EP2076733B1 - Oberflächen- und dickenbestimmung - Google Patents

Oberflächen- und dickenbestimmung Download PDF

Info

Publication number
EP2076733B1
EP2076733B1 EP07823198A EP07823198A EP2076733B1 EP 2076733 B1 EP2076733 B1 EP 2076733B1 EP 07823198 A EP07823198 A EP 07823198A EP 07823198 A EP07823198 A EP 07823198A EP 2076733 B1 EP2076733 B1 EP 2076733B1
Authority
EP
European Patent Office
Prior art keywords
optical radiation
measured
detector
optical
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07823198A
Other languages
English (en)
French (fr)
Other versions
EP2076733A1 (de
EP2076733A4 (de
Inventor
Heimo KERÄNEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valtion Teknillinen Tutkimuskeskus
Original Assignee
Valtion Teknillinen Tutkimuskeskus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37232275&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2076733(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valtion Teknillinen Tutkimuskeskus filed Critical Valtion Teknillinen Tutkimuskeskus
Publication of EP2076733A1 publication Critical patent/EP2076733A1/de
Publication of EP2076733A4 publication Critical patent/EP2076733A4/de
Application granted granted Critical
Publication of EP2076733B1 publication Critical patent/EP2076733B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F7/00Other details of machines for making continuous webs of paper
    • D21F7/06Indicating or regulating the thickness of the layer; Signal devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/499Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using polarisation effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/50Using chromatic effects to achieve wavelength-dependent depth resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss

Definitions

  • the invention relates to a method for determining the surface of an object being measured and a method for determining the thickness of an object being measured.
  • the invention relates to a measuring device for determining the surface of an object being measured and a measuring device for determining the thickness of an object being measured.
  • the thickness of paper is measured from a moving paper web.
  • solutions can be used, in which the sensor of the measuring device touches the surface of the paper, or solutions in which the sensor does not touch the surface. Solutions that do not touch the surface include capacitive measurements and optical measurements. The contact of the sensor on the surface being measured may cause surface errors and, therefore, solutions in which the sensor touches the surface of the object being measured are avoided.
  • Optical measurements utilise chromatic aberration in determining the surface being measured.
  • light is focused on the surface through an optical element whose focal distance is in a known manner dependent on the wavelength of light.
  • Light reflected from the surface is collected coaxially to a detector with the same optical element.
  • the detector which may be a spectrum analyser, analyses the spectrum of the reflected light.
  • the wavelength with which the surface is best in focus is also reflected the most efficiently, and it represents the highest intensity in the spectrum. Because on the basis of the dimensioning of the measuring device, the location of the focal point of this wavelength is known, it helps define the location of the surface. If the surface is determined on both sides of the paper, it is also possible to measure the thickness of the object.
  • a patent document DE 10325942 presents a contactless method for measuring the thickness of a transparent body, e.g. lens, using a spectrograph, whereby the evaluation unit also considers the dispersion characteristics of the material of the object being measured.
  • a patent document US 2006/0215177 presents a system and a method for determining a shape of a surface of an object and a method of manufacturing an object having a surface of a predetermined shape.
  • Patent documents DE 102004052205 and DE 102005006724 present an interferometric method e.g. for recording of separation and form and optical coherence tomography (OCT), involving having multiwavelength source or tunable source and imaging on receiver by focusing systems.
  • a patent document US 20010043333 presents an optical systems for measuring form and geometric dimentsions of precision engineered parts.
  • the measuring device for determining the surface of an object being measured using optical radiation according to claim 1.
  • the measuring device comprising
  • the invention also relates to a measuring device for measuring the thickness of an object being measured according to claim 10.
  • the invention further relates to a method for determining the surface of an object being measured by means of optical radiation according to claim 12.
  • the method comprising
  • the methods and measuring devices of the invention provide several advantages. It is possible to reduce the diffuse reflection coming from inside the object being measured, which disturbs the measurement. The surface and thickness of an object being measured can thus be determined accurately regardless of the diffuse reflection.
  • Diffuse materials include paper, textiles, metal coated with a diffuse material, skin, various powders whose surface (or thickness) needs to be determined.
  • a measuring device comprises a transmitter part 100 and receiver part 102 that are separate from each other.
  • the transmitter part 100 comprises an optical source 104 and a first optical radiation processing part 106.
  • optical radiation refers to electromagnetic radiation whose wavelength band is between ultraviolet radiation (wavelength approximately 50 nm) and infrared radiation (wavelength approximately 1 mm).
  • the receiver part 102 comprises a de tector 108 and a second optical radiation processing part 110.
  • the first and second optical radiation processing parts 106 and 110 form an optical radiation processing unit 112 in which the first optical radiation processing part 106 directs different wavelengths of optical radiation coming from the optical source to an object 114 being measured from a direction differing from the normal 118 of a surface being measured 116 in such a manner that the different wavelengths are directed to (focused on) different heights in the direction of the normal 118 of the surface being measured 116. Even though the surface is rough, as it often is, normal refers to a mean normal direction obtained for instance by averaging a large number of representative normals. Some of the wavelengths may focus above the object being measured 114 and some inside it.
  • the optical radiation can be dispersed into separate wavelengths by means of a prism or grid in the optical radiation processing part 106. Directing can in turn be done using one or more lenses or mirrors to focus different wavelengths on different focal points 126.
  • the measuring device comprises at least one polarizer 120, 122. Because it is possible to work with just one polarizer, the polarizer 122 of the transmitter part 100 is not necessarily needed and polarizer 120 can be used to polarize the optical radiation reflected from the object being measured 114 perpendicular to the normal 118 of the surface being measured 116. The vibration of the electric field of optical radiation then has a perpendicular component in relation to the normal 118 of the surface 116. When several polarizers are used, the polarization directions of all polarizers are the same. One or more polarizers attenuate the optical radiation coming from inside the object being measured 114, because inside the object being measured 114 polarization weakens or disappears. Optical radiation reflected from a surface is polarized or maintains its polarization.
  • reflection refers to specular reflection and diffuse reflection in which reflection may take place from a smooth or rough surface.
  • reflection also refers herein to scattering, refracting and reflecting radiation from inside the object being measured.
  • optical radiation can be directed to a surface and received at a Brewster angle, whereby the optical radiation is most effectively polarized as it is reflected from the surface.
  • the second optical radiation processing part 110 of the optical radiation processing unit 112 can focus received polarized optical radiation to a detector 108 by means of one or more lenses or mirrors.
  • the second optical radiation processing part 110 and detector 108 are directed and the numerical aperture of the optical radiation processing part 110 and detector 108 is dimensioned in such a manner that polarized optical radiation can be received at least from the direction of specular reflection from the object being measured 114.
  • the focal points of the different wavelengths of dispersed optical radiation are in parallel on the detector 108. For this reason, the different wavelengths in the solution of Figure 1 can be detected with a line detector, for example. Thus, each wavelength is directed to one detector element of the line detector.
  • An electric signal generated by the detector 108 from optical radiation is fed to a signal processing unit 124 that defines from the received optical radiation the wavelength on which the intensity of the received optical radiation is the highest.
  • the signal processing unit 124 determines the location of the surface 116 of the object being measured 114 using the determined wavelength. The definition of the surface being measured 116 is based on knowing in advance at which distance each wavelength is focused, and assuming that the wavelength that is reflected from the focal point is the strongest.
  • Figure 2 shows a solution, in which the second optical radiation processing part 110 also comprises a dispersive component, such as a prism or grid, with which the wavelengths of optical radiation propagating along different routes can be assembled. Different wavelengths then arrive at the same focal point at the detector 108, and the detector 108 can be just one element.
  • a dispersive component such as a prism or grid
  • Figure 3 shows a solution in which the measuring device comprises an optical radiation processing unit 112 with a common transmitter part 100 and receiver part 102.
  • the propagation of optical radiation from the optical source 104 to the object being measured 114 and on to the second optical radiation processing part 110 takes place in the same manner as in the case of Figure 2 .
  • the optical radiation reflected once from the object being measured 114 does not, however, propagate directly to the detector 108, but the measuring device comprises a reflector 300 that reflects the optical radiation reflected from the object being measured 114 back to the object being measured 114 to reflect on from the object being measured 114 via a second optical radiation processing part 110 towards the first optical radiation processing part 106 and on towards the optical source 104.
  • the measuring device comprises a beam splitter 302 that directs at least part of the optical radiation directed towards the optical source 104 to the detector 108.
  • the beam splitter 302 can be a polarizing beam splitter, in which case the beam splitter 302 also polarizes the optical radiation directed to the object being measured 114 and no separate polarizers 120, 122 are required.
  • the beam splitter 302 can then also direct all polarized optical radiation from the reception direction to the detector 108.
  • the beam splitter 302 may be based on solely distributing the optical power in a desired ratio, whereby separate optical beams usually obtain the same power. In such a case, either of the separate polarizers 120, 122 is needed.
  • Figure 4 shows a first optical radiation processing part 106.
  • the first optical radiation processing part 106 comprises a chromatically dispersive component 400 that is arranged to disperse non-axially the optical radiation directed to the object being measured 114.
  • Optical radiation is thus dispersed with the dispersive component 400 in a direction differing from the optical axis 402 of the first optical radiation processing part 106, whereby the dispersion, that is, the distribution of the wavelengths, is at least partly directed in the direction of the normal 118 of the surface being measured 116.
  • the dispersive component 400 is located between two focusing lenses 404, 406.
  • the lenses 404, 406 form a focusing component 408. Radiation coming from the optical source 104 between the lenses can be collimated.
  • the dispersive component 400 together with the focusing component 408 focuses the different wavelengths of the optical radiation of the optical source 104 on different heights in the direction of the normal 118 of the surface being measured 116.
  • the dispersing component 400 may be a prism or grid, and instead of lenses or in addition to them, focusing mirrors can be used. Both lenses 404, 406 can be replaced with a lens combination, mirror, mirror combination, or a combination of all these.
  • Figure 5 shows a second optical radiation processing part 110.
  • Optical radiation reflected from the object being measured 114 can be focused on the detector 108 with the focusing component 508 that comprises lenses 504, 506.
  • the focal point of the second optical radiation processing part 110 can be on the surface being measured 116 or near it. Without the dispersive component 500, the depth of field should be sufficiently good around the focal point.
  • the optical radiation processing part 110 may also comprise a dispersive component 500 that removes dispersion and enables the combination of wavelengths propagated along different optical paths to the same focus.
  • the focal points in front of the second optical radiation processing part 110 can be at the same points as those to which the first optical radiation processing part 106 focuses different wavelengths (see Figure 1 , for example).
  • the reflection from the surface being measured 116 is then effective.
  • the dispersed wavelengths focus behind the second optical radiation processing part 110 at the same focal point, for instance at the detector 108, and the detection can be done with one detector element.
  • first 106 and second 110 optical radiation processing parts may be alike, but the strengths and dispersive component 400 of the lenses 404, 406 may also differ from each other.
  • the second optical radiation processing part 110 may comprise a second dispersive component 500 that removes dispersion from the optical radiation reflected from the object being measured 114.
  • the second optical radiation processing part 110 can focus the optical radiation in an undispersed form to the detector 108.
  • the detector 108 may be a line detector and a different wavelength of undispersed optical radiation is directed to each of its elements.
  • a single wavelength refers to a narrow wavelength band that is only part of the measuring band.
  • a narrow band can be for instance a band that is less than one fifth of the entire measuring band. Often a narrow band is only a nanometre or dozens of nanometres wide.
  • a narrow band may be defined on the basis of the desired measuring accuracy, or it may be determined by the measuring accuracy of the measuring devices and components.
  • the reflector may reflect optical radiation back to the object being measured 114 through the optical radiation processing part 110.
  • the second optical radiation processing part 110 may then focus different wavelengths of optical radiation on different heights in the direction of the normal 118 of the surface being measured 116.
  • both the first and second optical radiation processing parts 106 and 110 comprise dispersive components 400 and 500, undispersed optical radiation is directed to the detector 108.
  • Figure 6 shows the measurement of a reference. Since the intensities of the different wavelengths of the source 104 are not evenly distributed and different wavelengths may have a different intensity, the intensity distribution of the source 104 may be measured as a function of the wavelength.
  • a reference beam splitter 600 that directs part of the optical radiation emitted by the source 104 to a reference detector 602 that transforms the received optical radiation into an electric signal.
  • the beam splitter 600 may also be part of the first optical radiation processing part 106.
  • the signal processing unit 124 receives the electric signal.
  • the signal processing unit 124 may normalize the measurement made by the detector 108 with the measurement made by the reference detector 602. Normalization may mean, for instance, the division of the intensities obtained with the detector 108 by the intensities measured by the reference detector 602.
  • the reference beam splitter 600 can be the same as the directional beam splitter 302 in Figure 3 .
  • the directional beam splitter 302 may also act as the reference beam splitter 600.
  • Figure 6 also shows an embodiment with which it is possible to compensate for the colour of the object being measured 114, or generally the reflection response of the object being measured 114.
  • An optical unit 604 may direct optical radiation produced by the source 104 in an undispersed form to the object 114 being measured, and optical radiation reflected therefrom can be received with another optical unit 606 that comprises a detector.
  • the optical unit 606 may form a spectrum of the reflected radiation which the signal processing unit 124 may measure.
  • the optical unit 606 may feed an electric signal of the measurement to the signal processing unit 124 and the unit 124 may normalize the measuring result obtained with the detector 108 with at least one of the following: the measuring result of the reference detector 124, the measuring result of the optical unit 606.
  • Figure 7 shows an embodiment in which both surfaces 116, 116B of the object being measured 114 are measured in the manner described above.
  • the optical source then directs optical radiation through the first optical radiation processing part 106 to the object being measured 114 in such a manner that the different wavelengths focus at different distances in the direction of the normal 118 of the surface being measured 116.
  • Optical radiation is reflected from the object being measured 114 to the second optical radiation processing part 110 through the polarizer 120, for instance. It is also possible to use both polarizers 120, 122.
  • the second optical radiation processing part 110 directs the reflected optical radiation to the detector 108.
  • the detector 108 feeds the measuring signal to the signal processing unit 124 for surface determination.
  • the intensity distribution of the optical source 104 in relation to the wavelengths can be measured using the beam splitter 600, reference detector 602, and signal processing unit 124.
  • the beam splitter 600 can be a polarizer.
  • the second surface 116B of the object being measured 114 can be determined by focusing different wavelengths generated by the optical source 104B and first optical radiation processing unit 106B at different distances in the direction of the normal 118B of the surface being measured 116B.
  • Optical radiation is reflected from the object being measured 114 to the second optical radiation processing part 110B through the polarizer 120B, for instance. It is also possible to use both polarizers 120B, 122B.
  • the second optical radiation processing part 110B directs the reflected optical radiation to the detector 108B.
  • the detector 108B feeds the measuring signal to the signal processing unit 124 for surface determination.
  • the intensity distribution of the optical source 104B in relation to the wavelengths can be measured using the beam splitter 600B, reference detector 602B, and signal processing unit 124.
  • the beam splitter 600B can be a polarizer.
  • Each block 104B to 110B, 120B, 122B, 600B, 602B below the object being measured is the same as blocks depicted by reference numbers 104 to 110, 120, 122, 600, 602 in Figures 1 to 6 .
  • blocks 104 to 110, 120, 122, 600, 602 in Figure 7 are also similar to those in the previous figures, but the top measuring part in Figure 7 need not be the same as the bottom measuring part.
  • Figure 8 shows detecting by means of two detector parts.
  • the detector 108 may comprise a detector beam splitter 800 that distributes at a known ratio the optical radiation it receives from the object being measured 114 to two detector parts 802 and 804.
  • Filters 806, 808 are located in front of the detector parts 800, 802 to filter the radiation arriving at the detectors as shown in Figure 9 .
  • the solution can also be applied to the reference detector 602.
  • Figure 9 shows pass curves of filters in relation to the wavelength.
  • the vertical axis shows the intensity I and the horizontal axis shows the wavelength ⁇ .
  • Curve 900 shows the response of filter 806 in relation to the wavelength and curve 902 the response of filter 808 in relation to the wavelength.
  • Filter 806 may pass less on a short wavelength than on a long wavelength and conversely, filter 808 may pass less on a long wavelength than on a short one, and the curves may be linear.
  • the response of filter 806 is in general different from that of filter 808 on the band used in measurement.
  • the wavelength that is reflected from the surface of the object being measured 116 is at the greatest relative intensity among the thus formed relative intensities.
  • P rel P detA -P detB : P detA +P detB
  • P rel refers to relative intensity (or power)
  • P detA refers to the power detected by detector 800
  • P detB refers to the power detected by detector 802.
  • Figure 10 shows a measured spectrum showing intensity I as a function of wavelength ⁇ .
  • Dependency on the wavelength ⁇ max of the highest intensity can also be nonlinear, but for determining the location of the surface, it is sufficient that the dependency is known.
  • Figure 11 shows an example of modulating optical radiation.
  • Optical radiation emitted by the source 104 can be modulated. Modulation can be performed with a mechanical, electro-optical, magneto-optical, or acousto-optical chopper/modulator, or the modulation can be done electronically (in a diode, for instance).
  • the modulation may be time-divided, whereby the optical source 104 emits optical pulses regularly, pseudo-randomly or randomly.
  • Regular pulsing may mean repetitive, regular transmission of a predefined pulse pattern 1100, or at its simplest the transmission of pulses at a desired frequency.
  • the interval between the pulses of a predefined pulse pattern may be regular or irregular.
  • the signal processing unit 124 may control modulation and correspondingly and in a synchronized manner demodulate the signal arriving from the detector 108.
  • modulation When using modulation, the impact of interference to the measurement is reduced.
  • modulation may be beneficial when measuring an object 114 on both its sides. It is then possible to direct optical radiation to different sides of the object being measured 114 at different times or use a different modulation. This way, the optical radiation from the opposite side does not disturb the measurement.
  • Figure 12 shows an embodiment in which the first optical radiation processing part 106 together with the focusing optical components 404, 406 and dispersive component 400 can form, instead of focal points, a focal point line system 1200 in which each wavelength is focused on its own line.
  • the source is then a dotted or linear source.
  • the second optical radiation processing part 110 may comprise optical components 504, 506, and a dispersive component 500 that divide the focal point line system 1200 in the direction of the normal of the surface 116 being measured.
  • Each wavelength used in the measurement can be directed to the object being measured 114 simultaneously or at different times.
  • the wave-lengths can be directed to the object being measured 114 in small groups (or bands) or one wavelength at a time.
  • Each wavelength or wavelength band can be formed using suitable, replaceable or adjustable filters, or the band of the optical source can be swept over the measuring band.
  • a led band may be 20 nm and it can be swept over the measuring band that may be 500 to 650 nm.
  • the monochromatic wavelength of a laser can also be swept over dozens or hundreds of nanometers, for instance.
  • the optical source 104 may comprise an incandescent lamp, gas-discharge lamp, halogen lamp, led, or a laser with adjustable wavelength, etc.
  • the optical source 104 may also comprise an optical fibre, in which case the actual unit generating the optical radiation may be far from the first optical radiation processing unit 106 and the object being measured 114.
  • the detector 108 may in turn comprise any device forming a spectrum, for instance a spectrograph.
  • the detector may also comprise a PIN diode, APD (avalanche photodiode), LDR (light dependent resistor), photomultiplier tube, CCD (charge coupled device) cell, CMOS (complementary metal oxide semiconductor) cell, pyrodetector, or the like.
  • the detector 108 may also comprise a fibre with which optical radiation can be transferred to the actual detecting unit.
  • Figure 13 shows a flow chart of a method of determining the surface of an object being measured.
  • different wavelengths of optical radiation are directed to an object being measured 114 from a direction differing from the normal 118 of a surface being measured 116 in such a manner that the different wavelengths focus on different heights in the direction of the normal 118 of the surface being measured 116.
  • optical radiation reflected from the object being measured 114 can be polarized to a direction perpendicular to the normal 118 of the surface being measured 116.
  • polarized optical radiation is received at least from the direction of specular reflection that differs from the normal 118 of the surface being measured 116.
  • the wavelength on which the intensity of the received optical radiation is the highest is determined from the received optical radiation.
  • the location of the surface 116 of the object being measure 114 is determined by means of the determined wavelength.
  • Figure 14 shows a flow chart of a method of determining the thickness of an object being measured.
  • step 1400 different wavelengths of optical radiation are directed to an object being measured 114 from a direction differing from the normal 118 of a first surface being measured 116 in such a manner that the different wavelengths focus on different heights in the direction of the normal 118 of the surface being measured 116.
  • step 1402 optical radiation reflected from the object being measured 114 can be polarized to a direction perpendicular to the normal 118 of the first surface being measured 116.
  • step 1304 polarized optical radiation is received at least from the direction of specular reflection that differs from the normal 118 of the first surface 116 being measured.
  • step 1406 the wavelength on which the intensity of the received optical radiation is the highest is determined from the received optical radiation.
  • step 1408 the location of the surface being measured 116 is determined by means of the determined wavelength.
  • step 1410 the different wavelengths of optical radiation are directed to the object being measured 14 from a direction differing from the normal 118B of a second surface being measured 116B in such a manner that the different wavelengths are directed to different heights in the direction of the normal 118B of the second surface being measured 116B.
  • step 1412 optical radiation reflected from the object being measured 114 can be polarized to a direction perpendicular to the normal 118B of the second surface being measured 116B.
  • step 1414 polarized optical radiation is received at least from the direction of specular reflection that differs from the normal 118B of the second surface being measured 116B.
  • step 1416 the wavelength on which the intensity of the received optical radiation is the highest is determined from the received optical radiation.
  • step 1418 the location of the second surface being measured 116B is determined by means of the determined wavelength.
  • step 1420 the thickness of the object being measured 114 is determined by means of the determined locations of the surfaces 116, 116B.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (13)

  1. Ein Messgerät zur Bestimmung der Oberfläche eines zu messenden Objekts (116), wobei optische Strahlung verwendet wird, wobei das Messgerät Folgendes aufweist
    einen Senderteil (100) und einen Empfängerteil (102), die voneinander getrennt sind; und
    der Senderteil (100) weist Folgendes auf:
    eine optische Quelle (104);
    einen ersten Prozessorteil für optische Strahlung (106) in einem Prozessor für optische Strahlung (112);
    wobei der erste Prozessorteil für optische Strahlung (106) angeordnet ist, optische Strahlung auf das zu messende Objekt (114) zu richten;
    wobei der erste optische Prozessorteil für optische Strahlung (106) eine dispersive Komponente (400) aufweist, die angeordnet ist, die auf das zu messende Objekt (114) gerichtete optische Strahlung chromatisch in einer nicht-axialen Richtung zu dispergieren;
    wobei der erste Prozessorteil für optische Strahlung (106) eine erste fokussierende Komponente (408) aufweist, die angeordnet ist, die unterschiedlichen Wellenlängen der nicht-axial dispergierten optischen Strahlung auf verschiedene Höhen in der Richtung der Normalen (118) der Oberfläche (116) des zu messenden Objekts (114) zu fokussieren; und
    wobei der Empfängerteil (102) einen zweiten Prozessorteil für optische Strahlung (110) in dem Prozessor für optische Strahlung (112) aufweist, wobei der zweite Prozessorteil für optische Strahlung (110) konfiguriert ist, verschiedene Wellenlängen der von dem zu messenden Objekt (114) reflektierbaren optischen Strahlung zu kombinieren;
    einen Detektor (108), auf welchen der zweite Prozessorteil für optische Strahlung (110) des Prozessors für optische Strahlung (112) angeordnet ist, die von dem zu messenden Objekt (114) erhältliche optische Strahlung mindestens aus der Spiegelreflexionsrichtung, die unterschiedlich zu der Richtung der Normalen (118) der zu messenden Oberfläche (116) zu richten;
    einen Signalprozessor (124), der angeordnet ist, von der erkannten optischen Strahlung auf der Basis des durch den Detektor (108) erhaltenen Signales die Wellenlänge zu bestimmen, bei der die Intensität der optischen Strahlung am höchsten ist, und die Lage der zu messenden Oberfläche (116) zu bestimmen, indem die bestimmte Wellenlänge verwendet wird.
  2. Ein Messgerät gemäß dem Patentanspruch 1, wobei das Messgerät mindestens einen Polarisator (120, 122, 302) aufweist, und der mindestens eine Polarisator (120, 122, 302) angeordnet ist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung in einer Richtung, die senkrecht zu der Normalen (118) der zu messenden Oberfläche (116) ist, zu polarisieren.
  3. Ein Messgerät gemäß dem Patentanspruch 1, wobei der Prozessor für optische Strahlung (112) weiterhin einen Reflektor (300) und einen ausrichtbaren Strahlteiler (302) aufweist;
    wobei der zweite Prozessorteil für optische Strahlung (110) angeordnet ist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung auf den Reflektor (300) zu richten, der angeordnet ist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung zurück auf das zu messende Objekt (114) durch den zweiten Prozessorteil für optische Strahlung (110), der angeordnet ist, unterschiedliche Wellenlängen der optischen Strahlung auf das zu messende Objekt (114) aus einer Richtung, die sich von der Normalen (118) der zu messenden Oberfläche (116) unterscheidet, derart zu richten, dass die verschiedenen Wellenlängen auf verschiedene Höhen in der Richtung der Normalen (118) der zu messenden Oberfläche (116) fokussieren, während eine Wellenlänge auf die zu messende Oberfläche (116) fokussiert;
    wobei der erste Prozessorteil für optische Strahlung (106) angeordnet ist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung auf die optische Quelle (104) zu richten; und
    wobei der ausrichtbare Strahlteiler (302) angeordnet ist, mindestens einen Teil der in Richtung auf die optische Quelle (104) gerichteten optischen Strahlung auf den Detektor (108) zu richten.
  4. Ein Messgerät gemäß dem Patentanspruch 3, wobei der Strahlteiler (302) angeordnet ist, als ein Polarisator zu fungieren.
  5. Ein Messgerät gemäß dem Patentanspruch 1,
    wobei der zweite Prozessorteil für optische Strahlung (110) eine zweite dispersive Komponente (500) aufweist, die angeordnet ist, entlang verschiedenen optischen Pfaden von dem zu messenden Objekt (114) übertragene Wellenlängen zu kombinieren; und
    wobei der zweite Prozessorteil für optische Strahlung (110) eine zweite fokussierende Komponente (508) aufweist, die angeordnet ist, optische Strahlung zu fokussieren.
  6. Ein Messgerät gemäß dem Patentanspruch 5, wobei die zweite fokussierende Komponente (508) angeordnet ist, die von dem Reflektor (300) reflektierte, nicht-axial dispergierte optische Strahlung auf verschiedene Höhen in der Richtung der normalen (118) der zu messenden Oberfläche (116) zu fokussieren.
  7. Ein Messgerät gemäß dem Patentanspruch 1, wobei der Detektor (108) ein Liniendetektor ist, bei dem eine unterschiedliche Wellenlänge von undispergierter optischer Strahlung auf jedes seiner Elemente gerichtet wird.
  8. Ein Messgerät gemäß dem Patentanspruch 1, wobei der Signalprozessor (124) angeordnet ist, die optische Quelle (104) zu modulieren und das von dem Detektor (108) kommende Signal zu demodulieren, das der erkannten optischen Strahlung entspricht.
  9. Ein Messgerät gemäß dem Patentanspruch 1, wobei der Detektor (108) einen erstem Detektorteil (802), einen zweiten Detektorteil (804), einen Detektorstrahlteiler (800), ein erstes Filter (806) und ein zweites Filter (808) aufweist;
    der Respons des ersten Filters (806) angeordnet ist, unterschiedlich von dem des zweiten Filters (808) auf der Messskala zu sein;
    der Detektorstrahlteiler (800) angeordnet ist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung derart zu verteilen, dass ein Teil der optischen Strahlung auf den ersten Detektorteil (802) durch das erste Filter (806) und ein Teil davon auf den zweiten Detektorteil (804) durch das zweite Filter (808) gerichtet wird; und
    der Signalprozessor (124) angeordnet ist, von dem Verhältnis der durch den ersten Detektorteil (802) und durch den zweiten Detektorteil (804) erkannten optischen Strahlungen die Wellenlänge mit der höchsten Intensität zu bestimmen.
  10. Ein Messgerät zur Messung der Dicke eines zu messenden Objektes (114), wobei das Messgerät das Messgerät gemäß dem Patentanspruch 1 aufweist, um eine erste Oberfläche des zu messenden Objekts (116) zu messen, und wobei das Messgerät das Messgerät gemäß dem Patentanspruch 1 aufweist, um eine zweite Seite des zu messenden Objekts (116B) zu messen.
  11. Ein Messgerät gemäß dem Patentanspruch 10, wobei das Messgerät mindestens einen Polarisator (120, 122, 302) aufweist, und der mindestens eine Polarisator (120, 122, 302) angeordnet ist, von dem zu messenden Objekt (114) reflektierte optische Strahlung in einer Richtung, die senkrecht zur der Normalen (118) der zu messenden Oberfläche (116) ist, zu polarisieren, und das Messgerät mindestens einen Polarisator auf der zweiten Seite (120B, 122B, 302B) aufweist, und der mindestens eine Polarisator auf der zweiten Seite (120, 122, 302) angeordnet ist, von dem zu messenden Objekt (114) reflektierte optische Strahlung in einer Richtung, die senkrecht zu der Normalen (118) der zweiten zu messenden Oberfläche (116) ist, zu polarisieren.
  12. Ein Verfahren zur Bestimmung der Oberfläche eines zu messenden Objekts (116) mittels optischer Strahlung, wobei das Verfahren folgende Schritte aufweist
    durch eine dispersive Komponente (400) eines ersten Prozessorteils für optische Strahlung (106) auf ein zu messendes Objekt (114) gerichtete optische Strahlung chromatisch in einer nicht-axialen Richtung dispergieren;
    durch eine erste fokussierende Komponente (408) eines ersten Prozessorteils für optische Strahlung (106) die unterschiedlichen Wellenlängen der nicht-axial dispergierten optischen Strahlung auf verschiedene Höhen in der Richtung der Normalen (118) der Oberfläche (116) des zu messenden Objekts (114) fokussieren;
    optische Strahlung mindestens aus der Spiegelreflexionsrichtung, die sich von der Richtung der Normalen (118) der zu messenden Oberfläche (116) unterscheidet, erhalten;
    durch einen zweiten Prozessorteil für optische Strahlung (110) in einem Prozessor für optische Strahlung (112) verschiedene Wellenlängen der von dem zu messenden Objekt (114) reflektierten optischen Strahlung kombinieren;
    durch einen zweiten Prozessorteil für optische Strahlung (110) in dem Prozessor für optische Strahlung (112) die von dem zu messenden Objekt (114) erhältliche optische Strahlung mindestens aus der Spiegelreflexionsrichtung, die unterschiedlich zu der Richtung der Normalen (118) der zu messenden Oberfläche (116) ist, auf einen Detektor (108) richten;
    durch einen Signalprozessor (124) von der optischen Strahlung auf der Basis des durch den Detektor (108) erhaltenen Signales die Wellenlänge bestimmen (1306) und die Lage der zu messenden Oberfläche (116) bestimmen, indem die bestimmte Wellenlänge verwendet wird.
  13. Ein Verfahren gemäß dem Patentanspruch 12, wobei das Verfahren weiterhin den Schritt aufweist, die von dem zu messenden Objekt (114) reflektierte optische Strahlung in einer Richtung, die senkrecht zu der Normalen (118) der zu messenden Oberfläche ist, zu polarisieren (1302).
EP07823198A 2006-10-18 2007-10-17 Oberflächen- und dickenbestimmung Active EP2076733B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FI20065669A FI119259B (fi) 2006-10-18 2006-10-18 Pinnan ja paksuuden määrittäminen
PCT/FI2007/050561 WO2008046966A1 (en) 2006-10-18 2007-10-17 Determining surface and thickness

Publications (3)

Publication Number Publication Date
EP2076733A1 EP2076733A1 (de) 2009-07-08
EP2076733A4 EP2076733A4 (de) 2010-01-06
EP2076733B1 true EP2076733B1 (de) 2012-12-05

Family

ID=37232275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07823198A Active EP2076733B1 (de) 2006-10-18 2007-10-17 Oberflächen- und dickenbestimmung

Country Status (7)

Country Link
US (1) US7936464B2 (de)
EP (1) EP2076733B1 (de)
JP (1) JP5155325B2 (de)
CN (1) CN101529200B (de)
ES (1) ES2400380T3 (de)
FI (1) FI119259B (de)
WO (1) WO2008046966A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018130901A1 (de) 2018-12-04 2020-06-04 Precitec Optronik Gmbh Optische Messeinrichtung

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20075975L (fi) * 2007-12-31 2009-07-01 Metso Automation Oy Rainan mittaus
US8085397B2 (en) * 2009-07-10 2011-12-27 Honeywell Asca Inc. Fiber optic sensor utilizing broadband sources
FI124299B (fi) * 2009-10-08 2014-06-13 Focalspec Oy Mittalaite ja menetelmä kohteen ja kohteen pinnan ominaisuuksien mittaamiseksi
JP2011229625A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
JP2011229603A (ja) * 2010-04-26 2011-11-17 Fujifilm Corp 内視鏡装置
FI124452B (fi) * 2010-07-09 2014-09-15 Teknologian Tutkimuskeskus Vtt Menetelmä ja laite pinnan värin ja muiden ominaisuuksien mittaamiseksi
US11313678B2 (en) 2011-06-30 2022-04-26 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US10684362B2 (en) 2011-06-30 2020-06-16 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11231502B2 (en) * 2011-06-30 2022-01-25 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
US11933899B2 (en) 2011-06-30 2024-03-19 The Regents Of The University Of Colorado Remote measurement of shallow depths in semi-transparent media
JP2013096853A (ja) * 2011-11-01 2013-05-20 Omron Corp 変位センサ
DE102011117523B3 (de) * 2011-11-03 2013-04-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung zur optischen Bestimmung der Oberflächengeometrie einer dreidimensionalen Probe
DK2798207T3 (en) * 2011-12-29 2016-04-04 Vestas Wind Sys As A wind turbine and a method for determining the presence and / or the thickness of a layer of ice on a wing body of a wind turbine
CN102778202B (zh) * 2012-03-23 2016-01-27 北京京东方光电科技有限公司 一种膜厚测量装置及方法
FI125408B (fi) 2012-09-17 2015-09-30 Focalspec Oy Menetelmä ja mittalaite pinnan etäisyyden, kohteen paksuuden ja optisten ominaisuuksien mittaamiseksi
JP5701837B2 (ja) * 2012-10-12 2015-04-15 横河電機株式会社 変位センサ、変位測定方法
FI20126126L (fi) 2012-10-30 2014-05-01 Metso Automation Oy Menetelmä ja laite kiillon mittaamiseksi
GB2507813B (en) * 2012-11-13 2017-06-21 Focalspec Oy Apparatus and method for inspecting seals of items
WO2016000764A1 (de) * 2014-07-01 2016-01-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Chromatisch konfokale sensoranordnung
CN105303675B (zh) * 2015-10-15 2018-01-19 东方通信股份有限公司 一种利用光敏传感器检测纸张厚度的装置和方法
US11340343B2 (en) * 2017-03-23 2022-05-24 Dolphin Measurement Systems, Llc Apparatus and methods for thickness and velocity measurement of flat moving materials using high frequency radar technologies
CN107326717B (zh) * 2017-07-12 2019-05-28 东莞福迈包装印刷有限公司 一种可以检测纸张厚度的造纸机
DE102017126310A1 (de) 2017-11-09 2019-05-09 Precitec Optronik Gmbh Abstandsmessvorrichtung
CN108955549A (zh) * 2018-09-11 2018-12-07 深圳立仪科技有限公司 一种透光材料双面测厚装置
US20240210163A1 (en) * 2020-03-27 2024-06-27 Lam Research Corporation In-situ wafer thickness and gap monitoring using through beam laser sensor
CN112162296B (zh) * 2020-09-29 2024-05-31 香港中文大学(深圳) 一种激光测距系统
FI20215460A1 (en) 2021-04-19 2022-10-20 Lmi Tech Oy LIGHTING ASSEMBLY AND METHOD FOR PRODUCING MEASUREMENT LIGHT AND OPTICAL MEASUREMENT DEVICE
CN116067435B (zh) * 2023-03-20 2023-06-27 北京市农林科学院智能装备技术研究中心 土壤环境多参数监测传感器

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906641A1 (de) * 1979-02-21 1980-08-28 Freudenberg Carl Fa Verfahren zur optisch-elektrischen messung des abstandes zwischen einer messeinrichtung und einem pruefling
US4458152A (en) * 1982-05-10 1984-07-03 Siltec Corporation Precision specular proximity detector and article handing apparatus employing same
CH663466A5 (fr) * 1983-09-12 1987-12-15 Battelle Memorial Institute Procede et dispositif pour determiner la position d'un objet par rapport a une reference.
US4936676A (en) * 1984-11-28 1990-06-26 Honeywell Inc. Surface position sensor
US4656358A (en) * 1985-03-12 1987-04-07 Optoscan Corporation Laser-based wafer measuring system
DE3643842C2 (de) * 1986-12-20 1995-07-20 Leuze Electronic Gmbh & Co Anordnung zur berührungslosen Bestimmung der räumlichen Lage eines auf der Oberfläche eines Körpers befindlichen Objektpunkts
JP2595821B2 (ja) * 1991-03-12 1997-04-02 日本電気株式会社 三次元形状測定装置
JPH04370708A (ja) * 1991-06-20 1992-12-24 Meidensha Corp 小型偏光解析装置
US5162660A (en) * 1991-06-27 1992-11-10 Macmillan Bloedel Limited Paper roughness or glass sensor using polarized light reflection
JPH109827A (ja) * 1996-06-24 1998-01-16 Omron Corp 高さ判別装置および方法
US6064517A (en) * 1996-07-22 2000-05-16 Kla-Tencor Corporation High NA system for multiple mode imaging
IL121267A0 (en) * 1997-07-09 1998-01-04 Yeda Res & Dev Method and device for determining the profile of an object
DE19733297C2 (de) * 1997-08-01 1999-12-09 Marcus Gut Berührungslose optische Dickenmessung
JPH11201729A (ja) * 1998-01-12 1999-07-30 Mitsutoyo Corp 光学式測定装置
FR2779517B1 (fr) * 1998-06-05 2000-08-18 Architecture Traitement D Imag Procede et dispositif d'acquisition opto-electrique de formes par illumination axiale
US6208411B1 (en) * 1998-09-28 2001-03-27 Kla-Tencor Corporation Massively parallel inspection and imaging system
JP2001070228A (ja) * 1999-07-02 2001-03-21 Asahi Optical Co Ltd 内視鏡装置
US6268923B1 (en) * 1999-10-07 2001-07-31 Integral Vision, Inc. Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
AU2001260975A1 (en) * 2000-01-25 2001-08-20 Zygo Corporation Optical systems for measuring form and geometric dimensions of precision engineered parts
US6917421B1 (en) * 2001-10-12 2005-07-12 Kla-Tencor Technologies Corp. Systems and methods for multi-dimensional inspection and/or metrology of a specimen
DE10242374A1 (de) * 2002-09-12 2004-04-01 Siemens Ag Konfokaler Abstandssensor
DE10325942B4 (de) 2003-06-07 2010-09-16 Jurca Optoelektronik Gmbh & Co. Kg Vorrichtung und Verfahren zur berührungslosen Dickenmessung transparanter Körper
DE102004034693B4 (de) * 2004-07-17 2006-05-18 Schott Ag Verfahren und Vorrichtung zur berührungslosen optischen Messung der Dicke von heißen Glaskörpern mittels der chromatischen Aberration
US7345772B2 (en) * 2004-08-06 2008-03-18 Voith Paper Patent Gmbh Optical triangulation device and method of measuring a variable of a web using the device
DE102004052205A1 (de) 2004-10-20 2006-05-04 Universität Stuttgart Interferometrischer Multispektral-Sensor und interferometrisches Multispektral-Verfahren zur hochdynamischen Objekt-Tiefenabtastung oder Objekt-Profilerfassung
DE102005006724A1 (de) * 2004-10-20 2006-08-10 Universität Stuttgart Verfahren und Anordung zur konfokalen Spektral-Interferometrie, insbesondere auch zur optischen Kohärenz-Tomografie (OCT)und/oder optischen Kohärenz-Mikroskopie (OCM)von biologischen und technischen Objekten
US7522292B2 (en) * 2005-03-11 2009-04-21 Carl Zeiss Smt Ag System and method for determining a shape of a surface of an object and method of manufacturing an object having a surface of a predetermined shape
US20060232790A1 (en) * 2005-04-18 2006-10-19 Lee Chase Confocal measurement method and apparatus in a paper machine
JP2007147299A (ja) * 2005-11-24 2007-06-14 Kobe Steel Ltd 変位測定装置及び変位測定方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018130901A1 (de) 2018-12-04 2020-06-04 Precitec Optronik Gmbh Optische Messeinrichtung
WO2020114562A1 (de) 2018-12-04 2020-06-11 Precitec Optronik Gmbh Optische messeinrichtung
CN111272094A (zh) * 2018-12-04 2020-06-12 普雷茨特光电有限公司 光学测量设备
TWI728562B (zh) * 2018-12-04 2021-05-21 德商普雷茨特光電有限公司 光學測量裝置
CN111272094B (zh) * 2018-12-04 2022-10-21 普雷茨特光电有限公司 光学测量设备
DE202019005920U1 (de) 2018-12-04 2023-05-03 Precitec Optronik Gmbh Optische Messeinrichtung

Also Published As

Publication number Publication date
ES2400380T3 (es) 2013-04-09
WO2008046966A1 (en) 2008-04-24
US20100296107A1 (en) 2010-11-25
FI20065669A (fi) 2008-04-19
JP2010507089A (ja) 2010-03-04
EP2076733A1 (de) 2009-07-08
FI20065669A0 (fi) 2006-10-18
US7936464B2 (en) 2011-05-03
CN101529200B (zh) 2012-07-04
JP5155325B2 (ja) 2013-03-06
EP2076733A4 (de) 2010-01-06
CN101529200A (zh) 2009-09-09
FI119259B (fi) 2008-09-15

Similar Documents

Publication Publication Date Title
EP2076733B1 (de) Oberflächen- und dickenbestimmung
US8786836B2 (en) Measuring instrument and method for determination of the properties of an item and its surface
US5999262A (en) Process and apparatus for detecting structural changes of specimens
US9297647B2 (en) Apparatus for detecting a 3D structure of an object
US7170610B2 (en) Low-coherence inferometric device for light-optical scanning of an object
US5933237A (en) Interferometric instrument
JPS60233581A (ja) 距離測定装置及び方法
EP3125019B1 (de) Abbildungssystem mit steuerbarer linearer polarisation
US11239626B2 (en) Multi-pass etalon filter
Alsultanny Laser beam analysis using image processing
US8773663B2 (en) Luminous unit
US20130342849A1 (en) Shape measurement device and shape measurement method
US10928307B2 (en) Configurable retro-reflective sensor system for the improved characterization of the properties of a sample
KR20220119398A (ko) 공초점 거리 측정을 이용한 작업편의 제어되는 기계가공을 위한 방법 및 장치
CN111060890A (zh) 激光雷达设备
CN109764963A (zh) 一种棱镜型空间外差光谱仪基准波长设置及调试方法
TWI687331B (zh) 偵測特定物質之多波長雷射雷達系統
FI124263B (fi) Mittalaite ja menetelmä kohteen ja kohteen pinnan ominaisuuksien mittaamiseksi
WO2023053111A1 (en) Method and system for mapping and range detection
Oechsner et al. Laser Sources for Metrology and Machine Vision: Laser diode based light sources are widely used for high precision measurement and inspection systems
US20150369587A1 (en) SD-OCT Flatten Coherence Length by Controlling Spatial Dispersion
Abbass Laser Beam Analysis Using Image Processing
Lewis et al. A preview of a modular surface light scattering instrument with autotracking optics
PL229959B1 (pl) Aberracyjny czujnik optyczny odległości w procesach technologicznych oraz sposób pomiaru odległości w procesach technologicznych

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

A4 Supplementary search report drawn up and despatched

Effective date: 20091203

17Q First examination report despatched

Effective date: 20091218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 587505

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007027193

Country of ref document: DE

Effective date: 20130131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2400380

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130409

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 587505

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130306

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130305

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130405

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

26N No opposition filed

Effective date: 20130906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: FOCALSPEC OY, FI

Effective date: 20131028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007027193

Country of ref document: DE

Effective date: 20130906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007027193

Country of ref document: DE

Owner name: FOCALSPEC OY, FI

Free format text: FORMER OWNER: VALTION TEKNILLINEN TUTKIMUSKESKUS, ESPOO, FI

Effective date: 20131211

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20140206 AND 20140212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131017

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20071017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R039

Ref document number: 602007027193

Country of ref document: DE

Ref country code: DE

Ref legal event code: R008

Ref document number: 602007027193

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: LMI TECHNOLOGIES OY

Effective date: 20201013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007027193

Country of ref document: DE

Owner name: LMI TECHNOLOGIES OY, FI

Free format text: FORMER OWNER: FOCALSPEC OY, OULU, FI

REG Reference to a national code

Ref country code: DE

Ref legal event code: R040

Ref document number: 602007027193

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231027

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231102

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231023

Year of fee payment: 17

Ref country code: FR

Payment date: 20231025

Year of fee payment: 17

Ref country code: DE

Payment date: 20231027

Year of fee payment: 17