EP2108051A2 - Method and device for the cold-gas spraying of particles having different solidities and/or ductilities - Google Patents
Method and device for the cold-gas spraying of particles having different solidities and/or ductilitiesInfo
- Publication number
- EP2108051A2 EP2108051A2 EP08701266A EP08701266A EP2108051A2 EP 2108051 A2 EP2108051 A2 EP 2108051A2 EP 08701266 A EP08701266 A EP 08701266A EP 08701266 A EP08701266 A EP 08701266A EP 2108051 A2 EP2108051 A2 EP 2108051A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- particles
- type
- stagnation chamber
- nozzle
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002245 particle Substances 0.000 title claims abstract description 82
- 238000005507 spraying Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims abstract description 16
- 229910052751 metal Inorganic materials 0.000 claims abstract description 13
- 239000002184 metal Substances 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 230000007704 transition Effects 0.000 claims abstract description 8
- 239000012159 carrier gas Substances 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 claims description 4
- 229910010293 ceramic material Inorganic materials 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 abstract description 8
- 230000008021 deposition Effects 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 2
- 238000005137 deposition process Methods 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 description 8
- 239000007921 spray Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 238000010348 incorporation Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GXDVEXJTVGRLNW-UHFFFAOYSA-N [Cr].[Cu] Chemical compound [Cr].[Cu] GXDVEXJTVGRLNW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000003608 fece Anatomy 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1481—Spray pistols or apparatus for discharging particulate material
- B05B7/1486—Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/1606—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air
- B05B7/1613—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed
- B05B7/162—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed
- B05B7/1626—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed the spraying of the material involving the use of an atomising fluid, e.g. air comprising means for heating the atomising fluid before mixing with the material to be sprayed and heat being transferred from the atomising fluid to the material to be sprayed at the moment of mixing
Definitions
- the invention relates to a method for cold gas spraying in which particles of a first type are fed together with particles of a second type into a stagnation chamber and are accelerated together with a carrier gas through a nozzle downstream of the stagnation chambers onto a substrate to be coated.
- the particles of the first type remain deformed and to form a layer adhere, wherein the particles of the second type, which have a higher Festig ⁇ resistance and / or a lower ductility than the particles of the first type are incorporated into the layer.
- the aforementioned method is known for example from US 2003/0126800 Al.
- particles of a hard material are deposited on the surface of turbine blades by cold gas spraying together with particles of a metallic material.
- a proportion of 15 to 20% of the hard particles is in the nestled in cold gas fuel ⁇ zen forming matrix of the metal matrix material.
- the hard particles remain unchanged due to their high strength and low ductility in the matrix.
- the incorporation rate of hard materials with proportions of more than 20% is not possible. Namely, the hard material particles do not automatically adhere to the surface of the substrate to be coated, since the kinetic energy input of the cold gas spraying is insufficient and the particles do not have sufficient ductility. Rather, the particles of hard material are incorporated into the just that forms the matrix of the me ⁇ -metallic material with, so that the adhesion in- is ensured directly by the component with the lower strength or higher ductility.
- the object of the invention is to provide a method for cold gas spraying, with which, when using particles of different types, those particles having the higher strength and / or low ductility with a comparatively high layer proportion can be brought into the layer.
- This object is achieved in that the particles of the first kind are fed in a first region of the stagnation ⁇ onshunt, which is closer to the nozzle, as a second region in which the particles of the second type are fed.
- This energy input is primarily caused by the preheated Trä ⁇ gergas the cold gas jet. Namely, a temperature compensation takes place between the molecules of the carrier gas and the particles located in the stagnation chamber. The ⁇ water is the stronger, the longer the particles remain in the stagnation chamber.
- the energy input into the particles of the second type RESIZE ⁇ SSER advantageously improves the conditions for a separation of the particles of the second type.
- the additional heating of the stronger or less ductile particles can, as has been shown, influence the coating process in different ways.
- the particles of the second kind of a brittle material, in particular of a ceramic material can be produced.
- Tungsten carbide is particularly suitable as a ceramic material, it being possible to deposit it on the blade of a compressor or a turbine in order to increase its service life.
- the additional heating of brittle materials in the stagnation chamber basically does not change their properties. Nevertheless, it has been shown that the heated Parti ⁇ kel allow higher incorporation rates in a ductile matrix. This is explained by the fact that the particles of the second type are used as thermal energy stores, this thermal energy improving the interaction between the particles of the first and second type at the moment of incorporation of the brittle particles into the ductile matrix. The contribution of energy to the brittle particles is thus made indirectly available to the layer structure with the ductile particles.
- the particles of the second type are produced from a metal or a metal alloy which is ductile above a transition temperature and below this temperature brittle, the particles of the second type in the stagnation chamber are heated far, that they behave ductile. If it is possible to bring about by preheating the particles of the second type, that these are also ductile, so deposition of these particles is advantageously possible, without these having to be incorporated in a matrix of walls ⁇ ren material. This results in advantageous that the proportion of the brittle material itself can be arbitrarily increased, as a matrix enclosing these particles of the other layer component not more is necessary. This advantageously leads to the fact that with the cold gas spraying a larger range of alloy compositions can be deposited.
- the carrier gas is heated in the stagnation chamber.
- a heatable outer wall can be provided in the stagnation chamber .
- the invention relates to a device for cold ⁇ gas spraying.
- a device for cold ⁇ gas spraying Such devices are well known and known, for example, in US 2004/0037954 A1.
- Such a device has a stagnation chamber with a feed opening for a carrier gas and a first feed line for particles intended for coating, these particles being referred to below as first particles.
- the stagnation chamber is followed by a nozzle, by means of which the carrier gas with the particles is expanded in the direction of a substrate to be coated .
- the carrier gas cools adiabatically, wherein the amount of energy which is released here by ⁇ is converted into an acceleration of Tooga ⁇ ses and the particles provided for coating.
- the object of the invention is also to specify a device for cold gas spraying, with which layers can be produced in which a comparatively high proportion of particles having a higher strength and / or a lower ductility than the particles of the first type (hereinafter Particles of the second kind called) can be installed.
- a second feed line is pre see ⁇ , wherein the first feed line opens into a ers ⁇ th region of the stagnation chamber, which is closer to the nozzle than a second area in which the second em- feed line opens.
- This device is suitable for a Be ⁇ operating according to the detail above described method, since it has two Emspeisungs effeten, and are brought in this way the particles of the second type to Kings ⁇ NEN, attributable to travel farther by the stagnation chamber when the Particles of the first kind. In this way, a preheating of the particles of the second type associated with the above-mentioned advantages can be achieved.
- the device is provided with a heater attached to the stagnation chamber.
- a heater attached to the stagnation chamber.
- the wall of the stagnation chamber or the interior of the chamber is allowed to warm stagnation ⁇ directly, whereby an additional amount of heat can be introducedtient- in the particles of the second type or the carrier gas.
- a further embodiment of the invention provides that the heating device is integrated in the wall of the stagnation chamber. This has the advantage that the flow conditions in Inside the stagnation chamber are not affected and on the other hand, a short heat transfer path is ensured by the Schuein ⁇ direction to the wall of the stagnation chamber.
- a particular embodiment of the invention is obtained if the first feed line and / or second feed line can be moved in the device in such a way that the distance from the first area and / or the second area to the nozzle is variable.
- This has the advantage that the transmittable by the carrier gas heat quantity can be characterized ge ⁇ controls that the feed points are variable for the particles in the direction of carrier gas flow. This directly influences the length of the path the Parti ⁇ kel have to travel to the nozzle through the stagnation chamber, this pathway is crucial for the transferable heat ⁇ quantitative.
- Figure 1 shows the schematic cross section through an embodiment of the apparatus for cold gas spraying
- Figure 2 is a plot of impact energy versus temperature for metals having a transition temperature.
- a cold gas spray gun 11 as a device for cold gas spraying represents the core of a thermal spray device, as described for example in US 2004/00347954 Al.
- the cold gas spray gun 11 consists essentially of a single housing 13, in which a La val-nozzle 14 and a stagnation chamber 15 are formed.
- a heating coil 16 is embedded, which causes the Behei ⁇ wetting a carrier gas, which is supplied by a Zumoni ⁇ convergence opening 17 of the stagnation chamber 15 °.
- the carrier gas passes through the feed opening 17 first into the stagnation chamber 15 and leaves it through the Laval nozzle 14.
- the carrier gas in the stagnation chamber can be warmed up to 800 ° C.
- a second feed line 18a and a first feed line 19 the particles intended for coating are fed.
- a cooling of the carrier gas flow is effected, which has temperatures below 300 ° C in the region of the nozzle opening.
- This Temperaturverringe ⁇ tion is due to a substantially aliabatische expansion of the carrier gas, having, for example in the stagnation chamber a pressure of 30 bar and is expanded outside the die orifice to atmospheric pressure.
- the second feed line 19 opens in a very near the nozzle area in the stagnation chamber.
- the part of the cold spray gun which initially narrows in cross-section and then expands again (indicated by the reference numeral 14) is considered a nozzle.
- the region of the cold spray gun, which serves as a stagnation ⁇ chamber is terized ⁇ with the bracket to the reference numeral 15 °. It is clear from FIG. 1 that the conical region adjoining the cylindrical region of the stagnation chamber can be attributed to both the stagnation chamber 15 and the nozzle 14.
- the flow conditions Zvi ⁇ 's stagnation chamber and nozzle namely go into each other, wherein the adjoining cylindrical region conical wall parts initially have such a large cross- form that the flow conditions rather correspond to those in the stagnation chamber, ie, a significant acceleration of the carrier gas and the particles occurs only in the much narrower conical region. Therefore, the second feed line 19 also opens into this conical region, so that the particles fed in are accelerated as far as possible without a time delay in the part which significantly acts as a nozzle 14.
- the first feed line 18a opens into the part of the stagnation chamber 15 facing away from the nozzle 14, so that the particles have to pass through the entire stagnation chamber and are primarily heated by the carrier gas.
- a first region 20 and a second region 21 for feeding in the particles of the first type 22 and of the particles of the second type 23 are formed by the two feed points of the feed lines 18a, 19.
- the particles of the first type 22 and second type 23 are then mixed and are deposited on a substrate 25 as a layer 26.
- feed line 18a it is also possible to provide a feed line 18b which is axially displaceable. By a shift in the direction of the indicated double arrow so that the feed point 21 can be moved toward the nozzle 14 and away from her. As a result, the cold spray gun 11 can be adapted to the particular application and the amount of heat necessary for preheating the particles 23.
- FIG. 2 schematically shows the temperature-dependent behavior of metals with a transition temperature T u .
- the temperature T is plotted on the X axis and the impact energy A v on the Y axis. This is in the so-called Kerbschlagbiege Basket determined in which a notched sample is exposed to a beating stress (for example, DIN EN 10045).
- the behavior of the metals can be divided into three areas depending on the fracture behavior. In region I, a brittle fracture occurs because the metal loses its ductile properties at low temperatures. In area III, the metal behaves ductile and therefore unfolds the mechanical properties known per se for metals.
- the area I and the area III is the area II, in which so-called mixing breaks occur which exhibit brittle and ductile components.
- the dot-dashed lines there is a great deal of variation in the area II in the determination of the notch impact work, since the conditions in the structure are chaotic.
- the transition temperature T u is therefore a value that can not be determined accurately.
- Typical metals that have a transition temperature are the following:
- Cubic body centered lattice metals unalloyed and low alloyed steels, chromium, molybdenum), metals with hexagonal lattices (aluminum)
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating By Spraying Or Casting (AREA)
- Nozzles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007001477A DE102007001477B3 (en) | 2007-01-09 | 2007-01-09 | Cold gas spraying method for spraying the surface of a turbine blade comprises injecting particles of a first type in a first region of a stagnation chamber which lies closer to a nozzle than a second region |
PCT/EP2008/050087 WO2008084025A2 (en) | 2007-01-09 | 2008-01-07 | Method and device for the cold-gas spraying of particles having different solidities and/or ductilities |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2108051A2 true EP2108051A2 (en) | 2009-10-14 |
EP2108051B1 EP2108051B1 (en) | 2014-04-30 |
Family
ID=38859717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08701266.2A Active EP2108051B1 (en) | 2007-01-09 | 2008-01-07 | Method and device for the cold-gas spraying of particles having different solidities and/or ductilities |
Country Status (9)
Country | Link |
---|---|
US (1) | US8197895B2 (en) |
EP (1) | EP2108051B1 (en) |
CN (1) | CN101605922B (en) |
CA (1) | CA2674762C (en) |
DE (1) | DE102007001477B3 (en) |
ES (1) | ES2463484T3 (en) |
PT (1) | PT2108051E (en) |
RU (1) | RU2457280C2 (en) |
WO (1) | WO2008084025A2 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008031843A1 (en) * | 2008-07-05 | 2010-01-07 | Mtu Aero Engines Gmbh | Method and apparatus for cold gas spraying |
CN102251241A (en) * | 2011-06-24 | 2011-11-23 | 江苏大学 | Method and apparatus for micro-nano particle implanting with laser shockwave induction |
US20130180432A1 (en) * | 2012-01-18 | 2013-07-18 | General Electric Company | Coating, a turbine component, and a process of fabricating a turbine component |
CN102527544B (en) * | 2012-02-24 | 2014-07-23 | 中国科学院金属研究所 | Cold spray device and method for preparing metal composite gradient quasicrystal coating |
DE102012013815B4 (en) * | 2012-07-12 | 2015-10-22 | IMPACT-Innovations-GmbH | Cold gas spray gun with powder injector |
US9335296B2 (en) | 2012-10-10 | 2016-05-10 | Westinghouse Electric Company Llc | Systems and methods for steam generator tube analysis for detection of tube degradation |
WO2015047995A1 (en) * | 2013-09-25 | 2015-04-02 | United Technologies Corporation | Simplified cold spray nozzle and gun |
JP6716204B2 (en) * | 2015-06-24 | 2020-07-01 | 日本発條株式会社 | Film forming method and film forming apparatus |
US10711636B2 (en) | 2015-12-22 | 2020-07-14 | General Electric Company | Feedstocks for use in coating components |
DE112017004485T5 (en) * | 2016-09-07 | 2019-06-19 | Tessonics, Inc. | Funnel with microreactor and cartridge for low pressure cold gas spraying |
RU2692348C2 (en) * | 2017-10-13 | 2019-06-24 | Андрей Игоревич Горунов | Method for hybrid laser sampling of sample surface |
US11935662B2 (en) | 2019-07-02 | 2024-03-19 | Westinghouse Electric Company Llc | Elongate SiC fuel elements |
WO2021055284A1 (en) | 2019-09-19 | 2021-03-25 | Westinghouse Electric Company Llc | Apparatus for performing in-situ adhesion test of cold spray deposits and method of employing |
CN112474094B (en) * | 2020-11-23 | 2022-07-15 | 中国科学技术大学 | Remote jetting method and device for supersonic airflow and rotational flow negative pressure coupling |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2087207C1 (en) | 1995-08-14 | 1997-08-20 | Акционерное общество закрытого типа "ТОТЕМ" | Apparatus for applying powder coats |
US5985373A (en) * | 1996-12-23 | 1999-11-16 | Aerostar Coatings, S.L. | Method and apparatus for applying multi-layered coatings by detonation |
RU2128728C1 (en) * | 1997-11-05 | 1999-04-10 | Закрытое акционерное общество "Научно-производственный и коммерческий центр "ТОТЕМ"" | Method of coatings deposition from powder materials |
RU2194091C2 (en) | 1998-04-20 | 2002-12-10 | Никитин Петр Васильевич | Apparatus for applying coat to internal surfaces of parts |
RU2218425C2 (en) * | 2001-02-21 | 2003-12-10 | Чудинов Борис Анатольевич | Method of forming hardened surface layer on parts made from metal alloys and composite materials |
US6706319B2 (en) * | 2001-12-05 | 2004-03-16 | Siemens Westinghouse Power Corporation | Mixed powder deposition of components for wear, erosion and abrasion resistant applications |
DE10224780A1 (en) * | 2002-06-04 | 2003-12-18 | Linde Ag | High-velocity cold gas particle-spraying process for forming coating on workpiece, is carried out below atmospheric pressure |
US7108893B2 (en) | 2002-09-23 | 2006-09-19 | Delphi Technologies, Inc. | Spray system with combined kinetic spray and thermal spray ability |
US20050214474A1 (en) | 2004-03-24 | 2005-09-29 | Taeyoung Han | Kinetic spray nozzle system design |
DE102005004116A1 (en) | 2004-09-24 | 2006-04-06 | Linde Ag | Method for cold gas spraying and cold gas spray gun |
DE102005004117A1 (en) | 2004-09-24 | 2006-04-06 | Linde Ag | Method and apparatus for cold gas spraying |
US8349396B2 (en) | 2005-04-14 | 2013-01-08 | United Technologies Corporation | Method and system for creating functionally graded materials using cold spray |
US20070098912A1 (en) * | 2005-10-27 | 2007-05-03 | Honeywell International, Inc. | Method for producing functionally graded coatings using cold gas-dynamic spraying |
DE102006014124A1 (en) * | 2006-03-24 | 2007-09-27 | Linde Ag | Cold spray gun |
RU2353705C2 (en) * | 2006-11-27 | 2009-04-27 | Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН (ИТПМ СО РАН) | Method ofgas-dynamic sputtering of powder materials and facility for its realisation |
-
2007
- 2007-01-09 DE DE102007001477A patent/DE102007001477B3/en not_active Expired - Fee Related
-
2008
- 2008-01-07 ES ES08701266.2T patent/ES2463484T3/en active Active
- 2008-01-07 CA CA2674762A patent/CA2674762C/en active Active
- 2008-01-07 PT PT87012662T patent/PT2108051E/en unknown
- 2008-01-07 EP EP08701266.2A patent/EP2108051B1/en active Active
- 2008-01-07 WO PCT/EP2008/050087 patent/WO2008084025A2/en active Application Filing
- 2008-01-07 RU RU2009130335/02A patent/RU2457280C2/en not_active IP Right Cessation
- 2008-01-07 US US12/521,342 patent/US8197895B2/en active Active
- 2008-01-07 CN CN200880001982.9A patent/CN101605922B/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2008084025A2 * |
Also Published As
Publication number | Publication date |
---|---|
PT2108051E (en) | 2014-06-09 |
CN101605922A (en) | 2009-12-16 |
WO2008084025A2 (en) | 2008-07-17 |
RU2009130335A (en) | 2011-02-20 |
US20100040775A1 (en) | 2010-02-18 |
CN101605922B (en) | 2011-02-23 |
DE102007001477B3 (en) | 2008-01-31 |
EP2108051B1 (en) | 2014-04-30 |
CA2674762C (en) | 2014-05-20 |
RU2457280C2 (en) | 2012-07-27 |
WO2008084025A3 (en) | 2009-05-07 |
CA2674762A1 (en) | 2008-07-17 |
ES2463484T3 (en) | 2014-05-28 |
US8197895B2 (en) | 2012-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2108051A2 (en) | Method and device for the cold-gas spraying of particles having different solidities and/or ductilities | |
EP1999297B1 (en) | Cold-gas spray gun | |
DE60130827T2 (en) | Method of producing articles with staggered coatings | |
DE60111658T2 (en) | Coating on fiber-reinforced composite materials | |
DE112004002500T5 (en) | Cold spraying device with powder preheating device | |
EP1857183B1 (en) | Device for cold gas spraying | |
EP1791645B1 (en) | Method for cold gas spraying and cold gas spraying pistol with increased retention time for the powder in the gas stream | |
EP1785679A1 (en) | Device for heating gas under high pressure | |
EP3083107A1 (en) | Device and method for melting a material without a crucible and for atomizing the melted material in order to produce powder | |
WO2017215687A1 (en) | Self-healing heat damping layers and method for producing same | |
DE102006044612A1 (en) | Method for cold gas spraying | |
WO2009124839A2 (en) | Cold gas spraying system | |
EP1771700A2 (en) | Beam control surface and method for the production of a beam control surface | |
DE19801610C2 (en) | Process for the surface treatment of steel fibers and their use | |
WO2012163321A1 (en) | Cold gas spray method with improved adhesion and reduced layer porosity | |
EP2617868B1 (en) | Method and device for thermal spraying | |
DE102005062225B3 (en) | MCrAIX-type alloy product and process for producing a layer of this alloy product | |
EP3112531A1 (en) | Component of a machine for manufacturing and/or treating a sheet of fibrous material and spray powder for producing a functional layer | |
DE10119288B4 (en) | Method and device for gas-dynamic coating of surfaces by means of sound nozzles | |
EP1652608B2 (en) | Method for manufacturing a cermet layer and coated product | |
WO2008025815A1 (en) | Ceramic nozzle | |
DE102004022358B3 (en) | Method for coating substrates with hard materials, useful in producing radiation guides, comprises spraying them with induction plasma | |
EP2087143A2 (en) | Vapour-deposited coating and thermally stressable component having such a coating, and also a process and apparatus for producing such a coating | |
EP3493931A1 (en) | Method for producing a channel structure and component | |
WO2015031921A1 (en) | Method for surface treatment by means of gas dynamic cold spray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090608 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100311 |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008011679 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C23C0004120000 Ipc: B05B0007140000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 24/04 20060101ALI20131017BHEP Ipc: B05B 7/14 20060101AFI20131017BHEP Ipc: B05B 7/16 20060101ALI20131017BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131122 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 664722 Country of ref document: AT Kind code of ref document: T Effective date: 20140515 Ref country code: CH Ref legal event code: NV Representative=s name: SIEMENS SCHWEIZ AG, CH |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2463484 Country of ref document: ES Kind code of ref document: T3 Effective date: 20140528 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20140529 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008011679 Country of ref document: DE Effective date: 20140618 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140830 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140731 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140730 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011679 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20150202 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008011679 Country of ref document: DE Effective date: 20150202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150107 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20160120 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20160127 Year of fee payment: 9 Ref country code: ES Payment date: 20160223 Year of fee payment: 9 Ref country code: TR Payment date: 20160105 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20160114 Year of fee payment: 9 Ref country code: BE Payment date: 20160120 Year of fee payment: 9 Ref country code: GB Payment date: 20160111 Year of fee payment: 9 Ref country code: AT Payment date: 20151207 Year of fee payment: 9 Ref country code: FR Payment date: 20160115 Year of fee payment: 9 Ref country code: PT Payment date: 20160105 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080107 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 664722 Country of ref document: AT Kind code of ref document: T Effective date: 20170107 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170107 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCOW Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE) |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170929 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170107 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170108 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170107 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170201 Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170707 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170108 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170107 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230412 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240318 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |