EP2617868B1 - Verfahren und Vorrichtung zum thermischen Spritzen - Google Patents

Verfahren und Vorrichtung zum thermischen Spritzen Download PDF

Info

Publication number
EP2617868B1
EP2617868B1 EP12002884.0A EP12002884A EP2617868B1 EP 2617868 B1 EP2617868 B1 EP 2617868B1 EP 12002884 A EP12002884 A EP 12002884A EP 2617868 B1 EP2617868 B1 EP 2617868B1
Authority
EP
European Patent Office
Prior art keywords
nozzle
spray
particles
spray particles
gas stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12002884.0A
Other languages
English (en)
French (fr)
Other versions
EP2617868A1 (de
Inventor
Frank Dr. Gärtner
Peter Heinrich
Thomas Prof. Dr. Klassen
Heinrich Prof. Dr. Kreye
Werner Krömmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46146506&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2617868(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Priority to PL12002884T priority Critical patent/PL2617868T3/pl
Publication of EP2617868A1 publication Critical patent/EP2617868A1/de
Application granted granted Critical
Publication of EP2617868B1 publication Critical patent/EP2617868B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/1606Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
    • B05B7/1613Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
    • B05B7/162Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Definitions

  • the present invention relates to a method and apparatus for thermal spraying according to the preambles of the independent claims.
  • Cold gas spraying is a thermal spraying method in which a powdery spray material (hereinafter referred to as "spray particle”) is processed by an expanding gas (hereinafter referred to as “carrier gas flow”).
  • carrier gas flow an expanding gas
  • spray particles from 1 to 250 ⁇ m are used and accelerated in the carrier gas stream to speeds of 200 to 1600 m / s.
  • a Laval nozzle is used, which has a converging region and a diverging region. The spray particles are not melted before spraying.
  • plastic deformation and the associated heating of the contact zone form a coating.
  • the carrier gas stream can be heated.
  • the particles In the warm carrier gas flow, the particles also heat up, so that they deform more easily upon impact.
  • the carrier gas temperature is always set so high that it is ensured that the temperature of the spray particles always and in any case remains below their melting temperature.
  • the carrier gas stream is therefore referred to as "cold" gas stream and the method as cold gas spraying.
  • Cold gas spraying is distinguished from other thermal spraying processes by relatively low process temperatures and high particle velocities. There is no melting and no phase transformation of the coating material and only a small thermal load of the substrate. The coating material hardly oxidises and allows the production of virtually pore-free layers with high spray efficiency and low spray loss.
  • Documents US 2004/0058064 A1 and US 2004/0058065 A1 disclose cold gas spraying and cold gas spraying devices.
  • the present invention proposes a method and a device for thermal spraying with the features of the independent claims.
  • Preferred embodiments are the subject of the respective subclaims and the following description.
  • the proposed method is a thermal spraying method in which the spray material is already in powder form.
  • the method thus differs from methods in which the filler material is melted, such as flame spraying, plasma spraying and arc spraying.
  • the energy input takes place by means of a hot gas, ie not by means of other energy carriers such as a burner flame, an arc, a plasma, a laser beam or the like.
  • the process can be carried out with suitable cold gas spraying systems. Therefore, the method according to the invention is very similar in many respects to cold gas spraying, but differs from cold gas spraying in decisive and essential features, as will be explained in more detail in the following.
  • spray particles of a pulverulent spray material are introduced into a hot carrier gas stream, heated in the hot carrier gas stream and sprayed onto a surface of a substrate by means of a spray nozzle.
  • a spray nozzle In conventional cold gas spraying, no melting or melting of the spray particles takes place.
  • the spray particles are partly on and melted.
  • the particles are heated upstream of the nozzle throat to a temperature at which the spray particles at least partially melt. Downstream of the nozzle throat, ie in the divergent section of the nozzle, in which a relaxation of the carrier gas flow takes place, cool gas and spray particles from.
  • partial melting may on the one hand include that only a few spray particles melt. This may for example be the case when spraying particles of different materials are used, which have different melting temperatures. The spray particles with a lower melting temperature are then at least partially liquefied at corresponding temperatures, whereas the spray particles of higher melting material remain in the solid phase. However, such "partial” melting may also occur when sprayed particles of different sizes are used. In this case, smaller particles may be completely formed, i. to the core, melt, whereas larger particles melt only the periphery, but the core remains firm. Of course, this also applies to particles made of different materials.
  • the term “partial melting” can therefore also be understood to mean that liquefaction occurs at some point of at least some of the spray particles.
  • An "at least" partial melting also includes a complete or at least predominant liquefaction of all or at least almost all spray particles. In general, however, the particles are not supplied to the complete heat of fusion, so that no complete liquefaction occurs.
  • the temperature at which the spray particles must be heated to partial melting depends on the spray powder itself.
  • a hot carrier gas stream in which yes the spray particles are introduced, is thus to be understood as a carrier gas stream which has been heated at least to a temperature corresponding to the melting temperature of the material.
  • this minimum temperature of the melting temperature corresponds to that component which has the lowest melting temperature. Since the heat must pass from the carrier gas to the spray particles, the required carrier gas temperature is above the minimum temperature. How much the minimum temperature has to be exceeded depends on the heat transfer between the carrier gas and the spray particles and on the residence time of the spray particles in the hot carrier gas.
  • the carrier gas temperature can be between 40 ° C and 2000 ° C.
  • the specified upper limit results from restrictions of the cold gas spraying system which is used for the process according to the invention, and not from the process itself.
  • the required carrier gas temperature can be determined by calculation and can be determined by simple test series.
  • the carrier gas temperatures to be used consequently depend on the particular spray material and on the particles which can be achieved with the respective spray device. It can be determined by calculation and can also be determined with routine test series.
  • the melting temperature of the different spray materials is generally known and is specified by the manufacturer or can be found in corresponding reference works.
  • the exposure time corresponds to the residence time of the particles at the respective temperature. This depends, in particular, on the way the particles travel in the heating zone and on the speed with which the particles are transported through the heating zone and on the gas type of the carrier gas flow, since the heat transfer depends on the gas used.
  • the fact that the sprayed particles were partially melted during the process has an effect on the coating itself. Consequently, one can deduce from the microstructure and the properties of the coating whether these were produced by means of the process according to the invention. If the particles were partially melted, as in the method according to the invention, the formation of a structure takes place during the solidification of the particles in the molten area, so that the structure of the melted and unmelted areas is different. With conventional cold gas spraying, these differences in the structure do not show, since no melting of the particles takes place and thus there are no different areas. In the conventional thermal spraying process, on the other hand, sprayed materials are completely melted, so that no areas of different microstructures and properties are formed here as well. Microstructures and properties can be assessed in the cut, so that the nature of the coating's origin can be deduced from the coating itself.
  • the oxidation of the molten particles can be prevented by a suitable choice of the carrier gas stream by using suitable inert gases such as nitrogen, helium, or argon or mixtures thereof.
  • suitable inert gases such as nitrogen, helium, or argon or mixtures thereof.
  • the process according to the invention can therefore introduce a large amount of energy and thus increase the deformability of the sprayed particles without causing excessive oxidation.
  • Nitrogen, helium or air or a mixture thereof can advantageously be used for the carrier gas stream in the process according to the invention. Further, an argon or other gas or gas mixture thereof may also be used. If an oxidation is to be avoided, of course, a gas mixture without oxygen must be used.
  • the spray particles in the carrier gas stream for example, first pass through a convergent region in which the cross section of the nozzle channel is reduced and thus the carrier gas flow is accelerated.
  • the convergent region of the nozzle is followed by a diverging region after the nozzle neck, which may optionally be an elongated neck portion.
  • the carrier gas stream is expanded, which is accompanied by acceleration and cooling.
  • the spray particles also cool. Even if no diverging nozzle is used, the temperature of carrier gas and spray particles decreases after the narrowest cross-section of the nozzle to impinge on the substrate.
  • the method according to the invention comprises an adjustment of the temperature of the sprayed particles in such a way that, when they impact the substrate, they are exposed to the temperature of the sprayed particles Melting temperature of the spray material is below. Nevertheless, this is due to the previously made heating to the partial melting of the particles significantly higher than in conventional cold gas spraying.
  • All temperatures of the spray particles can be adjusted in the context of the present invention by controlling the temperature of the carrier gas stream and / or the pressure with which this is supplied to the spray nozzle, and by the residence time of the spray particles in the hot carrier gas.
  • the carrier gas is heated sufficiently and the spray particles are injected so that they dwell sufficiently long in the hot gas stream, the spray particles will partially melt and it is then the process of the invention.
  • An additional heating for example, downstream of the nozzle, although possible as an addition, but not usually required.
  • Such a method can thus be implemented simply and cost-effectively, because existing control units can continue to be used.
  • a reheating of the spray particles can be carried out, for example by microwaves as in the EP 1 593 437 B1 disclosed. This allows a further increase in the energy input.
  • a cold gas spraying system is therefore suitable for the process according to the invention, if it is designed such that it allows a carrier gas temperature and a residence time of the particles in the hot carrier gas, which sufficiently heat the spray particles, so that they meet the conditions described above.
  • the particles are at least partially heated so that their average temperature upon impact with the substrate is at least 60%, 70% or 80% of the melting temperature of the spray material in Kelvin. This is done by a corresponding adjustment of the temperature to which the spray particles are heated before the nozzle throat. At 100% of the melting temperature, the particles become liquid, so that this value is usually the upper limit of a favorable temperature range on impact. If different spraying materials are used, it is understood that for some of the particles the mentioned range of values can be reached, for others, however, not yet. For higher melting particles, therefore, the temperature on impact with the substrate may be 50% of the melting temperature in Kelvin, for lower melting particles 90% or more. This fact is detected by the formulation used, according to which the temperature "of at least one part the spray particle "has a corresponding temperature upon impact with the substrate.
  • the influence of heat on any process step during the manufacture and processing of materials and their eventual use is known to depend on the temperature to which the materials are exposed and the exposure time involved.
  • the temperature can be based on the melting temperature of the materials and specified in ° C or K. If a material with a melting temperature of 1000 ° C (1273 K) is heated to 500 ° C (773 K), the temperature is 50% of the melting temperature in ° C and about 61% of the melting temperature in Kelvin.
  • All previously known methods for cold gas spraying include heating the spray particles to not significantly more than about 60% of their melting temperature in Kelvin.
  • a gas flow at 1000 ° C (773 K) is used for the spraying of titanium, which has a melting temperature of 1680 ° C (1953 K).
  • Spray particles with a diameter of 20 ⁇ m collide with approximately 530 ° C. (803 K), ie approximately 41% of their melting temperature in K, on the substrate, as determined experimentally.
  • Zinc which has a melting temperature of 420 ° C, in a particle size of 20 microns at a gas temperature sprayed from 400 ° C, the impact temperature is 63% of the melting temperature in Kelvin. It should be emphasized that these temperatures are already very high values for cold gas spraying, frequently used values are much lower.
  • the process according to the invention is advantageous in particular for the production of layers and components from so-called heat-resistant materials.
  • Heat-resistant materials are characterized in that their deformability only significantly increases when they are heated to a temperature which is above a value of 0.5 to 0.6 of the melting temperature; ie the deformability increases sharply from a temperature of 50% to 60% of the melting temperature.
  • Good ductility supports the formation of the layer.
  • the process according to the invention therefore makes it possible to produce coatings of heat-resistant materials particularly effectively. This statement applies to many different materials. In particular, these include alloys based on iron, nickel and cobalt. Also the so-called MCrAIY's belong to it. MCrAIY's are used a lot in engine and turbine construction.
  • Ni-based alloys are also referred to as nickel-base superalloys.
  • An exemplary and typical MCrAlY alloy as used in engine and turbine construction, has a melting temperature of about 1400 ° C (1673 K). This alloy has only from a temperature of 730 ° C (1003 K, ie 60% of the melting temperature) sufficient ductility, so that the spray particles adhere well to the substrate only if they hit a temperature of 730 ° C and more on impact exhibit. With the method according to the invention it is now ensured that the high temperature resistant materials have this temperature when hitting the substrate.
  • a corresponding method can also be used in particular for spraying spray particles which consist of a spray material which comprises aluminum, iron, copper, nickel, zinc and / or tin and / or alloys thereof.
  • the method according to the invention is also advantageous for the production of layers and components from composite materials, because in this case a non-metallic component, e.g. Ceramic or graphite, due to the good plastic deformability of the heated metal can integrate particularly well into the material structure.
  • the method according to the invention also permits the processing of relatively coarse and therefore less expensive particles which conventionally can not be sufficiently deformed and thus do not form dense layers. For the same reason, it is also possible to use material with a less narrow particle size distribution, which also offers cost advantages.
  • the method according to the invention for the production of layers and components from materials which have a glassy, amorphous structure is advantageous.
  • spray particles of materials which have a glassy structure in particular of plastics or metallic glasses used.
  • Materials with a glassy or even amorphous structure are only plastically deformable above a so-called glass transition temperature.
  • These include, for example, both metallic glasses in which the individual atoms are arranged largely randomly, as well as plastics in which the molecular chains are randomly arranged.
  • vitreous means that the building blocks, ie the atoms or Molecules are not arranged regularly as in a crystal lattice, but randomly such as the atoms in a window glass.
  • a spray nozzle is used in a method according to the invention, in which the carrier gas stream is compressed with the spray particles in a converging nozzle section and expanded in a diverging nozzle section.
  • a device which can be used for the method according to the invention thus has, for example, a Laval nozzle.
  • Laval nozzle allows a strong acceleration of the spray particles on the substrate.
  • the spray particles are introduced into the gas flow upstream of the nozzle neck of the Laval nozzle, that is to say in or upstream of the convergent region of the nozzle or its narrowest cross section.
  • an arrangement is also advantageous, as shown in the EP 1 369 498 B1 is disclosed.
  • the method according to the invention can also be carried out without the use of a Laval nozzle, because the spray particles already have a sufficiently good deformability due to the preceding strong heating, which ensures adhesion to the substrate even without excessive acceleration. This allows a mechanical protection of the substrate.
  • a spray nozzle which has an antechamber and / or an extended convergent section for heating the spray particles, such as in the EP 1 791 645 B1 disclosed. If the pre-chamber used is preconnected or the convergent section, eg a Laval nozzle, sufficiently extended, it can be ensured that, for example, at least 80% of the spray particles reach a temperature which corresponds to at least 70% of the carrier gas flow.
  • At least one external gas heater is used to heat the carrier gas flow, which in turn heats the spray particles.
  • a usable gas heater is eg in the EP 0 924 315 B1 disclosed.
  • the gas or gas mixture used is kept in a gas pressure vessel and is in a Cached storage tank. After removal from the gas buffer container, the gas or gas mixture is heated by means of an electrical resistance heater, inductive and / or by means of a plasma torch.
  • a sufficiently strong heating can also by using multiple heaters, especially pre and post heaters as in the DE 10 2005 004 117 disclosed be achieved.
  • the EP 1 785 679 A1 discloses an also usable heater having heatable filaments.
  • a heater which has a resistively heated graphite felt.
  • Graphite felts are made of thin filaments of graphite, which touch together in a knot. If, with suitable contacting, an electrical voltage is applied to a graphite felt, a current flows despite the interruption of the filaments, because it can also spread over the contact points of the filaments. Therefore, a graphite felt heats up in its entirety in the passage of current and can therefore heat a gas flowing through the graphite felt. Because the graphite fibers in the graphite felt are very thin, the surface over which the heat is transferred to the gas is very large overall. This allows gas heating at high pressures and high temperatures. The achievable temperatures can be more than 1500 ° C and reach up to 2000 ° C.
  • a corresponding method is particularly advantageous if in this case a spray nozzle is used which has a graphite material at least in a region of its inner wall in a contact region with the spray particles.
  • a “graphite material” denotes any graphite-containing material, including pure graphite as a solid material, but also, in particular, corresponding composite materials or coatings. Graphite modifications such as glassy carbon are also included.
  • a graphite material in the said field of application has a number of advantageous properties which, in combination in particular, allow the explained significantly elevated temperatures.
  • a graphite material has the advantage that it prevents caking of the hot spray particles on the nozzle inner wall and thus also allows the splashing (part) of liquid particles.
  • a nozzle can be used which has glassy carbon as the graphite material. Glassy carbon, also referred to as vitreous carbon, combines glassy ceramic properties with those of graphite and thus offers particular advantages.
  • metallic, partially or all-ceramic spray nozzles and / or spray nozzles with appropriate inserts eg ceramic nozzles with graphite inserts or metal nozzles with ceramic inserts may be advantageous.
  • the respective materials can also be applied in the form of coatings, which compared to solid materials enables a particularly cost-effective production.
  • a solid material has the advantage, for example, in the case of graphite, that its heat conduction properties can be effective in a particular way.
  • a corresponding nozzle can therefore dissipate heat particularly effectively.
  • An insert of a corresponding material e.g. Ceramic, graphite or glassy carbon, for example, can be easily replaced when worn.
  • graphite materials can also be used in the form of composite materials. These may be materials based on metals and / or plastics.
  • the inventively also proposed device in particular in the form of a spray gun with a nozzle having a graphite material, benefits in the same way from the advantages of the described method.
  • FIG. 1 a spray gun is shown schematically and designated overall by 1.
  • the spray gun 1 has a spray nozzle 10.
  • the spray gun 1 is directed onto a substrate S and has gas inlets 2, 3, via which a gas stream G, in particular a heated to the above temperatures gas stream G, can be provided.
  • a gas heater arranged upstream of the spray gun 1 can be provided.
  • Further gas inlets 3 can be used for setting a gas mixture and / or a gas temperature of the gas stream G.
  • a spray gun 1 may have an external powder conveyor (not shown), into which a portion of the gas stream G is passed, with which the spray particles P are fed into the spray gun 1.
  • a particle inlet 4 is provided, by means of which spray particles P can be fed into the spray gun 1.
  • a particle feeding device provided in the form of a powder conveyor, which is provided upstream of the spray gun 1 but not shown, is provided, via which a part of the gas flow G, possibly in (partially) heated form, is passed.
  • the carrier gas flow G and the spray particles P enter a mixing chamber 5, which is arranged within a multi-part housing 6 of the spray gun 1.
  • the housing 6 is shown partially opened.
  • the mixing chamber 5 may have further means for mixing the gas flow G and the spray particles P.
  • a spray nozzle 10 has a nozzle inlet 11 on the injection nozzle side and a nozzle opening 12 between the nozzle inlet 11 and nozzle opening 12.
  • the nozzle channel 13 has a nozzle neck 14 at the flow-optimized position. From the nozzle inlet to the nozzle throat 14, the cross section of the nozzle channel 13 tapers. From the nozzle throat 14 to the nozzle orifice 12, the nozzle channel 13 widens, so that an acceleration of a compressed and heated gas stream can be effected by means of the Laval effect. The gas stream with the correspondingly heated particles P is spun onto the substrate S as a gas-sprayed particle mixture GP.
  • the injection nozzle 10 advantageously has a graphite material, in particular between the nozzle neck 14 and the nozzle orifice 12, on the inside.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zum thermischen Spritzen gemäß den Oberbegriffen der unabhängigen Patentansprüche.
  • Stand der Technik
  • Beim Kaltgasspritzen handelt es sich um ein thermisches Spritzverfahren, bei dem ein pulverförmiger Spritzwerkstoff (nachfolgend als "Spritzpartikel" bezeichnet) mittels eines expandierenden Gases (nachfolgend als "Trägergasstrom" bezeichnet) verarbeitet wird. Das Gas wird dabei nicht verbrannt. In der Regel werden Spritzpartikel von 1 bis 250 µm verwendet und in dem Trägergasstrom auf Geschwindigkeiten von 200 bis 1600 m/s beschleunigt. Hierzu wird üblicherweise, jedoch nicht immer, eine Lavaldüse verwendet, die einen konvergierenden Bereich und einen divergierenden Bereich aufweist. Die Spritzpartikel werden vor dem Verspritzen nicht aufgeschmolzen. Beim Aufprall auf das Substrat bildet sich durch plastische Verformung und der damit verbundenen Erwärmung der Kontaktzone eine Beschichtung.
  • Beim Kaltgasspritzen kann, um den Wirkungsgrad zu erhöhen, der Trägergasstrom erwärmt werden. In dem warmen Trägergasstrom erwärmen sich auch die Partikel, so dass sich diese beim Aufprall leichter verformen. Die Trägergastemperatur wird jedoch stets nur so hoch eingestellt, dass sichergestellt ist, dass die Temperatur der Spritzpartikel stets und auf jeden Fall unter deren Schmelztemperatur bleibt. Der Trägergasstrom wird daher als "kalter" Gasstrom bezeichnet und das Verfahren als Kaltgasspritzen.
  • Das Kaltgasspritzen zeichnet sich damit gegenüber anderen thermischen Spritzverfahren durch relativ niedrige Prozesstemperaturen und hohe Partikelgeschwindigkeiten aus. Es erfolgt kein Aufschmelzen und keine Phasenumwandlung des Beschichtungsmaterials sowie eine nur geringe thermische Belastung des Substrats. Der Beschichtungswerkstoff oxidiert kaum und ermöglicht die Herstellung nahezu porenfreier Schichten mit hohem Spritzwirkungsgrad und geringem Spritzverlust. Dokumente US 2004/0058064 A1 und US 2004/0058065 A1 offenbaren Kaltgasspritzverfahren und Kaltgasspritzvorrichtungen.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung schlägt ein Verfahren und eine Vorrichtung zum thermischen Spritzen mit den Merkmalen der unabhängigen Patentansprüche vor. Bevorzugte Ausgestaltungen sind Gegenstand der jeweiligen Unteransprüche sowie der nachfolgenden Beschreibung.
  • Vorteile der Erfindung
  • Bei dem vorgeschlagenen Verfahren handelt es sich um ein thermisches Spritzverfahren, bei dem bereits der Spritzwerkstoff pulverförmig vorliegt. Das Verfahren unterscheidet sich damit von Verfahren, bei welchen der Zusatzwerkstoff aufgeschmolzen wird, wie dem Flammspritzen, dem Plasmaspritzen und dem Lichtbogenspritzen. In dem erfindungsgemäßen Verfahren erfolgt der Energieeintrag mittels eines heißen Gases, also nicht mittels anderer Energieträger wie einer Brennerflamme, eines Lichtbogens, eines Plasmas, eines Laserstrahls oder dergleichen. Das Verfahren kann mit geeigneten Kaltgasspritzanlagen ausgeführt werden. Daher ist das erfindungsgemäße Verfahren dem Kaltgasspritzen von der Durchführung her in Vielem sehr ähnlich, jedoch unterscheidet es sich vom Kaltgasspritzen in entscheidenden und wesentlichen Merkmalen, wie im Folgendem näher erläutert werden soll.
  • Bei dem erfindungsgemäßen Verfahren werden, wie beim Kaltgasspritzen üblich und eingangs erläutert, Spritzpartikel eines pulverförmigen Spritzwerkstoffes in einen heißen Trägergasstrom eingebracht, in dem heißen Trägergasstrom erwärmt und mittels einer Spritzdüse auf eine Oberfläche eines Substrats gespritzt. Beim herkömmlichen Kaltgasspritzen findet kein An- oder Aufschmelzen der Spritzpartikel statt. Bei dem erfindungsgemäßen Verfahren werden die Spritzpartikel jedoch teilweise an- und aufgeschmolzen. Dazu werden die Partikel stromaufwärtig des Düsenhalses auf eine Temperatur erwärmt, bei welcher die Spritzpartikel wenigstens teilweise aufschmelzen. Stromabwärtig des Düsenhalses, also im divergenten Abschnitt der Düse, in welcher eine Entspannung des Trägergasstroms erfolgt, kühlen Gas und Spritzpartikel ab. Im erfindungsgemäßen Verfahren hat dies zur Folge, dass die Spritzpartikel wieder fest werden, da ja die Schmelztemperatur wieder unterschritten wird. Trotzdem weisen die Spritzpartikel beim Auftreffen auf das Substrat eine hohe Temperatur auf, da die aufgeschmolzenen Partikel - bevor sie Abkühlen - Erstarren und dabei die Schmelzwärme, welche vor dem Düsenhals beim Aufschmelzen aufgenommen wurde, wieder abgegeben wird.
  • Die Angabe "teilweises Aufschmelzen" kann einerseits umfassen, dass nur einige Spritzpartikel aufschmelzen. Dies kann beispielsweise dann der Fall sein, wenn Spritzpartikel aus unterschiedlichen Materialien verwendet werden, die voneinander abweichende Schmelztemperaturen besitzen. Die Spritzpartikel mit einer niedrigeren Schmelztemperatur werden dann bei entsprechenden Temperaturen zumindest teilweise verflüssigt, wohingegen die Spritzpartikel aus höher schmelzendem Material in der festen Phase bleiben. Ein derartiges "teilweises" Aufschmelzen kann sich jedoch auch dann ergeben, wenn Spritzpartikel mit unterschiedlichen Größen verwendet werden. In diesem Fall werden gegebenenfalls kleinere Partikel vollständig, d.h. bis in ihren Kern, aufschmelzen, wohingegen bei größeren Partikeln lediglich die Peripherie anschmilzt, der Kern jedoch fest bleibt. Dies gilt selbstredend auch für Partikel aus unterschiedlichen Materialien. Die Angabe "teilweises Aufschmelzen" kann also auch dahingehend verstanden werden, dass zumindest bei einem Teil der Spritzpartikel an irgendeiner Stelle eine Verflüssigung eintritt. Ein "wenigstens" teilweises Aufschmelzen umfasst dabei auch eine vollständige oder zumindest überwiegende Verflüssigung aller oder zumindest fast aller Spritzpartikel. In der Regel wird jedoch den Partikeln nicht die vollständige Schmelzwärme zugeführt, so dass keine vollständige Verflüssigung eintritt.
  • Da die Schmelztemperatur und die Schmelzwärme von dem Material beziehungweise der Materialzusammensetzung abhängt, hängt die Temperatur, auf welche die Spritzpartikel zum teilweisen Aufschmelzen erwärmt werden müssen, vom Spritzpulver selbst ab. Unter einem heißen Trägergasstrom, in welche ja die Spritzpartikel eingebracht werden, ist folglich ein Trägergasstrom zu verstehen, der mindestens auf eine Temperatur erwärmt wurde, die der Schmelztemperatur des Werkstoffes enspricht. Im Falle, dass die Spritzpartikel aus unterschiedlichen Materialien zusammengesetzt ist, entspricht diese Mindesttemperatur der Schmelztemperatur derjenigen Komponente, die die niedrigste Schmelztemperatur aufweist. Da die Wärme von dem Trägergas auf die Spritzpartikel übergehen muss, liegt die notwendige Trägergastemperatur über der Mindestemperatur. Um wieviel die Mindestemperatur überschritten werden muss, hängt von dem Wärmeübergang zwischen dem Trägergas und den Spritzpartikeln und von der Verweilzeit der Spritzpartikel im heißen Trägergas ab. Es kann also in manchen Fällen genügen, die Mindesttemperatur nur um wenige Kelvin zu überbieten, während in anderen Fällen die Temperatur sogar um mehrere hundert Kelvin (und mehr) überschritten werden muss. Dies bedeutet, dass die Trägergastemperatur zwischen 40 °C und 2000°C liegen kann. Die angegebene Obergrenze ergibt sich aus Beschränkungen der Kaltgasspritzanlage, die für das erfindungsgemäße Verfahren eingesetzt wird, und nicht aus dem Verfahren selbst. Die notwendige Trägergastemperatur lässt rechnerisch ermitteln und ist durch einfache Versuchsreihen bestimmbar.
  • Die zu verwendenden Trägergastemperaturen richten sich folglich nach dem jeweiligen Spritzwerkstoff und der mit der jeweiligen Spritzvorrichtung erzielbaren Einwirkzeit auf die Partikel. Sie lässt sich rechnerisch ermitteln und ist auch mit routinemäßigen Versuchsreihen bestimmbar. Die Schmelztemperatur der unterschiedlichen Spritzwerkstoffe ist in der Regel bekannt und wird vom Hersteller angegeben oder ist entsprechenden Nachschlagewerken zu entnehmen. Die Einwirkzeit entspricht der Verweildauer der Partikel bei der jeweiligen Temperatur. Diese richtet sich insbesondere nach dem Weg, den die Partikel in der Erwärmungszone zurücklegen, sowie nach der Geschwindigkeit, mit der die Partikel durch die Erwärmungszone transportiert werden, sowie nach der Gasart des Trägergasstroms, da die Wärmeübertragung von dem verwendeten Gas abhängt.
  • Die Tatsache, dass die Spritzpartikel während des Verfahrens teilweise aufgeschmolzen waren, hat Auswirkungen auf die Beschichtung selbst. Folglich kann man aus dem Gefüge und den Eigenschaften der Beschichtung schließen, ob diese mittels des erfindungsgemäßen Verfahrens hergestellt wurden. Waren die Partikel, wie beim erfindungsgemäßen Verfahren, teilweise aufgeschmolzen, findet beim Erstarren der Partikel in dem geschmolzenen Bereich eine Gefügeneubildung statt, so dass sich das Gefüge der aufgeschmolzenen und der nicht aufgeschmolzenen Bereiche unterscheidet. Beim herkömmlichen Kaltgasspritzen zeigen sich diese Unterschiede im Gefüge nicht, da ja kein Aufschmelzen der Partikel erfolgt und es somit keine unterschiedlichen Bereiche gibt. Bei den klassischen thermischen Spritzverfahren hingegen werden sie Spritzwerkstoffe vollständig geschmolzen, so dass auch hier keine Bereiche unterschiedlicher Gefüge und Eigenschaften entstehen. Gefüge und Eigenschaften lassen sich im Schliff unter dem Mikroskop beurteilen, so dass die Art der Entstehung der Beschichtung der Beschichtung selbst entnommen werden kann.
  • Bei herkömmlichen Spritzverfahren, in denen der Spritzwerkstoff in aufgeschmolzener Form auf das Substrat trifft, ist ohne aufwendige Zusatzmaßnahmen kein ausreichender Oxidationsschutz möglich. Insbesondere im geschmolzenen Zustand weisen Metalle eine hohe Oxidationsanfälligkeit auf. Dieser Nachteil tritt beim Kaltgasspritzen in sehr viel geringerem Umfang auf, da die Partikel in "kalter" Form, d.h. in nicht geschmolzendem Zustand, auf das Substrat auftreffen. Auch in dem erfindungsgemäßen Verfahren ist ein Oxidationsschutz sichergestellt, weil die Spritzpartikel nur in einem Teilbereich der Spritzdüse in (teil)flüssiger Form vorliegen, und beim Verlassen der Düse vorteilhafterweise bereits wieder erstarrt sind, so dass die Oxidation zumindest weitgehend verhindert wird. Die Oxidation der aufgeschmolzenen Partikel kann durch eine geeignete Wahl des Trägergasstroms verhindert werden, indem geeignete Inertgase wie beispielsweise Stickstoff, Helium, oder Argon oder deren Gemische, verwendet werden. Duch das erfindungsgemäße Verfahren kann daher eine hohe Energiemenge eingebracht und damit die Verformbarkeit der Spritzpartikel gesteigert werden, ohne eine übermäßige Oxidation zu verursachen.
  • Für den Trägergasstrom kann bei dem erfindungsgemäßen Verfahren mit Vorteil Stickstoff, Helium oder Luft oder ein Gemisch daraus verwendet werden. Ferner kann auch ein Argon oder ein anderes Gas oder ein Gasgemisch daraus verwendet werden. Soll eine Oxidation vermieden werden, muss selbstverständlich ein Gasgemisch ohne Sauerstoff verwendet werden.
  • In einer üblicherweise zum Kaltgaspritzen verwendeten Düse durchlaufen die Spritzpartikel im Trägergasstrom beispielsweise zunächst einen konvergierenden Bereich, in dem sich der Querschnitt des Düsenkanals verringert und damit der Trägergasstrom beschleunigt wird. Dem konvergenten Bereich der Düse schließt sich nach dem Düsenhals, welcher gegebenenfalls ein verlängerter Halsabschnitt sein kann, ein divergierender Bereich an. Im divergenten Teil der Düse wird der Trägergasstrom entspannt, womit eine Beschleunigung und eine Abkühlung einhergeht. Da sich der Trägergasstrom abkühlt, kühlen sich auch die Spritzpartikel ab. Auch wenn keine divergierende Düse verwendet wird, sinkt die Temperatur von Trägergas und Spritzpartikel nach dem engsten Querschnitt der Düse bis zum Auftreffen auf das Substrat ab.
  • Wie zuvor angegeben, umfasst das erfindungsgemäße Verfahren eine Einstellung der Temperatur der Spritzpartikel derart, dass diese beim Aufprall auf das Substrat die Schmelztemperatur des Spritzwerkstoffs unterschreitet. Dennoch ist diese aufgrund der zuvor vorgenommenen Erwärmung bis zum teilweisen Aufschmelzen der Partikel signifikant höher als bei herkömmlichen Kaltgasspritzverfahren.
  • Sämtliche Temperaturen der Spritzpartikel können im Rahmen der vorliegenden Erfindung durch eine Steuerung der Temperatur des Trägergasstroms und/oder des Drucks, mit dem dieser der Spritzdüse zugeführt wird, und durch die Verweilzeit der Spritzpartikel in dem heißen Trägergas eingestellt werden. Wird also das Trägergas ausreichend erwärmt und werden die Spritzpartikel so injiziert, dass sie ausreichend lange im heißen Gasstrom verweilen, werden die Spritzpartikel teilweise aufschmelzen und es handelt sich dann um das erfindungsgemäße Verfahren. Eine zusätzliche Erwärmung, z.B. stromabwärtig der Düse, ist zwar als Zusatz möglich, aber in der Regel nicht erforderlich. Ein derartiges Verfahren lässt sich damit einfach und kostengünstig implementieren, weil bereits vorhandene Steuer- bzw. Regeleinheiten weiter genutzt werden können. Gleichwohl kann auch eine Nacherwärmung der Spritzpartikel erfolgen, beispielsweise durch Mikrowellen wie in der EP 1 593 437 B1 offenbart. Dies ermöglicht eine weitere Erhöhung des Energieeintrags.
  • Eine Kaltgasspritzanlage ist folglich für das erfindungsgemäße Verfahren geeigent, wenn diese derart ausgestaltet ist, dass sie eine Trägergastemperatur und eine Verweildauer der Partikel in dem heißen Trägergas erlaubt, welche die Spritzpartikel hinreichend erwärmen, so dass diese die zuvor erläuterten Bedingungen erfüllen.
  • Vorteilhafterweise werden die Partikel zumindest teilweise derart erwärmt, dass ihre mittlere Temperatur beim Aufprall auf das Substrat mindestens 60%, 70% oder 80% der Schmelztemperatur des Spritzwerkstoffs in Kelvin beträgt. Dies erfolgt durch eine entsprechende Einstellung der Temperatur, auf die die Spritzpartikel vor dem Düsenhals erwärmt werden. Bei 100% der Schmelztemperatur werden die Partikel flüssig, so dass dieser Wert in der Regel die Obergrenze eines günstigen Temperaturbereichs beim Aufprall darstellt. Werden unterschiedliche Spritzwerkstoffe verwendet, versteht sich, dass für einige der Partikel der genannte Wertebereich erreicht sein kann, für andere hingegen noch nicht. Für höher schmelzende Partikel kann daher die Temperatur beim Aufprall auf das Substrat bei 50% der Schmelztemperatur in Kelvin liegen, für niedriger schmelzende Partikel bei 90% oder darüber. Dieser Sachverhalt wird durch die verwendete Formulierung erfasst, wonach die Temperatur "wenigstens eines Teils der Spritzpartikel" beim Aufprall auf das Substrat eine entsprechende Temperatur aufweist.
  • Der Einfluss von Wärme bei beliebigen Prozessschritten während der Herstellung und der Verarbeitung von Werkstoffen sowie bei deren schließlicher Anwendung richtet sich bekanntermaßen nach der Temperatur, der die Werkstoffe ausgesetzt sind, und der entsprechenden Expositionszeit. Die Temperatur kann dabei auf die Schmelztemperatur der Werkstoffe bezogen und in °C oder K angegeben werden. Wird ein Werkstoff mit einer Schmelztemperatur von 1000 °C (1273 K) auf 500 °C (773 K) erwärmt, beträgt die Temperatur 50% der Schmelztemperatur in °C und ca. 61% der Schmelztemperatur in Kelvin.
  • Sämtliche bisher bekannten Verfahren zum Kaltgasspritzen umfassen eine Erwärmung der Spritzpartikel auf nicht wesentlich mehr als ca. 60% ihrer Schmelztemperatur in Kelvin. Beispielsweise kommt zum Verspritzen von Titan, das eine Schmelztemperatur von 1680 °C (1953 K) aufweist, in der Regel ein Gasstrom mit 1000 °C (773 K) zum Einsatz. Spritzpartikel mit 20 µm Durchmesser prallen dabei, wie experimentell feststellbar, mit ca 530 °C (803 K), also ca. 41 % ihrer Schmelztemperatur in K, auf das Substrat. Die Temperatur von Kupferpartikeln mit einer Partikelgröße von 20 µm beträgt bei Verwendung einer Gastemperatur von 800 °C beim Aufprall 53% der Schmelztemperatur in K. Wird Zink, das eine Schmelztemperatur von 420 °C aufweist, in einer Partikelgröße von ebenfalls 20 µm bei einer Gastemperatur von 400 °C gespritzt, beträgt die Aufpralltemperatur 63% der Schmelztemperatur in Kelvin. Es sei betont, dass diese Temperaturen für das Kaltgasspritzen bereits sehr hohe Werte darstellen, regelmäßig verwendete Werte liegen weit darunter.
  • Es hat sich gezeigt, dass das erfindungsgemäße Verfahren insbesondere zur Herstellung von Schichten und Komponenten aus sogenannten warmfesten Werkstoffen vorteilhaft ist. Warmfeste Werkstoffe zeichnen sich dadurch aus, dass ihre Verformbarkeit erst dann signifikant ansteigt, wenn sie auf eine Temperatur erwärmt werden, die über einem Wert von 0,5 bis 0,6 der Schmelztemperatur liegt; d.h. die Verformbarkeit steigt ab einer Temperatur von 50 % bis 60 % der Schmelztemperatur stark an. Eine gute Verformbarkeit unterstützt die Bildung der Schicht. Mit dem erfindungsgemäßen Verfahren lassen sich deshalb Beschichtungen aus warmfesten Werkstoffen besonders effektiv herstellen. Diese Feststellung trifft für viele unterschiedliche Werkstoffe zu. Insbesondere zählen dazu Legierungen auf Eisen-, Nickel- und Kobaltbasis. Auch die sogenannten MCrAIY's gehören dazu. MCrAIY's werden sehr viel im Triebwerk- und Turbinenbau eingesetzt. Dazugehörige Legierungen auf Ni-Basis werden auch als Nickelbasis-Superlegierungen bezeichnet. Eine beispielhafte und typische MCrAlY-Legierung, wie sie im Triebwerks- und Turbinenbau zum Einsatz kommt, weist eine Schmelztemperatur von ca. 1400 °C (1673 K) auf. Diese Legierung weist erst ab einer Temperatur von 730 °C (1003 K, also 60% der Schmelztemperatur) eine ausreichende Verformbarkeit auf, so dass die Spritzpartikel nur dann auf dem Substrat gut haften, wenn sie beim Auftreffen eine Temperatur von 730 °C und mehr aufweisen. Mit dem erfindungsgemäßen Verfahren ist nun gewährleistet, das die hochwarmfesten Werkstoffe beim Auftreffen auf das Substrat diese Temperatur aufweisen.
  • Ein entsprechendes Verfahren kann auch insbesondere zum Spritzen von Spritzpartikeln verwendet werden, die aus einem Spritzwerkstoff bestehen, der Aluminium, Eisen, Kupfer, Nickel, Zink und/oder Zinn und/oder Legierungen hiervon aufweist.
  • Auch zur Herstellung von Schichten und Komponenten aus Kompositmaterialien ist das erfindungsgemäße Verfahren vorteilhaft, weil sich hierbei eine nichmetallische Komponente, z.B. Keramik oder Graphit, aufgrund der guten plastischen Verformbarkeit des erwärmten Metalls besonders gut in das Materialgefüge einbinden lässt. Das erfindungsgemäße Verfahren lässt auch die Verarbeitung relativ grober und damit kostengünstiger Partikel zu, die sich herkömmlicherweise nicht ausreichend verformen lassen und damit keine dichten Schichten bilden. Aus demselben Grund kann auch auf Material mit weniger enger Partikelgrößenverteilung zurückgegriffen werden, was ebenfalls Kostenvorteile bietet.
  • Ebenfalls ist das erfindungsgemäße Verfahren zur Herstellung von Schichten und Komponenten aus Werkstoffen, die eine glasartige, amorphe Struktur aufweisen, von Vorteil. Dazu werden Spritzpartikel aus Werkstoffen, die eine glasartige Struktur aufweisen, insbesondere aus Kunststoffen oder metallischen Gläsern verwendet. Werkstoffe mit einer glasartigen oder auch amorphen Struktur sind erst oberhalb einer sogenannten Glasübergangstemperatur plastisch verformbar. Dazu gehören beispielsweise sowohl metallische Gläser, bei denen die einzelnen Atome weitgehend regellos angeordnet sind, als auch Kunststoffe, bei denen die Moleküketten regellos angeordnet sind. Die Bezeichnung glasartig besagt also, das die Bausteine, d.h. die Atome oder Moleküle, nicht regelmäßig wie in einem Kristallgitter angeordnet sind, sondern regellos wie beispielsweise die Atome in einem Fensterglas.
  • Vorteilhafterweise wird in einem erfindungsgemäßen Verfahren eine Spritzdüse verwendet, in der der Trägergasstrom mit den Spritzpartikeln in einem konvergierenden Düsenabschnitt komprimiert und in einem divergierenden Düsenabschnitt expandiert wird. Eine für das erfindungsgemäße Verfahren verwendbare Einrichtung weist also beispielsweise eine Lavaldüse auf. Eine derartige Lavaldüse erlaubt eine starke Beschleunigung der Spritzpartikel auf das Substrat.
  • Die Spritzpartikel werden hierbei stromaufwärtig des Düsenhalses der Lavaldüse, also in oder stromaufwärtig des konvergenten Bereichs der Düse bzw. ihres engsten Querschnitts, in den Gasstrom eingebracht. In diesem Zusammenhang ist jeodch auch eine Anordnung vorteilhaft, wie sie in der EP 1 369 498 B1 offenbart ist. Durch eine entsprechende Einbringung der Spritzpartikel lässt sich eine relativ lange Kontaktzeit der Spritzpartikel mit dem Gasstrom erzielen und dabei eine große Energiemenge einbringen. Gleichzeitig wird ein Anbacken der Spritzpartikel an die Düseninnenwand reduziert. Das erfindungsgemäße Verfahren kann jedoch auch ohne die Verwendung einer Lavaldüse durchgeführt werden, weil die Spritzpartikel durch die vorgeschaltete starke Erwärmung bereits eine ausreichend gute Verformbarkeit aufweisen, die ein Anhaften am Substat auch ohne übermäßige Beschleunigung sicherstellt. Dies erlaubt eine mechanische Schonung des Substrats.
  • Gemäß einer weiteren vorteilhaften Ausführungsform wird eine Spritzdüse verwendet, die eine Vorkammer und/oder einen verlängerten konvergenten Abschnitt zur Erwärmung der Spritzpartikel aufweist, wie z.B. in der EP 1 791 645 B1 offenbart. Wird nun der verwendeten Spritzdüse eine Vorkammer vorgeschaltet oder der konvergente Abschnitt, z.B. einer Lavaldüse, ausreichend verlängert, lässt sich sicherstellen, dass beispielsweise mindestens 80% der Spritzpartikel eine Temperatur erreichen, die zumindest 70% der des Trägergasstroms entspricht.
  • Vorteilhafterweise wird zur Erwärmung des Trägergasstroms, durch den wiederum die Spritzpartikel erwärmt werden, wenigsten ein externer Gasheizer verwendet. Ein verwendbarer Gasheizer ist z.B. in der EP 0 924 315 B1 offenbart. Das verwendete Gas oder Gasgemisch wird in einem Gasdruckbehälter vorgehalten und wird in einem Gaspufferbehälter zwischengespeichert. Nach der Entnahme aus dem Gaspufferbehälter wird das Gas oder Gasgemisch mittels einer elektrischen Widerstandsheizung, induktiv und/oder mittels eines Plasmabrenners erwärmt. Eine ausreichend starke Erwärmung kann auch durch Verwendung von mehreren Heizern, insbesondere Vor- und Nachheizern wie in der DE 10 2005 004 117 offenbart, erzielt werden. Die EP 1 785 679 A1 offenbart einen ebenfalls verwendbaren Heizer, der beheizbare Filamente aufweist.
  • Besonders vorteilhaft ist ein Heizer, der einen resistiv beheizbaren Graphitfilz aufweist. Graphitfilze bestehen aus dünnen Fäden aus Graphit, die sich zusammengeknäuelt berühren. Wird bei geeigneter Kontaktierung eine elektrische Spannung an einen Graphitfilz angelegt, fließt trotz der Unterbrechung der Fäden ein Strom, weil dieser sich auch über die Kontaktstellen der Fäden ausbreiten kann. Ein Graphitfilz erwärmt sich daher in seiner Gesamtheit im Stromdurchgang und kann daher ein Gas erhitzen, das durch den Graphitfilz strömt. Weil die Graphitfasern im Graphitfilz sehr dünn sind, ist die Oberfläche, über die die Wärme auf das Gas übertragen wird, insgesamt sehr groß. Hierdurch wird eine Gaserhitzung bei hohen Drücken und hohen Temperaturen mögich. Die erzielbaren Temperaturen können bei mehr als 1500 °C liegen und bis zu 2000 °C reichen.
  • Besonders vorteilhaft ist ein entsprechendes Verfahren, wenn hierbei eine Spritzdüse verwendet wird, die zumindest in einem Bereich ihrer Innenwand in einem Kontaktbereich mit den Spritzpartikeln ein Graphitmaterial aufweist.
  • Ein "Graphitmaterial" bezeichnet dabei im Rahmen dieser Anmeldung jegliches graphithaltige Material, darunter Reingraphit als Vollmaterial, aber auch insbesondere entsprechende Verbundmaterialien oder Beschichtungen. Graphitmodifikationen wie beispielsweise Glaskohlenstoff sind hiervon ebenfalls umfasst.
  • Es wurde herausgefunden, dass ein Graphitmaterial in dem genannten Einsatzgebiet eine Reihe vorteilhafter Eigenschaften aufweist, die insbesondere in Kombination die erläuterten deutlich erhöhten Temperaturen zulassen. Zudem hat ein Graphitmaterial den Vorteil, dass es ein Anbacken der heißen Spritzpartikel an der Düseninnenwand unterbindet und somit auch das Verspritzen (teil)flüssiger Partikel erlaubt. Insbesondere kann für ein erfindungsgemäßes Verfahren eine Düse zum Einsatz kommen, die Glaskohlenstoff als Graphitmaterial aufweist. Glaskohlenstoff, auch als glasartiger Kohlenstoff bezeichnet, vereinigt dabei glasartige keramische Eigenschaften mit denen des Graphits und bietet damit besondere Vorteile. Auch metallische, teiloder vollkeramische Spritzdüsen und/oder Spritzdüsen mit entsprechenden Einsätzen, z.B. Keramikdüsen mit Graphiteinsätzen oder Metalldüsen mit Keramikeinsätzen können vorteilhaft sein. Die jeweiligen Materialien können auch in Form von Beschichtungen aufgebracht werden, was gegenüber Vollmaterialien eine besonders kostengünstige Herstellung ermöglicht. Ein Vollmaterial hat beispielsweise im Fall von Graphit den Vorteil, dass sich dessen Wärmeleiteigenschaften in besonderer Weise wirksam werden können. Eine entsprechende Düse kann daher Wärme besonders effektiv abführen.
  • Ein Einsatz bzw. eine Einlage aus einem entsprechenden Material, z.B. Keramik, Graphit oder Glaskohlenstoff, lässt sich beispielsweise bei Abnutzung sehr einfach ersetzen. Mit besonderem Vorteil können Graphitmaterialien auch in Form von Verbundwerkstoffen eingesetzt werden. Hierbei kann es sich um Materialien auf Grundlagen von Metallen und/oder Kunststoffen handeln.
  • Die erfindungsgemäß ebenfalls vorgeschlagene Vorrichtung, insbesondere in Form einer Spritzpistole mit einer ein Graphitmaterial aufweisenden Düse, profitiert in gleicher Weise von den Vorteilen des erläuterten Verfahrens.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
  • Die Erfindung ist anhand eines Ausführungsbeispieles in der Zeichnung schematisch dargestellt und wird im Folgenden unter Bezugnahme auf die Zeichnung ausführlich beschrieben.
  • Figurenbeschreibung
  • Figur 1
    zeigt eine Spritzpistole in schematischer Darstellung, die zur Durchführung eines erfindungsgemäßen Verfahrens eingerichtet sein kann.
  • In Figur 1 ist eine Spritzpistole schematisch dargestellt und insgesamt mit 1 bezeichnet. Die Spritzpistole 1 weist eine Spritzdüse 10 auf.
  • Die Spritzpistole 1 ist auf ein Substrat S gerichtet und weist Gaseinlässe 2, 3 auf, über die ein Gasstrom G, insbesondere ein auf die oben genannten Temperaturen erwärmter Gasstrom G, bereitgestellt werden kann. Zur Erwärmung eines Gasstroms G kann eine stromaufwärtig der Spritzpistole 1 angeordnete Gasheizeinrichtung vorgesehen sein. Weitere Gaseinlässe 3 können zur Einstellung eines Gasgemischs und/oder einer Gastemperatur des Gasstroms G verwendet werden.
  • Eine Spritzpistole 1 kann einen externen Pulverförderer aufweisen (nicht dargestellt), in den ein Teil des Gasstroms G geleitet wird, mit dem die Spritzpartikel P in die Spritzpistole 1 eingespeist werden. Ein Partikeleinlass 4 ist vorgesehen, mittels dessen Spritzpartikel P in die Spritzpistole 1 eingespeist werden können. Hierzu ist eine stromaufwärtig der Spritzpistole 1 bereitgestellte, jedoch nicht dargestellte Partikeleinspeiseeinrichtung in Form eines Pulverförderers vorgesehen, über die ein Teil des Gasstroms G, ggf. in (teil)erwärmter Form, geleitet wird. Der Trägergasstrom G und die Spritzpartikel P gelangen in eine Mischkammer 5, die innerhalb eines mehrteiligen Gehäuses 6 der Spritzpistole 1 angeordnet ist. Das Gehäuse 6 ist teilweise eröffnet dargestellt. Die Mischkammer 5 kann weitere Einrichtungen zur Vermischung des Gasstroms G und der Spritzpartikel P aufweisen.
  • Eine Spritzdüse 10 besitzt spritzpistolenseitig einen Düseneingang 11 und substratseitig eine Düsenmündung 12. Zwischen Düseneingang 11 und Düsenmündung 12 erstreckt sich ein Düsenkanal 13. Der Düsenkanal 13 weist, falls die Spritzdüse 10 als Lavaldüse ausgebildet ist, an strömungsoptimierter Position einen Düsenhals 14 auf. Vom Düseneingang zum Düsenhals 14 verjüngt sich der Querschnitt des Düsenkanals 13. Vom Düsenhals 14 zur Düsenmündung 12 erweitert sich der Düsenkanal 13, so dass mittels des Laval-Effekts eine Beschleunigung eines komprimierten und erwärmten Gasstroms bewirkt werden kann. Der Gasstrom mit den entsprechend erwärmten Partikeln P wird als Gas-Spritzpartikel-Gemisch GP auf das Substrat S geschleudert. Die Spritzdüse 10 weist vorteilhafterweise insbesondere zwischen Düsenhals 14 und Düsenmündung 12 innenseitig ein Graphitmaterial auf.
  • Bezugszeichenliste
  • S
    Substrat
    G
    Gasstrom
    P
    Partikel
    GP
    Gas-Partikel-Gemisch
    1
    Kaltgasspritzpistole
    2
    Gaseinlass
    3
    Gaseinlass
    4
    Partikeleinlass
    5
    Mischkammer
    6
    Gehäuse
    10
    Spritzdüse
    11
    Düseneingang
    12
    Düsenmündung
    13
    Düsenkanal
    14
    Düsenhals

Claims (12)

  1. Verfahren zum thermischen Spritzen, bei dem Spritzpartikel (P) eines pulverförmigen Spritzwerkstoffes in einen heißen Trägergasstrom (G) eingebracht, durch den heißen Trägergasstrom (G) erwärmt und mittels einer Spritzdüse (10) auf eine Oberfläche eines Substrats (S) gespritzt werden, wobei die Temperatur der Spritzpartikel (P) beim Aufprall auf das Substrat (S) die Schmelztemperatur des Spritzwerkstoffs unterschreitet, und wobei die Spritzdüse (10) einen Düseneingang (11) und eine Düsenmündung (12) mit einem dazwischenliegenden Düsenkanal (13) aufweist, bei dem an strömungsoptimierter Position ein Düsenhals (14) vorgesehen ist, der einen konvergierenden Düsenabschnitt von einem divergierendem Düsenabschnitt trennt, dadurch gekennzeichnet, dass die Spritzpartikel (P) in dem heißen Trägergasstrom (G) vor dem Düsenhals (14) auf eine Temperatur erwärmt werden, die dort ein wenigstens teilweises Aufschmelzen der Spritzpartikel bewirkt.
  2. Verfahren nach Anspruch 1, bei dem die Temperatur, auf die die Spritzpartikel (P) vor dem Düsenhals (14) erwärmt werden, durch Steuern einer Temperatur des Trägergasstroms (G) und/oder eines Drucks, mit dem der Trägergasstrom (G) der Spritzdüse (10) zugeführt wird, eingestellt wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem die Temperatur, auf die die Spritzpartikel (P) vor dem Düsenhals (14) erwärmt werden, derart eingestellt wird, dass die Temperatur wenigstens eines Teils der Spritzpartikel beim Aufprall auf das Substrat mehr als 60%, 70% oder 80% der Schmelztemperatur des entsprechenden Spritzwerkstoffs in Kelvin beträgt.
  4. Verfahren nach einem der vorstehenen Ansprüche, bei dem Spritzpartikel (P) aus metallischen Wekrstoffen verwendet werden, insbesonders aus warmfesten Legierungen auf Eisen-, Nickel- oder Kobaltbasis, besonders bevorzugt aus einer MCrA-IY-Legierung und/oder aus Aluminium, Eisen, Kupfer, Nickel, Zink und/oder Zinn und/oder Legierungen, welche zumindest eines dieser Elemente enthalten.
  5. Verfahren nach einem der Ansprüche 1 bis 3, bei dem Spritzpartikel (P) aus Kompositmaterialien verwendet werden.
  6. Verfahren nach einem der Ansprüche 1 bis 3, bei dem Spritzpartikel (P) aus Werkstoffen mit einer glasartigen Struktur verwendet werden, insbesonders aus Kunststoffen oder metallischen Gläsern.
  7. Verfahren nach einem der vorstehenen Ansprüche, bei dem eine Spritzdüse (10) verwendet wird, in der der Trägergasstrom (G) mit den Spritzpartikeln (P) zunächst in einen konvergierenden Düsenabschnitt eingeleitet und anschließend in einem divergierenden Düsenabschnitt expandiert wird.
  8. Verfahren nach einem der vorstehenen Ansprüche, bei dem eine Spritzdüse (10) verwendet wird, die zumindest in einem Bereich ihrer Innenwand in einem Kontaktbereich mit den Spritzpartikeln (P) ein Graphit- und/oder ein Keramikmaterial aufweist und/oder aus einem Graphit- und/oder einem Keramikmaterial besteht.
  9. Verfahren nach einem der vorstehenden Ansprüche, bei dem eine Spritzdüse (10) verwendet wird, die eine Vorkammer und/oder einen verlängerten konvergenten Abschnitt zur Erwärmung der Spritzpartikel (P) aufweist.
  10. Verfahren nach einem der vorstehenden Ansprüche, bei dem zur Erwärmung des Trägergasstroms (G), durch den die Spritzpartikel (P) erwärmt werden, wenigstens eine externe Gasheizung vorgesehen ist.
  11. Verfahren nach einem der vorstehenden Ansprüche, bei dem für den Trägergasstrom Stickstoff, Helium oder Luft oder ein Gemisch daraus verwendet wird.
  12. Vorrichtung in Form einer Spritzpistole (1), die zur Durchführung eines Verfahrens nach einem der vorstehenden Ansprüche eingerichtet ist, aufweisend Gaseinlässe (2, 3), über die ein Gasstrom (G), insbesondere ein erwärmter Gasstrom (G) in die Spritzpistole (1) gelangt, einen Partikeleinlass (4), mittels dessen Spritzpartikel (P) in die Spritzpistole (1) eingespeist werden, eine Mischkammer (5) und eine Spritzdüse (10) mit einem Düseneingang (11) und einer Düsenmündung (12) und einem zwischen den beiden letztgenannten liegenden Düsenkanal (13), der an strömungsoptimierter Positon einen Düsenhals (14) aufweist, wobei sich der Querschnitt des Düsenkanals (13) vom Düseneingang (11) zum Düsenhals (14) hin verjüngt und sich der Querschnitt des Düsenkanals (13) vom Düsenhals (14) zur Düsenmündung (12) hin erweitert, dadurch gekenzeichnet, dass der Düsenkanal (13) zumindest in einem Bereich seiner Innenwand ein Graphit- und /oder ein Keramikmaterial aufweist und / oder aus einem Graphit- und / oder einem Keramikmaterial besteht, insbesondere ist dieser Bereich zwischen Düsenhals (14) und Dosenmündung (12) vorgesehen.
EP12002884.0A 2012-01-17 2012-04-24 Verfahren und Vorrichtung zum thermischen Spritzen Not-in-force EP2617868B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12002884T PL2617868T3 (pl) 2012-01-17 2012-04-24 Sposób i urządzenie do natryskiwania termicznego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012000816A DE102012000816A1 (de) 2012-01-17 2012-01-17 Verfahren und Vorrichtung zum thermischen Spritzen

Publications (2)

Publication Number Publication Date
EP2617868A1 EP2617868A1 (de) 2013-07-24
EP2617868B1 true EP2617868B1 (de) 2014-04-09

Family

ID=46146506

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12002884.0A Not-in-force EP2617868B1 (de) 2012-01-17 2012-04-24 Verfahren und Vorrichtung zum thermischen Spritzen

Country Status (4)

Country Link
US (1) US20130183453A1 (de)
EP (1) EP2617868B1 (de)
DE (1) DE102012000816A1 (de)
PL (1) PL2617868T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012000817A1 (de) * 2012-01-17 2013-07-18 Linde Aktiengesellschaft Gasheizvorrichtung, Gasheizeinrichtung wowie Anordnung zum thermischen Spritzen mit zugehörigem Verfahren
CN104475589A (zh) * 2014-11-26 2015-04-01 镇江维纳特气门有限公司 一种冲床自动喷墨装置专用喷墨枪
SE539354C2 (en) * 2015-11-16 2017-08-01 Scania Cv Ab Arrangement and process for thermal spray coating vehicle components with solid lubricants

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3331216A1 (de) * 1983-08-30 1985-03-14 Castolin Gmbh, 6239 Kriftel Vorrichtung zum thermischen spritzen von auftragsschweisswerkstoffen
DE19756594A1 (de) 1997-12-18 1999-06-24 Linde Ag Heißgaserzeugung beim thermischen Spritzen
JP4648541B2 (ja) * 1998-03-14 2011-03-09 ダナ・コーポレイション すべり軸受のライニングの形成方法
JP3918379B2 (ja) * 1999-10-20 2007-05-23 トヨタ自動車株式会社 溶射方法、溶射装置及び粉末通路装置
DE10222660A1 (de) 2002-05-22 2003-12-04 Linde Ag Verfahren und Vorrichtung zum Hochgeschwindigkeits-Flammspritzen
CA2433613A1 (en) * 2002-08-13 2004-02-13 Russel J. Ruprecht, Jr. Spray method for mcralx coating
US6743468B2 (en) * 2002-09-23 2004-06-01 Delphi Technologies, Inc. Method of coating with combined kinetic spray and thermal spray
US7108893B2 (en) * 2002-09-23 2006-09-19 Delphi Technologies, Inc. Spray system with combined kinetic spray and thermal spray ability
DE102004029354A1 (de) 2004-05-04 2005-12-01 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
DE102005004116A1 (de) 2004-09-24 2006-04-06 Linde Ag Verfahren zum Kaltgasspritzen und Kaltgasspritzpistole
DE102005004117A1 (de) 2004-09-24 2006-04-06 Linde Ag Verfahren und Vorrichtung zum Kaltgasspritzen
JP3784404B1 (ja) * 2004-11-24 2006-06-14 株式会社神戸製鋼所 溶射ノズル装置およびそれを用いた溶射装置
DE102005053731A1 (de) 2005-11-10 2007-05-24 Linde Ag Vorrichtung zur Hochdruckgaserhitzung
DE102006014124A1 (de) * 2006-03-24 2007-09-27 Linde Ag Kaltgasspritzpistole

Also Published As

Publication number Publication date
PL2617868T3 (pl) 2014-09-30
DE102012000816A1 (de) 2013-07-18
US20130183453A1 (en) 2013-07-18
EP2617868A1 (de) 2013-07-24

Similar Documents

Publication Publication Date Title
DE3533964C1 (de) Verfahren und Vorrichtung zum Herstellen von Feinstpulver in Kugelform
EP3083107B1 (de) Vorrichtung und verfahren zum tiegelfreien schmelzen eines materials und zum zerstäuben des geschmolzenen materials zum herstellen von pulver
DE102007001477B3 (de) Verfahren und Vorrichtung zum Kaltgasspritzen von Partikeln unterschiedlicher Festigkeit und/oder Duktilität
EP1791645B1 (de) Verfahren zum kaltgasspritzen und kaltgasspritzpistole mit erhöhter verweildauer des pulvers im gasstrahl
EP2631327B1 (de) Verfahren zum Aufbringen einer Wärmedämmschicht
EP1926841B1 (de) Kaltgasspritzverfahren
EP3194635B1 (de) Vorrichtung zur ausbildung von beschichtungen auf oberflächen eines bauteils, bandförmigen materials oder werkzeugs
DE102005018062B4 (de) Verfahren zur Produktion von Heizeinrichtungen für Komponenten für Spritzgussgeräte
DE102015117238A1 (de) Bearbeitungsmodul für eine Vorrichtung zur additiven Fertigung
EP2439306A1 (de) Verfahren zum Herstellen eines Wärmedämmschichtaufbaus
DD259586A5 (de) Verfahren zur herstellung von gespruehten abreibbaren beschichtungen und nach dem verfahren hergestellte beschichtung
EP0911425A1 (de) Verfahren zum thermischen Beschichten von Substratwerkstoffen
DE102012000817A1 (de) Gasheizvorrichtung, Gasheizeinrichtung wowie Anordnung zum thermischen Spritzen mit zugehörigem Verfahren
EP2617868B1 (de) Verfahren und Vorrichtung zum thermischen Spritzen
DE102015113762A1 (de) Verfahren zur ausbildung von oxiddispersionsverfestigten (ods-)legierungen
WO2006034777A1 (de) Verfahren und vorrichtung zum kaltgasspritzen mit mehrfacher gasheizung
DE3224305A1 (de) Verfahren zur herstellung einer spannungsunempfindlichen keramischen thermischen sperrschicht auf einem metallsubstrat
EP3314033A1 (de) EISENBASIERTE LEGIERUNG ZUR HERSTELLUNG THERMISCH AUFGEBRACHTER VERSCHLEIßSCHUTZSCHICHTEN
EP1165854B1 (de) Verfahren und einrichtung zur beschichtung eines erzeugnisses
DE60023656T2 (de) Flüssigkeitskristallpolymerbeschichtungsprozess
DE2544847C2 (de) Plasmaspritzvorrichtung
EP0911423B1 (de) Verfahren zum Verbinden von Werkstücken
EP1222147B1 (de) Verfahren und vorrichtung zur herstellung von aus im wesentlichen sphärischen partikeln gebildeten pulvern
EP2503026A1 (de) Verfahren zum Reparieren einer Schicht auf einem Substrat
EP2104748B1 (de) Verfahren für thermisches spritzverfahren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130919

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012000558

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C23C0024040000

Ipc: B05B0007160000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B05B 7/16 20060101AFI20131121BHEP

Ipc: C23C 4/06 20060101ALI20131121BHEP

Ipc: B05B 7/14 20060101ALI20131121BHEP

Ipc: C23C 24/08 20060101ALI20131121BHEP

Ipc: C23C 4/12 20060101ALI20131121BHEP

Ipc: C23C 24/04 20060101ALI20131121BHEP

INTG Intention to grant announced

Effective date: 20131206

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 661036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000558

Country of ref document: DE

Effective date: 20140522

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140710

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140809

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140709

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012000558

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20150109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012000558

Country of ref document: DE

Effective date: 20150109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140424

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140424

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120424

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140430

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170313

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20170329

Year of fee payment: 6

Ref country code: PL

Payment date: 20170323

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170419

Year of fee payment: 6

Ref country code: CH

Payment date: 20170412

Year of fee payment: 6

Ref country code: DE

Payment date: 20170420

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170420

Year of fee payment: 6

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20150109

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 661036

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140409

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012000558

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181101

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180424

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LINDE GMBH

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502012000558

Country of ref document: DE

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20200709