einspeisungsleitung
(19) für zur Beschichtung vorgesehene Partikel (22) einer ersten Art und
- eine der Stagnationskammer (15) nachgeschaltete Düse (14) dadurch gekennzeichnet, dass in der Stagnationskammer (15) eine zweite Einspeisungs¬ leitung (18a, 18b) vorgesehen ist, wobei die erste Einspei¬ sungsleitung (19) in einen ersten Bereich (20) der Stagnationskammer (15) mündet, der näher an der Düse (14) liegt als ein zweiter Bereich (21), in den die zweite Emspeisungslei- tung mündet.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Stagnationskammer mit einer Heizeinrichtung versehen ist.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Heizeinrichtung in die Wand der Stagnationskammer integriert ist.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass sich die erste Emspeisungsleitung (19) und/oder zweite Einspeisungsleitung (18al8b) derart in der Vorrichtung ver¬ schieben lassen, das die Entfernung vom ersten Bereich (20) und/oder zweiten Bereich (21) zur Düse veränderlich ist.
EP08701266.2A 2007-01-09 2008-01-07 Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität Active EP2108051B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007001477A DE102007001477B3 (de) 2007-01-09 2007-01-09 Verfahren und Vorrichtung zum Kaltgasspritzen von Partikeln unterschiedlicher Festigkeit und/oder Duktilität
PCT/EP2008/050087 WO2008084025A2 (de) 2007-01-09 2008-01-07 Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität

Publications (2)

Publication Number Publication Date
EP2108051A2 true EP2108051A2 (de) 2009-10-14
EP2108051B1 EP2108051B1 (de) 2014-04-30

Family

ID=38859717

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08701266.2A Active EP2108051B1 (de) 2007-01-09 2008-01-07 Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität

Country Status (9)

Country Link
US (1) US8197895B2 (de)
EP (1) EP2108051B1 (de)
CN (1) CN101605922B (de)
CA (1) CA2674762C (de)
DE (1) DE102007001477B3 (de)
ES (1) ES2463484T3 (de)
PT (1) PT2108051E (de)
RU (1) RU2457280C2 (de)
WO (1) WO2008084025A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008031843A1 (de) 2008-07-05 2010-01-07 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zum Kaltgasspritzen
CN102251241A (zh) * 2011-06-24 2011-11-23 江苏大学 一种激光冲击波诱导的微纳米颗粒植入的方法和装置
US20130180432A1 (en) * 2012-01-18 2013-07-18 General Electric Company Coating, a turbine component, and a process of fabricating a turbine component
CN102527544B (zh) * 2012-02-24 2014-07-23 中国科学院金属研究所 一种制备金属复合梯度准晶涂层的冷喷涂装置及方法
DE102012013815B4 (de) * 2012-07-12 2015-10-22 IMPACT-Innovations-GmbH Kaltgasspritzpistole mit Pulverinjektor
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
EP3049189B1 (de) * 2013-09-25 2019-10-30 United Technologies Corporation Vereinfachte kaltsprühdüse und pistole
JP6716204B2 (ja) * 2015-06-24 2020-07-01 日本発條株式会社 成膜方法及び成膜装置
US10711636B2 (en) 2015-12-22 2020-07-14 General Electric Company Feedstocks for use in coating components
GB2566906B (en) * 2016-09-07 2022-04-27 Tessonics Inc Hopper with microreactor and cartridge for low pressure cold spraying
RU2692348C2 (ru) * 2017-10-13 2019-06-24 Андрей Игоревич Горунов Способ гибридного лазерного шаржирования поверхности образца
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
KR102523509B1 (ko) 2019-09-19 2023-04-18 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 콜드 스프레이 침착물의 현장 접착 테스트를 수행하기 위한 장치 및 사용 방법
CN112474094B (zh) * 2020-11-23 2022-07-15 中国科学技术大学 一种超音速气流与旋流负压耦合的远程喷射方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2087207C1 (ru) 1995-08-14 1997-08-20 Акционерное общество закрытого типа "ТОТЕМ" Устройство для нанесения покрытий из порошковых материалов
US5985373A (en) * 1996-12-23 1999-11-16 Aerostar Coatings, S.L. Method and apparatus for applying multi-layered coatings by detonation
RU2128728C1 (ru) 1997-11-05 1999-04-10 Закрытое акционерное общество "Научно-производственный и коммерческий центр "ТОТЕМ"" Способ получения покрытий из порошковых материалов
RU2194091C2 (ru) 1998-04-20 2002-12-10 Никитин Петр Васильевич Устройство для нанесения покрытий на внутренние поверхности деталей
RU2218425C2 (ru) 2001-02-21 2003-12-10 Чудинов Борис Анатольевич Способ создания упрочненного поверхностного слоя на деталях из металлических сплавов и композиционных материалов
US6706319B2 (en) * 2001-12-05 2004-03-16 Siemens Westinghouse Power Corporation Mixed powder deposition of components for wear, erosion and abrasion resistant applications
DE10224780A1 (de) * 2002-06-04 2003-12-18 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
US7108893B2 (en) 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
US20050214474A1 (en) 2004-03-24 2005-09-29 Taeyoung Han Kinetic spray nozzle system design
DE102005004117A1 (de) 2004-09-24 2006-04-06 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE102005004116A1 (de) 2004-09-24 2006-04-06 Linde Ag Verfahren zum Kaltgasspritzen und Kaltgasspritzpistole
US8349396B2 (en) 2005-04-14 2013-01-08 United Technologies Corporation Method and system for creating functionally graded materials using cold spray
US20070098912A1 (en) * 2005-10-27 2007-05-03 Honeywell International, Inc. Method for producing functionally graded coatings using cold gas-dynamic spraying
DE102006014124A1 (de) * 2006-03-24 2007-09-27 Linde Ag Kaltgasspritzpistole
RU2353705C2 (ru) 2006-11-27 2009-04-27 Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН) Способ газодинамического напыления порошковых материалов и устройство для его реализации

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008084025A2 *

Also Published As

Publication number Publication date
US20100040775A1 (en) 2010-02-18
CN101605922B (zh) 2011-02-23
CA2674762C (en) 2014-05-20
WO2008084025A2 (de) 2008-07-17
CN101605922A (zh) 2009-12-16
ES2463484T3 (es) 2014-05-28
EP2108051B1 (de) 2014-04-30
DE102007001477B3 (de) 2008-01-31
US8197895B2 (en) 2012-06-12
WO2008084025A3 (de) 2009-05-07
RU2457280C2 (ru) 2012-07-27
PT2108051E (pt) 2014-06-09
CA2674762A1 (en) 2008-07-17
RU2009130335A (ru) 2011-02-20

Similar Documents

Publication Publication Date Title
EP2108051A2 (de) Verfahren und vorrichtung zum kaltgasspritzen von partikeln unterschiedlicher festigkeit und/oder duktilität
EP1999297B1 (de) Kaltgasspritzpistole
EP3083107B1 (de) Vorrichtung und verfahren zum tiegelfreien schmelzen eines materials und zum zerstäuben des geschmolzenen materials zum herstellen von pulver
DE60130827T2 (de) Verfahren zur Herstellung von Gegenständen mit gestaffelten Beschichtungen
DE60111658T2 (de) Beschichtung auf faserverstärkte Verbundmaterialien
DE112004002500T5 (de) Kaltspritzvorrichtung mit Pulvervorheizeinrichtung
EP1791645B1 (de) Verfahren zum kaltgasspritzen und kaltgasspritzpistole mit erhöhter verweildauer des pulvers im gasstrahl
EP1857183B1 (de) Vorrichtung zum Kaltgasspritzen
EP1785679A1 (de) Vorrichtung zur Hochdruckgaserhitzung
EP2618070A1 (de) Gasheizvorrichtung, Gasheizeinrichtung sowie Anordnung zum thermischen Spritzen mit zugehörigem Verfahren
DE102006044612A1 (de) Verfahren zum Kaltgasspritzen
EP3472366A1 (de) Selbst heilende wärmedämmschichten sowie verfahren zur herstellung derselben
EP2260119A2 (de) Kaltgasspritzanlage
WO2007144374A1 (de) Verfahren zum beschichten eines bauteils, in dessen oberfläche löcher vorgesehen sind
EP1771700A2 (de) Strahlruden und verfahren zur herstellung eines strahlruders
DE19801610C2 (de) Verfahren zur Oberflächenbehandlung von Stahlfasern und deren Verwendung
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
EP3112531B1 (de) Bauteil für eine maschine zur herstellung und/oder behandlung einer faserstoffbahn und verwendung eines spritzpulvers bei der herstellung einer funktionsschicht für ein bauteil für eine maschine zur herstellung und/oder behandlung einer faserstoffbahn
DE102005062225B3 (de) Legierungsprodukt vom MCrAIX-Typ und Verfahren zur Herstellung einer Schicht aus diesem Legierungsprodukt
DE2161453B2 (de) Verfahren zur Herstellung eines Reibbelages auf Unterlagen, wie Bremsen oder Kupplungen mittels Plasmastrahl
DE10119288B4 (de) Verfahren und Einrichtung zur gasdynamischen Beschichtung von Oberflächen mittels Schalldüsen
EP1652608B2 (de) Verfahren zum Herstellen einer Hartstoffschicht und beschichtetes Produkt
WO2008025815A1 (de) Keramikdüse
DE102004022358B3 (de) Hartstoffbeschichtungsverfahren und dessen Verwendung
EP2087143A2 (de) Aufgedampfte beschichtung und thermisch belastbares bauteil mit einer solchen beschichtung, sowie verfahren und vorrichtung zur herstellung einer solchen beschichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090608

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20100311

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008011679

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0004120000

Ipc: B05B0007140000

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 24/04 20060101ALI20131017BHEP

Ipc: B05B 7/14 20060101AFI20131017BHEP

Ipc: B05B 7/16 20060101ALI20131017BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 664722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2463484

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140528

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20140529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008011679

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140830

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011679

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150202

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008011679

Country of ref document: DE

Effective date: 20150202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160120

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160127

Year of fee payment: 9

Ref country code: ES

Payment date: 20160223

Year of fee payment: 9

Ref country code: TR

Payment date: 20160105

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160114

Year of fee payment: 9

Ref country code: BE

Payment date: 20160120

Year of fee payment: 9

Ref country code: GB

Payment date: 20160111

Year of fee payment: 9

Ref country code: AT

Payment date: 20151207

Year of fee payment: 9

Ref country code: FR

Payment date: 20160115

Year of fee payment: 9

Ref country code: PT

Payment date: 20160105

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20080107

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 664722

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170107

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170108

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170707

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170108

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230412

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240318

Year of fee payment: 17