JP2007147299A - 変位測定装置及び変位測定方法 - Google Patents

変位測定装置及び変位測定方法 Download PDF

Info

Publication number
JP2007147299A
JP2007147299A JP2005338272A JP2005338272A JP2007147299A JP 2007147299 A JP2007147299 A JP 2007147299A JP 2005338272 A JP2005338272 A JP 2005338272A JP 2005338272 A JP2005338272 A JP 2005338272A JP 2007147299 A JP2007147299 A JP 2007147299A
Authority
JP
Japan
Prior art keywords
light
sample
wavelength
focal point
position information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005338272A
Other languages
English (en)
Inventor
Tsutomu Morimoto
勉 森本
Hisakazu Sakota
尚和 迫田
Hiroyuki Takamatsu
弘行 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005338272A priority Critical patent/JP2007147299A/ja
Publication of JP2007147299A publication Critical patent/JP2007147299A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

【課題】光学的三角測距方式と共焦点方式とを組み合わせながらも,上記光学的三角測距方式が抱えるスペックルノイズの問題及び上記共焦点方式が抱える構成の複雑化などの問題を一挙に解消することのできる変位測定装置及び変位測定方法を提供すること。
【解決手段】色収差を有するレンズ4を有する照射系光学機器Aから試料5に対して光を斜めに照射させ,上記試料5からの反射光を受光器14を有する受光系光学機器Bで受光する。上記受光器14で受光された上記反射光の入射位置を測定することにより,その入射位置に応じた試料5の高さ変位(試料高さ)を測定することができる。また,上記入射位置における受光量が所定値以上であることをもって試料5に照射された波長光のいずれかが試料5上で焦点を結んでいると判断できるため,この場合は,上記焦点を求めることで試料5の高さ変異(試料高さ)を測定することができる。
【選択図】図1

Description

本発明は,試料から反射した反射光の受光量から試料の高さ変位を測定する変位測定装置及び方法に関し,特に,色収差を有するレンズを透過した多波長光が各波長毎に異なる位置で焦点を結像するという性質を利用して試料の高さ変位を測定する変位測定装置及び方法に関するものである。
従来,試料の高さの変位を測定する変位測定法として,三角測量を応用した光学的三角測距方式の変位測定法が公知である。この変位測定法は,可干渉性のある指向性の強い半導体レーザなどのレーザ光を測定対象試料に照射させた場合に,上記試料から拡散反射された光線の一部をCCDやPSDなどの受光素子上でスポットを結ぶように光学系機器を配置させ,上記試料表面の起伏による試料表面までの照射距離の変動に応じて移動する上記受光素子上のスポットの移動量を測定し,その測定された移動量を上記試料の高さの変位量に変換する手法である。
また,共焦点光学系を用いて試料の高さ変位を測定する共焦点方式の変位測定法として,多波長光を色収差のあるレンズ(以下「色収差レンズ」と称す)に透過させた場合に,上記色収差レンズの光軸上に各波長毎に異なる焦点位置が現れるという性質を利用して,試料から反射した反射光を各波長毎に受光し,最も強い受光量の受光位置から特定波長の焦点位置を求め,この焦点位置を上記試料の高さ位置とする公知の方法がある。このような公知の方法を用いて試料の高さ変位を測定する変位測定装置が特許文献1(試料高さ判別装置)及び特許文献2(Distance measuring confocal microscope(共焦点方式の距離測定顕微鏡))に開示されている。
ここで,図9及び図10を用いて,従来の共焦点方式の変位測定装置の一例である上記特許文献1に記載の試料高さ判別装置Yの動作原理について説明する。ここに,図9は上記試料高さ判別装置Yの概略構成図,図10は高さの異なる試料に光が照射されたときの様子を示す模式図である。
図9に示すように,従来の試料高さ判別装置Yは,Xeランプ等からなる複数の波長成分(例えば3つの波長λ1,λ2,λ3)を含むランプ光(多波長光)を出射する光源101,ピンホール102及び106,ビームスプリッタ103,色収差を有するレンズ104,試料105,処理部110,レンズ111,113,プリズム112,ラインセンサ114を備えて概略構成されている。
このように構成された試料高さ判別装置Yでは,光源101から発せられたランプ光はピンホール102を通過した後にビームスプリッタ103を透過して,レンズ104で収束され,試料105に照射される。そして,上記試料105で拡散反射した光はレンズ104を透過後,上記ビームスプリッタ103で反射され,その後,ピンホール106を通過した後に,レンズ111により平行光に変換される。更に,上記レンズ111で変換された平行光は,プリズム112によって該平行光に含まれる複数の波長成分に分光(分離)され,その後,レンズ113を介して上記ラインセンサ114上の各波長に対応する入射位置Q(λ1),Q(λ2),Q(λ3)に導かれる。
いま,上記試料高さ判別装置装置Yにおいて,上記光源101から3つの波長λ1,λ2,λ3(λ1<λ2<λ3の関係を有する)を有する光が出射されたと仮定する。この場合,色収差を有する上記レンズ104によって,該レンズ104を透過した光は,上記色収差により,各波長λ1,λ2,λ3に応じた焦点距離だけ進んだ地点で焦点を結ぶことになる。
なお,一般にレンズの焦点距離fは,レンズの肉厚をd,レンズの屈折率をn,レンズの局率半径をr1,r2とすると,以下の式(1)で近似的に表すことができる。
Figure 2007147299
上式(1)によれば,焦点距離fはレンズの屈折率nに依存していることが分かる。また,一般にこの屈折率nは光の波長が短いほど大きくなる。このような周知事項と上式(1)から,波長が短い光ほどその焦点距離が短いことが理解できる。
したがって,図9に示すように,上記色収差を有するレンズ104を通過した光のうち,最も短い波長λ1の光は上記レンズ104に最も近い位置P11で焦点を結び(結像し),最も長い波長λ3を有する光は上記レンズ104から最も遠い位置P13で焦点を結ぶことになる。
上記焦点位置の異なる3つの波長λ1,λ2,λ3を有する光(ランプ光)が,例えば,図10(a)に示す試料105aに照射され,図示するように波長λ2の光の焦点P12と一致する上記試料の頂部で反射したとする。この場合,波長λ1及びλ3と較べて波長λ2の光が多く上記レンズ104へ向けて反射されるため,上記ラインセンサ114(図9参照)に上記波長λ2の光が最も多く入射されることになる。上記ラインセンサ114に入射された光は該ラインセンサ114で各波長(λ1,λ2,λ3)毎の位置でそれぞれの受光量が求められ,その後,上記処理部110によって,最も受光量の多い波長λ2が特定され,この特定された波長λ2の光の焦点位置が試料105aの高さに決定される。
また,図10(b)に示すように,照射された光が波長λ3の光の焦点P13と一致する試料台の表面(試料の存在しない位置)で反射した場合は,上記焦点13で反射した波長λ3の光が上記ラインセンサ114に最も多く入射されるため,上記波長λ3の光の焦点P13の位置が試料の高さに決定される。更にまた,図10(c)に示すように,照射された光が波長λ1の光の焦点P1と一致する上記試料105cの頂部で反射した場合は,この波長λ1の光が上記ラインセンサ114に最も多く入射されるため,上記波長λ1の光の焦点P11の位置が試料105cの高さに決定される。
特開平10−9827号公報 米国特許第5785651号明細書
しかしながら,上記光学的三角測距方式の変位測定法では,試料表面の変位量によって受光素子上で結ぶスポットの大きさが変化しないように,指向性の強い半導体レーザなどのレーザ光が用いられるが,このレーザ光は光軸径が細くて可干渉性があるため,試料で散乱反射した反射光が互いに干渉し合うことにより,縞状あるいはごま塩状のランダムなスペックルノイズが発生する。このようなスペックルノイズは上記受光素子上のスポットをぼかし,不明瞭にするため,測定精度の向上の妨げとなり,問題である。
一方,可干渉性の小さい単色光や白色光を用いた共焦点方式を上記光学的三角測距方式の変位測定法に適用すれば上記スペックルノイズの問題は生じないが,このような光は指向性が低く,発散性があるため,上記受光素子上に十分小さいスポットを形成することができず,却って測定精度を低下させることになり好ましくない。
また,上記特許文献1や2に記載の共焦点光学系を用いて試料の高さ変位を測定する共焦点方式の変位測定法では,可干渉性の少ない白色光などが用られているため,上記スペックルノイズの問題は生じない。しかしながら,複数の波長成分を含む白色光などの多波長光が試料に対して鉛直方向に照射され,照射時と同光路を通って反射した反射光を受光素子に導く構成となっているため,試料からの反射光が上記受光素子に入射する前段において,上記反射光を各波長に分光するプリズムなどの分光器が必須となる。そのため,装置の構成が複雑化し,装置規模が拡大するという問題がある。
従って,本発明は上記事情に鑑みてなされたものであり,その目的とするところは,上記光学的三角測距方式と上記共焦点方式とを組み合わせながらも,上記光学的三角測距方式が抱える上記スペックルノイズの問題及び上記共焦点方式が抱える構成の複雑化などの問題を一挙に解消することのできる変位測定装置及び変位測定方法を提供することにある。
上記目的を達成するために本発明は,光源から出射された複数の波長光からなる多波長光を色収差を有する色収差レンズで収束すると共に収束された光を試料に対して所定の傾斜角で照射する照射系光学手段と,上記照射系光学手段により照射された光の上記試料からの反射光を受光する受光手段と,上記受光手段で受光される反射光の受光量分布に基づいて上記試料表面近傍で結像する波長光の焦点の位置情報を取得する位置情報取得手段と,上記位置情報取得手段により取得された上記焦点の位置情報に基づいて上記試料の高さ変位を算定する変位算定手段と,を備えた変位測定装置として構成される。
このように,試料に対して光を斜め方向から照射させることにより,試料高さに応じて光の反射方向が異なるため,CCDやPCDなどの受光手段の受光面に結像される焦点も光学的三角測距方式の原理に基づいて上記試料高さに応じて異なる位置に現れることになる。そして,この位置を変換することにより試料高さ(高さ変位)を算定することができる。即ち,分光器を設けて反射光を角波長毎に分光し,波長毎の受光量を求めるようなことをしなくても,試料高さを算定することが可能となる。そのため,上記分光器を排除することができ,該分光器を排除した分だけ装置の複雑化,規模の拡大を防止することができる。また,可干渉性のあるレーザ光を用いなくても,上記受光手段の受光面上に焦点が結像されるため,スペックルノイズの影響による測定精度の低下も生じなくなる。
ここで,上記位置情報取得手段が,上記受光手段で受光された上記反射光の受光量分布における最大受光量の分布位置に基づいて上記焦点の位置情報を取得することが考えられる。最大受光量に対応する焦点が求める高さ変位(位置)に最も近いからである。
また,上記受光手段が,該受光手段の光軸が上記照射系光学手段により照射された試料上の照射点近傍を通り,且つ,上記照射系光学手段の光軸と略垂直となる位置に配置されておれば,反射光に対する受光範囲を最大とすることができるため,試料からの反射光を良好に受光することができる。この場合,試料に照射される光に含まれる複数の波長の平均波長の光の焦点を上記受光手段の光軸が通るように上記受光手段を配置し,或いは,複数の波長の上記色収差レンズに対するそれぞれの屈折率の平均値と略同一の屈折率を有する波長光の焦点を上記受光手段の光軸が通るように上記受光手段を配置することが望ましい。
また,上記光源から出射される多波長光は,スペックルノイズを低減させるという観点からすれば可干渉性の小さい光であることが望ましく,非可干渉性光であればより好ましい。
また,本変位測定装置では多波長光を用いるため,各波長光が他の波長光のノイズとなることが多少なりともあり得る。このようなノイズを低減するために,上記光源が,波長の異なる単色光を既定の順序で時分割出射するものであることが望ましい。この場合,上記受光手段側でも同じ時間分割のタイミングで受光面の焦点位置が測定される。これにより,他の波長光がノイズとならないため,測定精度を高めることができる。
なお,上記色収差レンズは,色収差を有し,入射した光を収束するレンズであるが,その一例として,複数のスリットを有するフレネルレンズが該当する。
また,本発明は,上記変位測定装置に適用される変位測定方法と捉えることもできる。
即ち,光源から出射された複数の波長光からなる多波長光を色収差のある色収差レンズで収束させると共に収束された収束光を試料に対して所定の傾斜角で照射させ,上記試料からの反射光を受光し,受光した反射光の受光量分布に基づいて上記試料表面近傍で結像する波長光の焦点の位置情報を取得し,この取得された上記焦点の位置情報に基づいて上記試料の高さ変位を算定することにより,上記試料の高さ変位を測定する方法であっても,上記変位測定装置と同様の効果が奏される。
本発明によれば,分光器を設けて反射光を角波長毎に分光し,波長毎の受光量を求めるようなことをしなくても,試料高さを算定することが可能となる,上記分光器を排除することができ,その分だけ装置の複雑化,規模の拡大を防止することができる。
また,可干渉性のあるレーザ光を用いなくても,上記受光手段の受光面上に焦点が結像されるため,スペックルノイズの影響による測定精度の低下も生じなくなる。
以下添付図面を参照しながら,本発明の実施の形態及び実施例について説明し,本発明の理解に供する。なお,以下の実施の形態及び実施例は,本発明を具体化した一例であって,本発明の技術的範囲を限定する性格のものではない。
ここに,図1は本発明の実施の形態に係る変位測定装置Xの概略構成を説明する模式図,図2は入射光が試料表面上の波長λ2の光の焦点で反射したときの状態を示す図,図3は入射光が試料表面上の波長λ1の光の焦点で反射したときの状態を示す図,図4は入射光が試料表面上の波長λ3の光の焦点で反射したときの状態を示す図,図5は図2〜図3の各状態における受光量分布を示す受光量分布図,図6は試料の高さの変位量を測定する方法を説明する図,図7は入射光が試料表面上の反射点Kで反射したときの状態を示す図,図8は図7の状態における受光量分布を示す受光量分布図である。
なお,図1は,予め定められた基準高さHで波長λ2の光が焦点を結び,その後,受光器14へ反射したときの様子を示している。
まず,図1を用いて,上記変位測定装置Xの概略構成及び概略動作について説明する。なお,当該変位測定装置Xの具体例としては,例えば,半導体材料(ウエハ)や圧延板などのシート状の試料の高さ或いは厚さを測定する装置,上記試料の表面粗さを測定する装置,上記試料の平坦度を測定する装置などが該当する。
上記変位測定装置Xは,大別して,光源1,該光源1から出射された光を収束してピンホール2へ導くレンズ11,上記ピンホール2から出射された発散状の光を収束して試料5の表面に導くレンズ4(色収差レンズの一例)を備えて構成される照射系光学機器A(照射系光学手段の一例)と,試料5からの反射光を収束して後記する受光器14(受光手段の一例)の受光面上に焦点を結像するレンズ13,上記反射光を受光してその受光量を求める受光器14を備えて構成される受光系光学機器Bと,上記受光器14の受光面に入射した光の受光量に基づいて所定の演算処理を実行するCPU,RAM,ROMなどを備えた電子計算機を含む処理部10(位置情報取得手段,変位算定手段の一例)とを備えて概略構成される。
本実施の形態では,試料5に対して所定の入射角θ(傾斜角に相当)で光を照射するよう上記照射系光学機器Aが配置されている。この入射角θは0<θ<90を満たせばよいが,各構成要素の配置干渉を防止する観点,上記受光器14に入射される反射光の入射効率の観点からすれば,上記入射角θは45度前後であることが好ましい。
上記光源1は,複数の波長光からなる多波長光を出射するXeランプやハロゲンランプなどの点光源である。ここでは説明の便宜上,波長λ1,λ2,λ3の各波長光からなる光を多波長光として説明するが,もちろん,これに限られることはなく,例えば,後述するように,上記レンズ4によって異なる焦点を結ぶ波長が多数含まれていてもよい。
上記多波長光は非可干渉性光であることが好ましい。非可干渉性光を用いれば,可干渉光を用いた場合に生じる前記スペックルノイズの問題が低減し,測定精度を高めることができる。
上記波長λ1,λ2,λ3はそれぞれλ1<λ2<λ3の関係を有する。このような関係を有する光を例示すると,波長λ1が青色光,波長λ2が緑色光,波長λ3が赤色光であることが挙げられる。
上記光源1から出射した発散状の多波長光は,レンズ11により上記ピンホール2で焦点を結ぶように収束される。これにより,上記光源1から出射された光に含まれるノイズ光や不要な光が除去される。即ち,上記ピンホール2を通過できないノイズ光などは上記ピンホール2で遮断される。なお,上記レンズ11としては,色収差のない(色収差が補正された)レンズが用いられる。
上記ピンホール2を通過した波長λ1,λ2,λ3を含む光は,その後,色収差のあるレンズ4に照射される。このとき,上記レンズ4の色収差により,入射した多波長光は上記各波長λ1,λ2,λ3毎に応じた位置P1,P2,P3で焦点を結ぶ(結像する)ように収束されて,試料5の表面上に照射される。
この実施の形態では,色収差レンズの一例として上記レンズ4を例示して説明するが,少なくとも色収差があり,入射光を収束するものであれば,凸レンズ,球面レンズ,フレネルレンズ(PFレンズ)などの如何なるレンズでも使用することが可能である。
ただし,上記レンズ4に代えてフレネルレンズを用いる場合は,このフレネルレンズは波長の短い光ほど焦点距離が長くなるという通常のレンズとは反対の性質を有するため,後述する処理部10ではこの点を考慮して演算,算定処理を行う必要がある。
上記光源1,レンズ11,レンズ4を含む照射系光学機器Aから試料5に照射された光が,上記試料5の表面で反射すると,その反射光の一部は上記レンズ13に入射した後に,該レンズ13によって収束され,上記受光器14の受光面上で焦点を結像する。なお,上記レンズ13も上記レンズ同様に色収差のないのものを用いる。
上記受光器14は,入射した光の光量(輝度)を測定するものであって,例えば,入射光の画像をラインCCDや二次元CCDなどの撮像手段で撮像して,該撮像された画像データから光量を求める装置や,受光した光の強度に応じた電流を生成するフォトダイオードなどの受光素子を備え,生成された電流値から光量を測定する装置などが該当する。また,上記入射光の入射位置を検出する一次元或いは二次元のPSD(位置検出素子)などを用いてもかまわない。
本実施の形態では,上記受光器14は,受光器14の受光面の中心法線(即ち,受光器14の光軸)が上記光源1から出射され上記レンズ4により収束された光の上記試料5上の照射点近傍と通り,且つ,上記光源1及び上記レンズ4の光軸(中心軸)と略垂直となる位置に配置されている。このような位置関係に上記受光器14を配置することにより,反射光を効率よく受光することができる。もちろん,上記レンズ13は,その光軸が上記受光器14の受光面の中心法線を通るように配置されている。
上記受光器14の配置位置の具体例としては,例えば,試料5に照射される光に含まれる複数の波長(波長λ1,λ2,λ3)の平均波長(例えば波長λ2)の光の焦点を上記受光器14の受光面の中心法線が通るように配置する例や,複数の波長(波長λ1,λ2,λ3)の上記レンズ4に対するそれぞれの屈折率の平均値と略同一の屈折率を有する波長光(例えば波長λ2)の焦点を上記受光器14の受光面の中心法線が通るように配置する例が挙げられる。
上記受光器14において反射光の受光量が測定されると,測定された受光量の分布状態(受光量分布)から,上記処理部10によって,上記試料5の表面で結像する光の焦点の位置情報が取得(演算)され,その後,上記焦点の位置情報に基づいて上記試料5の高さ変位が算定される。ここで,上記演算及び算定処理を実行する処理部10が位置情報取得手段,変位算定手段の一例に相当する。
以下に,上記試料5の表面上で結像する光の焦点の位置情報を取得して試料の高さを算定する手法について説明する。なお,本変位測定装置Xにおいて,上記レンズ13及び上記受光器14は,図1に示すように,波長λ2の光の焦点P2を高さ変位の測定基準位置として設定され,この焦点P2で光が反射したときの波長λ2の反射光が受光器14の受光面の中央位置Q2に入射するように上記レンズ13及び上記受光器14が配置されているものとする。具体的には,上記レンズ13の光軸及び上記受光器14の中心線が上記測定基準位置(焦点P2)を通るように配置されている。また,上記波長λ2の光は,予め定められた基準高さHで焦点を結ぶよう上記照射系光学機器Aが選定或いは配置されているものとする。
更に,波長λ1及びλ3の光の焦点P1,P3で光が反射したときの受光器14における入射位置Q1及びQ3は既知とする。なお,予め基準試料の表面を上記焦点P1又はP3にセットした状態で光を照射させることにより上記入射位置Q1及びQ3の位置情報を取得することが可能である。
本変位測定装置Xにおいて,例えば,図2に示すように,試料5に対して光を照射させたときに,ちょうど基準高さHの位置(即ち焦点P2と一致する試料5上の位置)で光が反射した場合は,その位置で焦点P2を結ぶ波長λ2の光が最も多く受光器14へ反射することになる。また,波長λ1の光は試料5の上方で焦点P1を結んだ後に試料5に照射されるため,そして,波長λ3の光は焦点P3を結ぶ前に試料5に照射されるため,それぞれの反射光は広範囲に拡散し,波長λ2の光に較べると上記受光器14に反射する光量は少なくなる。
なお,この場合,上述したように,上記受光器14は,上記焦点P2で光が反射したときに波長λ2の反射光が受光器14の受光面の中央位置Q2に入射するように配置されているため,上記受光器14で受光された反射光の受光量分布51は図5(a)に示すようになる。
また,図3に示すように,上記基準高さHよりも高い位置(焦点P1と一致する位置)で光が反射した場合は,その位置で焦点P1を結ぶ波長λ1の光が最も多く受光器14へ反射することになる。この場合,試料5に入射した光は上記基準高さHの上方で反射するため,その反射光は上記レンズ13に対して斜めに入射する。そのため,光学的三角測距方式の原理により,図3に示すように,上記受光器14の中央の入射位置Q2からずれた位置Q1に反射光が入射することになる。なお,図5(b)にこのときの受光量分布52を示す。
また,図4に示すように,上記基準高さHよりも低い位置(焦点P3と一致する位置)で光が反射した場合は,その位置で焦点P3を結ぶ波長λ3の光が最も多く受光器14へ反射することになる。この場合,試料5に入射した光は上記基準高さHの下方で反射するため,その反射光は上記レンズ13に対して斜めに入射する。そのため,光学的三角測距方式の原理により,図4に示すように,上記受光器14の中央の入射位置Q2から上記入射位置Q1とは反対方向へずれた入射位置Q3に反射光が入射することになる。なお,図5(c)にこのときの受光量分布53を示す。
上述したように,本変位測定装置Xでは,試料5上の光の反射位置(例えば基準高さHの位置(焦点P2))に応じた受光面の位置(例えば入射位置Q2)に上記反射光が入射し,また,その受光面の位置には上記光の反射位置に応じた波長の反射光が最も多く入射するため,上記受光器14で受光した反射光の受光量分布(図5参照)から最も受光量の多い位置(例えばQ2)上記光の反射位置,即ち,試料の高さ位置(高さ変位)を求めることができる。
例えば,上記受光器14で受光された受光量から,図5(a)に示す受光量分布51が得られたと仮定する。
図5(a)を参照すると,入射位置Q2において受光量が最大となっていることがわかる。この場合は,上記受光量の最大値が予め取得された後記する閾値受光量よりも大きい場合は,図2に示すように,上記波長λ2の光の焦点P2が試料5上で結像していると判断できる。なお,上記閾値受光量は,例えば,予め基準試料の表面を基準高さH(焦点P2)に設置したときの上記基準試料からの反射光を受光し,この受光量の最大値にディファレンスを考慮して所定の倍率(例えば0.95)を乗じた値を上記閾値受光量として処理部10内に記憶しておいたものを用いる。
上記判断は,処理部10により行われる。即ち,上記処理部10では,図5(a)の受光量分布51から,該受光量分布51における最大受光量が求められ,この最大受光量と上記閾値受光量とを比較することによって行われる。
上記処理部10の判断処理により,上記波長λ2の光の焦点P2が試料5上に結像していると判断されると,上記波長λ2の光の焦点P2の位置情報が取得される。この場合,前述の如く波長λ2の光が基準高さHで焦点P2を結像するよう上記レンズ4などの照射系光学機器Aが配置されているため,上記処理部10により上記焦点P2の位置情報として「基準高さH」が取得される。
このとき,上記焦点P2の位置情報は「基準高さH」であるため,上記試料5は基準高さHから変位していないと判断され,試料5の高さ変位が「0」と算定される。もちろん,このときの上記試料5の絶対高さは「基準高さH」である。
次に,本変位測定装置Xにおいて,上記受光器14で受光された受光量から,図5(b)に示す受光量分布52が求められたと仮定する。この場合も,上記受光量分布52から,入射位置Q1において受光量が最大となっていることがわかる。このとき,上記受光量の最大値が上述と同様にして予め取得しておいた閾値受光量よりも大きい場合は,図3に示すように,上記波長λ1の光の焦点P1が試料5上に結像していると判断できる。かかる判断も上述と同様に上記処理部10により行われる。なお,このときの上記閾値受光量は,基準試料の表面を焦点P1に設置したときの上記基準試料からの反射光の受光量の最大値にディファレンスを考慮して所定の倍率(例えば0.95)を乗じた値である。
上記波長λ1の光の焦点P1が試料5上に結像していると判断された場合は,上記処理部10では,上記受光量分布52から,最大受光量に対応する入射位置Q1の位置情報が求められ,その位置情報に対応する波長λ1の光の焦点P1の位置情報が求められる(取得される)。
具体的には,図6(a)に示す座標系を基にして上記焦点P1の位置情報を求める。ここに,図6(a)は,試料5の平面方向をx軸とし,測定基準位置である焦点P2を通る鉛直方向を求める焦点の高さh(x)軸としたときの座標である。なお,上記焦点P2の座標は{0,H}(H:基準高さ)であり,原点Oの座標は{0,0}である。
図6(a)の座標系から,焦点P1の座標{x1,h(x1)}は,波長λ1の焦点距離をf1,波長λ2の焦点距離をf2とすると,下記式(2),(3)のように表される。なお,焦点距離f1,f2は上記した式(1)から求めることができる。
x1=(f1−f2)cosθ …(2)
h(x1)=−(f1−f2)sinθ+H …(3)
なお,このようにして求められた上記焦点P1の座標{x1,h(x1)}が該焦点P1の位置情報である。
上式(2)及び(3)により得られた焦点P1の座標{x1,h(x1)}は,原点Oの座標{0,0}を基準としたときの相対位置を示すものであるが,上記原点Oが上記試料5が載置された試料台の表面に設定されている場合は,上記試料5の上記焦点P1における絶対高さ(試料高さ)を示す。
また,本変位測定装置Xでは,入射角θだけ傾斜させて光を試料5に照射させているため,基準となる原点P2からx軸方向に“x1”だけずれた地点における高さ変位“h(x1)”が求められるが,このずれ“x1”は上式(2)から算定可能であるため,高さを測定する位置に“x1”のずれが生じることとなるが,そのずれた位置における高さは正確に測定されるため,上記ずれ“x1”は精度低下を招く要因とはならない。
また,同じように,上記受光器14で受光された受光量から,図5(c)に示す受光量分布53が求められた場合は,該受光量分布53から,入射位置Q3における最大受光量が予め取得しておいた閾値受光量よりも大きい場合は,図4に示すように,上記波長λ3の光の焦点P3が試料5上に結像していると判断できる。かかる判断も上述と同様に上記処理部10により行われる。なお,このときの上記閾値受光量は,基準試料の表面を焦点P3に設置したときの上記基準試料からの反射光の受光量の最大値にディファレンスを考慮して所定の倍率(例えば0.95)を乗じた値である。
このとき,上記処理部10では,上述した上記焦点P1の位置情報の取得方法と同じようにして,上記受光量分布53から,該受光量分布53における最大受光量の入射位置Q3の位置情報が求められ,その位置情報に対応する波長λ3の光の焦点P3の位置情報が取得される。
即ち,図6(b)に示す座標系から,焦点P3の位置情報である座標{x3,h(x3)}は,波長λ3の焦点距離をf3とすると,下記式(4),(5)のように表される。
x3=(f3−f2)cosθ …(4)
h(x3)=−(f3−f2)sinθ+H …(5)
なお,このようにして求められた上記焦点P3の座標{x3,h(x1)}が該焦点P3の位置情報である。
また,上式(4)及び(5)により得られた焦点P3の座標{x3,h(x1)}も,原点Oの座標{0,0}を基準としたときの相対位置を示すものであるが,上記原点Oが上記試料5が載置された試料台の表面に設定されている場合は,上記試料5の上記焦点P3における絶対高さ(試料高さ)を示す。
ここまでは,3つの波長λ1,λ2,λ3を有する光を試料5に照射させたときに,いずれかの波長が試料5の表面上で焦点を結ぶ場合に限定して,上記試料の高さ変位を算定する手法について説明してきた。しかしながら,試料5の高さ変位を測定する上で,必ずしも試料5の表面で上記各波長のいずれかが焦点を結ぶとは限らない。
例えば,図7に示すように,波長λ1の光の焦点P1と,波長λ2の光の焦点P2との間の試料5上の反射点Kで光が反射した場合は,その反射光の受光量は,図8の受光量分布図に示す受光量分布54のように,受光器14の受光面上の入射位置Qkで最大となる。
ここで,光の焦点が上記反射点Kとなる波長が上記光源1に存在している場合には上記入射位置Qkで強い受光量が観測されるが,存在していない場合には上記反射点Kでは光が広がった状態で照射されているため,該反射点Kで反射して上記入射位置Qkに到達する光の光量は弱くなる(図8参照)。
しかしながら,上記受光器14の受光面上では上記入射位置Qk付近で受光量が最大値となることに変わりがないため,同様に上記試料の高さを算定することは可能である。但し,上記受光器14の受光面上で受光される光の光量の最大値が弱まるため,高さ測定の精度が低下することが考えられるが,上記受光器14で受光される光の光量(輝度)の重心位置を求めること等によって精度向上を図ることが可能である。
なお,通常,ハロゲンランプなどの白色光には多数の波長成分が含まれているため,上記のように上記受光器14で受光される光の光量(輝度)の重心位置を求める手法を用いずとも十分な分解能をもって試料高さを求めることができるが,例えば,試料高さ検出の精度(分解能)を得る必要がある場合,或いは光源としてRGB光を用いた場合等には,上記手法による試料高さ検出が好適となる。
上述の実施の形態では,光源1として,複数の波長光からなる多波長光を出射するXeランプやハロゲンランプなどの点光源を用いた例について説明した。しかし,本変位測定装置Xでは多波長光を用いるため,各波長光が他の波長光のノイズとなることが多少なりともあり得る。そのため,上記光源1に代えて,波長の異なる単色光を既定の順序で時分割出射するように構成された光源を用いた実施例が考えられる。
例えば,波長λ1の青色光,波長λ2の緑色光,波長λ3の赤色光を発光するLEDを順番に所定間隔毎に発光させるようにすれば,上記受光器14側で各LED光の個別の受光量分布を得ることできる。このようにすれば,他の波長光がノイズとなって受光量分布に現れないため,ノイズによる測定精度の低下を防止することができる。
本発明は,半導体材料(ウエハ)や圧延板などのシート状の試料の高さ或いは厚さを測定する装置,上記試料の表面粗さを測定する装置,上記試料の平坦度を測定する装置など,試料の高さ変位を測定する変位測定装置全般に利用可能である。
本発明の実施の形態に係る変位測定装置Xの概略構成を説明する模式図。 入射光が試料表面上の波長λ2の光の焦点で反射したときの状態を示す図。 入射光が試料表面上の波長λ1の光の焦点で反射したときの状態を示す図。 入射光が試料表面上の波長λ3の光の焦点で反射したときの状態を示す図。 図2〜図3の各状態における受光量分布を示す受光量分布図。 試料の高さの変位量を測定する方法の一例を説明する図。 入射光が試料表面上の反射点Kで反射したときの状態を示す図。 図7の状態における受光量分布を示す受光量分布図。 従来の試料高さ判別装置Yの概略構成図。 従来の試料高さ判別装置Yにおいて,高さの異なる試料に光が照射されたときの様子を示す模式図。
符号の説明
X…変位測定装置
A…照射系光学機器
B…受光系光学機器
1…光源
2…ピンホール
4…レンズ(色収差レンズの一例)
5…試料
10…処理部(位置情報取得手段,変位算定手段の一例)
11,13…レンズ
14…受光器(受光手段の一例)

Claims (7)

  1. 光源から出射された複数の波長光からなる多波長光を色収差を有する色収差レンズで収束すると共に収束された光を試料に対して所定の傾斜角で照射する照射系光学手段と,
    上記照射系光学手段により照射された光の上記試料からの反射光を受光する受光手段と,
    上記受光手段で受光される反射光の受光量分布に基づいて上記試料表面近傍で結像する波長光の焦点の位置情報を取得する位置情報取得手段と,
    上記位置情報取得手段により取得された上記焦点の位置情報に基づいて上記試料の高さ変位を算定する変位算定手段と,
    を具備してなることを特徴とする変位測定装置。
  2. 上記位置情報取得手段が,上記受光手段で受光された上記反射光の受光量分布における最大受光量の分布位置に基づいて上記焦点の位置情報を取得してなる請求項1に記載の変位測定装置。
  3. 上記受光手段が,該受光手段の光軸が上記照射系光学手段により照射された試料上の照射点近傍を通り,且つ,上記照射系光学手段の光軸と略垂直となる位置に配置されてなる請求項1又は2のいずれかに記載の変位測定装置。
  4. 上記多波長光が非可干渉性光である請求項1〜3のいずれかに記載の変位測定装置。
  5. 上記光源が,波長の異なる単色光を既定の順序で時分割出射するものである請求項1〜4のいずれかに記載の変位測定装置。
  6. 上記色収差レンズが,フレネルレンズである請求項1〜5のいずれかに記載の変位測定装置。
  7. 光源から出射された複数の波長光からなる多波長光を色収差のある色収差レンズで収束させると共に収束された収束光を試料に対して所定の傾斜角で照射させる光照射工程と,
    上記試料からの反射光を受光し,受光した反射光の受光量分布に基づいて上記試料表面近傍で結像する波長光の焦点の位置情報を取得する位置情報取得工程と,
    上記位置情報取得工程により取得された上記焦点の位置情報に基づいて上記試料の高さ変位を算定する変位算定工程と,
    を具備してなることを特徴とする変位測定方法。
JP2005338272A 2005-11-24 2005-11-24 変位測定装置及び変位測定方法 Pending JP2007147299A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005338272A JP2007147299A (ja) 2005-11-24 2005-11-24 変位測定装置及び変位測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338272A JP2007147299A (ja) 2005-11-24 2005-11-24 変位測定装置及び変位測定方法

Publications (1)

Publication Number Publication Date
JP2007147299A true JP2007147299A (ja) 2007-06-14

Family

ID=38208889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338272A Pending JP2007147299A (ja) 2005-11-24 2005-11-24 変位測定装置及び変位測定方法

Country Status (1)

Country Link
JP (1) JP2007147299A (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271300A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 表面形状測定方法および測定装置
WO2009037949A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 計測装置およびその計測方法
JP2009074867A (ja) * 2007-09-19 2009-04-09 Nikon Corp 計測装置およびその計測方法
JP2010507089A (ja) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス 表面および厚みの決定
JP2010169405A (ja) * 2009-01-20 2010-08-05 Stanley Electric Co Ltd 光学距離センサー
JP2013507608A (ja) * 2009-10-08 2013-03-04 テクノロジアン タトキマスケスクス ヴィーティーティー 物品及びその表面の特性を決定するための測定機器及び方法
WO2013114959A1 (ja) * 2012-02-03 2013-08-08 オムロン株式会社 共焦点計測装置
WO2014041254A1 (en) * 2012-09-17 2014-03-20 Focalspec Oy Method and measuring device for measuring the distance of a surface, thickness and optical properties of an object
CN104596428A (zh) * 2013-10-31 2015-05-06 北京信息科技大学 基于光谱共焦及三角法原理的白光测头
JP2019501411A (ja) * 2015-12-09 2019-01-17 クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. テレセントリック光学測定機のためのフォーカシングシステム
JP2019124634A (ja) * 2018-01-18 2019-07-25 オムロン株式会社 光学計測装置及び光学計測方法
CN113251932A (zh) * 2021-04-19 2021-08-13 杭州电子科技大学 一种集成共焦法与三角法的位移测量方法
CN113251941A (zh) * 2021-06-17 2021-08-13 中国矿业大学(北京) 一种基于脉冲激光的超快数字散斑系统和实验方法
CN116447988A (zh) * 2023-06-16 2023-07-18 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法
JP7429991B2 (ja) 2018-12-04 2024-02-09 プレシテック オプトロニク ゲーエムベーハー 光学測定装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271300A (ja) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd 表面形状測定方法および測定装置
JP2010507089A (ja) * 2006-10-18 2010-03-04 バルティオン テクニリーネン トゥトキムスケスクス 表面および厚みの決定
WO2009037949A1 (ja) * 2007-09-19 2009-03-26 Nikon Corporation 計測装置およびその計測方法
JP2009074867A (ja) * 2007-09-19 2009-04-09 Nikon Corp 計測装置およびその計測方法
JP2010169405A (ja) * 2009-01-20 2010-08-05 Stanley Electric Co Ltd 光学距離センサー
JP2013507608A (ja) * 2009-10-08 2013-03-04 テクノロジアン タトキマスケスクス ヴィーティーティー 物品及びその表面の特性を決定するための測定機器及び方法
TWI500918B (zh) * 2012-02-03 2015-09-21 Omron Tateisi Electronics Co 共焦點測量裝置
WO2013114959A1 (ja) * 2012-02-03 2013-08-08 オムロン株式会社 共焦点計測装置
JP2013160628A (ja) * 2012-02-03 2013-08-19 Omron Corp 共焦点計測装置
US9476707B2 (en) 2012-09-17 2016-10-25 Focalspec Oy Method and measuring device for measuring the distance of a surface, thickness and optical properties of an object
EP2901102A4 (en) * 2012-09-17 2016-04-20 Focalspec Oy METHOD AND MEASUREMENT DEVICE FOR MEASURING THE SURFACE SPACING, THICKNESS AND OPTICAL PROPERTIES OF AN OBJECT
WO2014041254A1 (en) * 2012-09-17 2014-03-20 Focalspec Oy Method and measuring device for measuring the distance of a surface, thickness and optical properties of an object
CN104596428A (zh) * 2013-10-31 2015-05-06 北京信息科技大学 基于光谱共焦及三角法原理的白光测头
JP2019501411A (ja) * 2015-12-09 2019-01-17 クオリティー ヴィジョン インターナショナル インコーポレイテッドQuality Vision International, Inc. テレセントリック光学測定機のためのフォーカシングシステム
JP7064167B2 (ja) 2018-01-18 2022-05-10 オムロン株式会社 光学計測装置及び光学計測方法
JP2019124634A (ja) * 2018-01-18 2019-07-25 オムロン株式会社 光学計測装置及び光学計測方法
CN110058249A (zh) * 2018-01-18 2019-07-26 欧姆龙株式会社 光学测量装置及光学测量方法
US11194047B2 (en) 2018-01-18 2021-12-07 Omron Corporation Optical measurement device and optical measurement method
CN110058249B (zh) * 2018-01-18 2023-09-15 欧姆龙株式会社 光学测量装置及光学测量方法
JP7429991B2 (ja) 2018-12-04 2024-02-09 プレシテック オプトロニク ゲーエムベーハー 光学測定装置
CN113251932A (zh) * 2021-04-19 2021-08-13 杭州电子科技大学 一种集成共焦法与三角法的位移测量方法
CN113251932B (zh) * 2021-04-19 2022-05-03 杭州电子科技大学 一种集成共焦法与三角法的位移测量方法
CN113251941A (zh) * 2021-06-17 2021-08-13 中国矿业大学(北京) 一种基于脉冲激光的超快数字散斑系统和实验方法
CN116447988A (zh) * 2023-06-16 2023-07-18 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法
CN116447988B (zh) * 2023-06-16 2023-10-31 宁德微图智能科技有限公司 一种采用宽光谱光源的三角激光测量方法

Similar Documents

Publication Publication Date Title
JP2007147299A (ja) 変位測定装置及び変位測定方法
KR102567597B1 (ko) 광학 측정 장치
JP7408265B2 (ja) 共焦点変位計
US7723657B2 (en) Focus detection apparatus having extended detection range
US20040109170A1 (en) Confocal distance sensor
TWI484139B (zh) 彩色共焦掃描裝置
CN107966453B (zh) 一种芯片缺陷检测装置及检测方法
US7271919B2 (en) Confocal displacement sensor
JP4335218B2 (ja) スペックル捕獲デバイス、光学式マウス及びスペックル捕獲方法
KR20160003729A (ko) 표면 거칠기 측정 장치
JP2008039750A (ja) 高さ測定装置
JP2008032668A (ja) 走査型形状計測機
KR20180101157A (ko) 공초점 계측 장치
US10151576B2 (en) Confocally chromatic sensor for determining coordinates of a measurement object
KR101794641B1 (ko) 파장 분리를 이용한 높이 및 형상측정이 가능한 경사 분광시스템
JP4864734B2 (ja) 光変位センサー及びそれを用いた変位測定装置
FI127908B (en) Method and apparatus for measuring surface height
EP3460386B1 (en) Displacement sensor
TW201425863A (zh) 曲率量測系統及其方法
US9383191B2 (en) Outer dimension measuring apparatus and outer dimension measuring method
JP2006292513A (ja) 屈折率分布型レンズの屈折率分布測定方法
JP2006189390A (ja) 光学式変位測定方法および装置
TW201711779A (zh) 雷射加工裝置
JP2006184091A (ja) 面内方向変位計
TW201710007A (zh) 聚光點檢測裝置