EP2064508A1 - Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur - Google Patents

Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur

Info

Publication number
EP2064508A1
EP2064508A1 EP07820147A EP07820147A EP2064508A1 EP 2064508 A1 EP2064508 A1 EP 2064508A1 EP 07820147 A EP07820147 A EP 07820147A EP 07820147 A EP07820147 A EP 07820147A EP 2064508 A1 EP2064508 A1 EP 2064508A1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchange
heat exchanger
heat
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07820147A
Other languages
German (de)
English (en)
Inventor
Herveline Robidou
Fabien Chauvet
Yuji Yamamoto
Sylvain Moreau
Bruno Berthome
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP2064508A1 publication Critical patent/EP2064508A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the present invention relates to a heat exchanger.
  • the invention finds a particularly advantageous application in the field of heat exchange systems inside motor vehicles, including engine cooling radiators, cabin heating radiators and air conditioning evaporators.
  • heat exchangers which comprise a series of tubes for circulating a first fluid, arranged parallel to one another. These tubes can be constituted by tubes placed side by side in the same plane. Exchangers are also known whose tubes consist of plates.
  • said first fluid must exchange heat with a second fluid through a heat exchange device.
  • the first fluid considered here may be water containing glycol for cooling the engine and which must itself be cooled by air constituting the second fluid.
  • the first fluid may also be a heat transfer fluid of an air conditioning system, such as freon, for cooling a second fluid constituted by the air circulating in the passenger compartment of a vehicle.
  • a known heat exchange device between the first and second fluids comprises a plurality of heat exchange elements, also called spacers, each heat exchange element being disposed between two consecutive tubes.
  • These spacer elements are generally made by shaping a sheet of a heat conducting material, such as aluminum, into a corrugated surface in thermal contact with said circulation tubes at the level of the generatrices located at the apices of the corrugations of the surface. .
  • the thermal contact is obtained by brazing the intermediate elements on the tubes or plates mentioned above.
  • the intermediate elements are arranged in the heat exchanger so that the generatrices of the corrugated surface are substantially perpendicular to the flow direction of the first fluid, the flow direction of the second fluid inside the intermediate elements being substantially parallel to said generators.
  • the sides of the corrugated surface constituting the intermediate elements are provided with slots transverse to the generatrices, affecting the shape of louvers whose orientation is variable in blocks along the generatrices, a block of n slots of a certain orientation being followed by another set of n slots of opposite orientation.
  • the condensed water retained in the intermediate elements limits the passage of air and creates an additional pressure drop.
  • the pressure drop of air between the inlet and the outlet of the spacers increases, which then forces to use blowers, or fans, more powerful. It was thus possible to measure that the pressure drop can increase by 40% with moist air.
  • an object of the invention is to propose a heat exchanger comprising at least one tube for circulating a first fluid in a given direction, and at least one wave-shaped heat exchange element, generators substantially perpendicular to the direction of flow of the first fluid, said generators defining a direction of circulation of a second fluid inside the heat exchange element, which would provide a good evacuation of condensates while ensuring the creation of a favorable regime for thermal exchanges, as explained above.
  • the aim is achieved by the fact that the corrugated surface forming the heat exchange element has at least partially a plurality of holes arranged in a grid structure.
  • tube for the circulation of a first fluid means any element or means making it possible to form at least one circulation duct for a fluid.
  • said grid structure comprises a very large number of holes
  • gravity flow of the condensed water out of the exchanger is favored, which contributes to increasing the drainage capacity of the condensates and thus to limiting the fall of air pressure in the direction parallel to the intercalated heat exchange elements.
  • the presence of said holes allows the air to cross the surface of the intermediate elements and thus to circulate from one intermediate element to another, thus promoting the formation of the desired turbulent regime.
  • the heat exchanger according to the invention has many other advantages.
  • the geometry of the intercalated heat exchange elements can be perfectly adapted to the desired performances.
  • the pitch of the corrugations of the spacers which can be reduced thanks to the mechanical flexibility of the grid structure.
  • the heat exchange surface between the second fluid and the spacers remains at least equivalent to that of traditional exchangers, this despite the presence of holes, which have the advantage of promoting the drainage of condensates.
  • Other dimensional characteristics may also be adjusted, such as the pitch of the spacers which can be reduced to very small values, from 0.2 to 1.5 mm and preferably from 0.2 to 1 mm, which is not necessary. is not possible with louvered dividers, as well as the height of the spacer elements which can be between 3 and 7 mm.
  • the height will be less than 5 mm, and typically between 3 and 5 mm, without knowing the efficiency losses encountered with the slotted louvers, the latter being able to be formed for mechanical reasons only on a part of the flank of the corrugations and not on all, unlike the invention for which the holes of the grid can occupy the entire surface of the spacers.
  • the heat exchangers produced according to the invention can increase by 18% the heat transfer coefficient at low air circulation speeds, this increase being even higher, up to 44%, for
  • another advantage of the invention lies in the fact that the greater drainage capacity obtained avoids the phenomenon of splashing which occurs with conventional evaporators when the air flow entering the spacers increases abruptly, which results in the entrainment of drops of water inside the cabin.
  • the invention provides that said corrugated surface is free from holes on at least one defined band along a generator in contact with the first fluid. said tube for circulating the first fluid.
  • a method of producing a heat exchange element for a heat exchanger according to the invention is remarkable in that said method comprises the following steps:
  • said heat-conducting material is aluminum.
  • Figure 1 is a side view of a tube heat exchanger according to the invention.
  • Figure 2 is a perspective view of a pecan heat exchanger according to the invention.
  • FIG. 3 is a perspective view of a heat exchange element of the exchangers of FIGS. 1 and 2.
  • FIG. 4 is a diagram giving the increase of the pressure drop due to the condensates as a function of the frontal speed of air circulation of an evaporator, (1) for inserts according to the invention and (2) for the spacers of the prior art.
  • FIG. 5 is a diagram giving the variations of the heat transfer coefficient, (1) for inserts according to the invention and (2) for the inserts of the prior art.
  • FIG. 6 is a diagram showing the steps of a method for producing the heat exchange element of FIG. 3.
  • FIG. 7 shows a variant of punched metal foil for implementing the method according to the invention.
  • FIG. 8 represents a schematic and partial view of the heat exchange element in which are detailed various parameters of a cell of said heat element according to a particular embodiment of the invention.
  • a tube-type heat exchanger comprising a plurality of tubes 10 for circulating a first fluid, the tubes 10 are arranged side by side perpendicular to the plane of the figure. Said first fluid circulates for example in the direction of arrow F1.
  • FIG. 2 shows a variant of the exchanger of FIG. 1 in which the tubes 10 'of circulation are here in the form of plates 11' arranged parallel to one another
  • FIGS. 1 and 2 show that between two tubes 10, 10 'there is placed a heat exchange element 20 intended to allow the first fluid to exchange heat with a second fluid circulating in the elements 20 in which the direction of arrow F2.
  • the first fluid is glycol-added water cooled by the second fluid which is then air.
  • the first fluid is freon charged with cooling.
  • second fluid namely the air circulating in the passenger compartment of a motor vehicle.
  • the intermediate elements 20 have the shape, shown in FIG. 3, of a corrugated surface whose direction of the generatrices, which is also that of the circulation of the heat exchanger. second fluid, is substantially perpendicular to the flow direction of the first fluid.
  • the intermediate elements 20 comprise corrugations having aernernance of vertices 22 and recesses 23 brazed to the tubes.
  • the vertices 22 and the recesses 23 are connected by means of plane zones
  • the vertices 22 and the recesses 23 are thus parallel to the transverse axis AT of the tubes 10 or 10 '.
  • the surface of the spacer element 20 has a plurality of holes 21 arranged in a grid structure.
  • no element exceeds planar zones 24.
  • the plurality of holes 21 allows the definition of a grid at least at the level of the flat zone 24, the mai ⁇ age said grilies being entirely included in the plane of the planar zone 24.
  • the mesh of the grid allows the definition of cells.
  • this type of spacer element has the advantage of creating in the second fluid a more favorable regime for heat exchange.
  • the multiplicity of holes allows efficient drainage of water from the condensation of water vapor contained in the air flowing along the spacers.
  • the pressure drop of the air between the inlet and the outlet of the spacers is diminished and maintained substantially constant with respect to the slotted interleaves, as can be seen in FIG. 4.
  • FIG. 5 shows that a better heat transfer coefficient can be obtained with the inserts according to the invention than with conventional inserts with louvered slots.
  • the dimensions of the holes of the grill are chosen according to the final performances sought.
  • the pitch between each hole or cell 21 may be between 0.5 and 3 mm. In other words, this pitch between each hole corresponds to the material separating two adjacent holes or cells.
  • the pitch of the intermediate element 20 is between 0.2 to 1.5 mm and preferably between 0.2 and 1 mm, and especially between 0.4 and 0.9 mm or between 0.5 and 0.8. mm.
  • the height of the intermediate element 20 is between 2.5 and 8 mm and preferably between 3 and 7 mm. Preferably, the height will be less than 5 mm and preferably between 3 and 5 mm.
  • Figure 6 illustrates the steps of a method of making the heat exchange elements according to the invention.
  • An aluminum foil with a thickness of in particular between 0.04 and 0.1 mm is cut (a), then perforated (b) to obtain a network of slots arranged according to the desired grid structure, and finally stretched (c) over a distance that depends on the desired height for the holes.
  • the sheet is then shaped into corrugations to obtain the interlayer 20 of FIG.
  • One embodiment provides that the blank (a) described above is made. after the perforation (b) and stretching (c) steps.
  • FIG. 7 illustrates a variant of the method of FIG. 6 in which strips 22 of the aluminum foil are spared during perforation of the slots. These hole-free strips are intended to improve the thermal contact between the spacers and the tubes or plates of the exchanger, as well as to serve as brazing surfaces. The conformation of the corrugated surface sheet is performed around each of the strips 22.
  • FIG. 8 shows a particular embodiment of an intermediate element 20.
  • the grid structure of the intermediate element 20 is formed by a plurality of cells 30 which here have a quadrilateral shape and in particular of rhombus.
  • the dimensions of the cells can be defined in particular by two diagonals a and b which are perpendicular to each other.
  • the length of the diagonal has a long diagonal is between 0.8 and 3.3 mm and preferably between 1 and 2.8 mm.
  • the length of the diagonal b said small diagonal is between 0.7 and 2 mm and preferably between 1 and 1, 8 mm.
  • the cells thus comprise four sides or branches. These sides are formed by a strip of material which, according to one embodiment, has a width of between 0.11 and 0.45 mm and preferably between 0.15 and 0.35 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Echangeur de chaleur comportant au moins un tube (10, 10') de circulation d'un premier fluide dans une direction (F1) donnée, et au moins un élément (20) d'échange de chaleur en forme de surface ondulée, de génératrices sensiblement perpendiculaires à la direction (F1) de circulation du premier fluide, lesdites génératrices définissant une direction (F2) de circulation d'un deuxième fluide à l'intérieur de l'élément (20) d'échange de chaleur. Selon l'invention, la surface ondulée formant l'élément (20) d'échange de chaleur présente au moins partiellement une pluralité de trous (21) disposés selon une structure en grille. Application aux radiateurs de refroidissement des moteurs de véhicules automobiles, aux radiateurs de chauffage et aux évaporateurs de climatisation.

Description

ECHMTGEUR DE CHALEUR ET PROCEDE DE REALISATION D ' UN ELEMENT D ' ECHANGE DE CHALEUR POUR UN TEL ECHANGEUR DE CHALEUR
La présente invention concerne un échangeur de chaleur. L'invention trouve une application particulièrement avantageuse dans le domaine des systèmes d'échange de chaleur à l'intérieur des véhicules automobile, notamment les radiateurs de refroidissement des moteurs, les radiateurs de chauffage de l'habitacle et les évaporateurs de climatisation.
On connaît aujourd'hui dans l'industrie automobile des échangeurs de chaleur qui comprennent une série de tubes de circulation d'un premier fluide, disposées parallèlement les uns aux autres. Ces tubes peuvent être constituées par des tubes placés côte à côte dans un même plan. On connaît aussi des échangeurs dont les tubes sont constitués de plaques.
D'une manière générale, ledit premier fluide doit échanger de la chaleur avec un deuxième fluide à travers un dispositif d'échange de chaleur.
A titre d'exemple, le premier fluide considéré ici peut être de l'eau additionnée de giycol destinée à refroidir le moteur et qui doit elle-même être refroidie par de l'air constituant le deuxième fluide. Le premier fluide peut être également un fluide caloporteur d'un système de climatisation, comme du fréon, destiné à refroidir un deuxième fluide constitué par l'air circulant dans l'habitacle d'un véhicule.
Un dispositif connu d'échange de chaleur entre les premier et deuxième fluides comprend une pluralité d'éléments d'échange de chaleur, appelés également intercalaires, chaque élément d'échange de chaleur étant disposé entre deux tubes consécutifs. Ces éléments intercalaires sont généralement réalisés par conformation d'une feuille d'un matériau conducteur de ia chaleur, comme l'aluminium, en une surface ondulée en contact thermique avec lesdits tubes de circulation au niveau des génératrices situées aux sommets des ondulations de la surface. Le contact thermique est obtenu par brasage des éléments intercalaires sur les tubes ou plaques mentionnés plus haut,.
Les éléments intercalaires sont disposés dans l'échangeur de chaleur de manière à ce que les génératrices de la surface ondulée soient sensiblement perpendicuiaires à la direction de circulation du premier fluide, la direction de circulation du deuxième fluide à l'intérieur des éléments intercalaires étant sensiblement parallèle auxdites génératrices. Afin de favoriser les échanges thermiques dans les éléments intercalaires, les flancs de la surface ondulée constituant les éléments intercalaires sont pourvus de fentes transversales aux génératrices, affectant la forme de persiennes dont l'orientation est variable par blocs le long des génératrices, un bloc de n fentes d'une certaine orientation étant suivi d'un autre ensemble de n fentes d'orientation inverse. Le résultat de cette disposition est d'imposer au deuxième fluide une circulation ondulatoire dans le sens de l'écoulement, les persiennes permettant d'allonger le trajet dudit deuxième fluide en créant des obstacles sur son passage, Lorsque l'échangeur de chaleur envisagé est un évaporateur, se pose le problème de la condensation de la vapeur d'eau contenue dans l'air, lequel constitue alors le deuxième fluide. En effet, l'air circulant le long des éléments intercalaires est en contact avec le premier fluide, par hypothèse plus froid, et se refroidit donc à mesure qu'il s'écoule jusqu'à ce que sa température descende au dessous de la température de rosée de la vapeur d'eau. A ce moment, la vapeur d'eau se condense pour former des gouttes qui se déposent sur les éléments intercalaires. Cependant, même avec des intercalaires à fentes, tels que décrits plus haut, l'évacuation par gravité des condensats ne s'effectue pas de manière efficace. Il en résulte que l'eau condensée retenue dans les éléments intercalaires limite le passage de l'air et crée une perte de charge supplémentaire. La chute de pression de l'air entre l'entrée et la sortie des intercalaires augmente, ce qui oblige alors à utiliser des pulseurs, ou ventilateurs, plus puissants. On a pu ainsi mesurer que la chute de pression peut augmenter de 40% avec de l'air humide. Aussi, un but de l'invention est de proposer un échangeur de chaleur comportant au moins un tube pour circulation d'un premier fluide dans une direction donnée, et au moins un élément d'échange de chaleur en forme de surface ondulée, de génératrices sensiblement perpendiculaires à la direction de circulation du premier fluide, lesdites génératrices définissant une direction de circulation d'un deuxième fluide à l'intérieur de l'élément d'échange de chaleur, qui permettrait d'obtenir une bonne évacuation des condensats tout en assurant la création d'un régime favorable aux échanges thermiques, comme cela a été expliqué précédemment. Le but recherché est atteint, conformément à l'invention, du fait que la surface ondulée formant l'élément d'échange de chaleur présente au moins partiellement une pluralité de trous disposés selon une structure en grille.
On entend par tube pour ia circulation d'un premier fluide tout élément ou moyen permettant de former au moins un conduit de circulation pour un fluide.
Ainsi, comme ladite structure en grille comporte un très grand nombre de trous, l'écoulement par gravité de l'eau condensée hors de l'échangeur est favorisée, ce qui contribue à augmenter la capacité de drainage des condensats et donc à limiter la chute de pression de l'air dans le sens parallèle aux éléments d'échange de chaleur intercalaires. D'autre part, la présence desdits trous permet à l'air de traverser la surface des éléments intercalaires et donc de circuler d'un élément intercalaire à un autre, favorisant ainsi la formation du régime turbulent recherché. De plus, l'échangeur de chaleur conforme à l'invention présente de nombreux autres avantages.
En particulier, la géométrie des éléments intercalaires d'échange de chaleur peut être parfaitement adaptée aux performances recherchées.
Ceci concerne notamment le pas des ondulations des intercalaires qui peut être diminué grâce à la souplesse mécanique de la structure en grille. Il en résulte que la surface d'échange de chaleur entre le deuxième fluide et les intercalaires reste au moins équivalente à celle des échangeurs traditionnels, ceci malgré la présence des trous, lesquels ont l'avantage de favoriser le drainage des condensats. D'autres caractéristiques dimensionnelles peuvent également être ajustées, comme le pas des éléments intercalaires qui peut être réduit à des valeurs très faibles, entre 0,2 à 1,5 mm et de préférence entre 0,2 à 1 mm, ce qui n'est pas possible avec les intercalaires à persiennes, ainsi que la hauteur des élément intercalaires qui peut être comprise entre 3 et 7 mm. De préférence la hauteur sera inférieure 5 mm, et typiquement comprise entre 3 à 5 mm, sans connaître les pertes d'efficacité rencontrées avec les intercalaires à fentes en persiennes, ces dernières ne pouvant pour des raisons mécaniques être formées que sur une partie seulement du flanc des ondulations et non sur Ia totalité, contrairement à l'invention pour laquelle les trous de la grille peuvent occuper l'entière surface des éléments intercalaires. II a été démontré que les échangeurs de chaleur réalisés selon l'invention peuvent augmenter de 18% le coefficient de transfert de chaleur à basses vitesses de circulation d'air, cette augmentation pouvant être encore plus élevée, jusqu'à 44%, pour de vitesses plus élevées, Enfin, un autre avantage de l'invention tient au fait que la capacité de drainage plus importante obtenue évite ie phénomène d'éclaboussure qui se produit avec les évaporateurs classiques lorsque le fiux d'air entrant dans les intercalaires augmente brutalement, ce qui se traduit par l'entraînement de gouttes d'eau à l'intérieur de l'habitacle. Afin d'offrir une surface d'échange thermique suffisante entre les intercalaires et le tube de circulation du premier fluide, l'invention prévoit que ladite surface ondulée est exempte de trous sur au moins une bande définie le long d'une génératrice en contact avec ledit tube de circulation du premier fluide. D'autre part, un procédé de réalisation d'un élément d'échange de chaleur pour un échangeur de chaleur selon l'invention est remarquable en ce que ledit procédé comprend les étapes suivantes :
- perforer une feuille d'un matériau conducteur de la chaleur en un ensemble de fentes parallèles disposées selon ladite structure en grille, - étirer la feuille métallique perpendiculairement aux fentes,
- conformer la feuille métallique étirée en une surface ondulée.
On comprend que ce procédé de réalisation est plus simple et moins coûteux que celui permettant d'obtenir des éléments intercalaires à fentes en persiennes. Avantageusement, au moins une bande de feuille parallèle auxdites fentes est épargnée, la conformation en surface ondulée étant réalisée autour de ladite bande,
Enfin, il est prévu par l'invention que ledit matériau conducteur de la chaleur est de l'aluminium, La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
La figure 1 est une vue de côté d'un échangeur de chaleur à tubes conforme à l'invention. La figure 2 est une vue en perspective d'un échangeur de chaleur à piaques conforme à l'invention.
La figure 3 est une vue en perspective d'un élément d'échange de chaleur des échangeurs des figures 1 et 2. La figure 4 est un diagramme donnant l'augmentation de la chute de pression due aux condensats en fonction de la vitesse frontale de circulation de l'air d'un évaporateur, (1 ) pour des intercalaires conformes à l'invention et (2) pour les intercalaires de l'art antérieur.
La figure 5 est un diagramme donnant les variations du coefficient de transfert de chaleur, (1 ) pour des intercalaires conformes à l'invention et (2) pour les intercalaires de l'art antérieur.
La figure 6 est un schéma représentant les étapes d'un procédé de réalisation de l'élément d'échange de chaleur de la figure 3.
La figure 7 montre une variante de feuille métallique poinçonnée pour la mise en œuvre du procédé conforme à l'invention.
La figure 8 représente une vue schématique et partielle de l'élément d'échange de chaleur où sont détaillés différents paramètres d'une cellule dudit élément de chaleur selon un mode de réalisation particulier de l'invention. Sur la figure 1 est montré un échangeur de chaleur du type à tubes comprenant une pluralité de tubes 10 de circulation d'un premier fluide, les tubes 10 sont disposés côte à côte perpendiculairement au plan de la figure. Ledit premier fluide circule par exemple dans le sens de la flèche F1.
La figure 2 présente une variante de l'échangeur de la figure 1 dans laquelle les tubes 10' de circulation sont ici sous la forme de plaques 11' disposées parallèlement les unes aux autres
On peut voir sur les figures 1 et 2 qu'entre deux tubes 10, 10' est placé un élément d'échange de chaleur 20 destiné à permettre au premier fluide d'échanger de la chaleur avec un deuxième fluide circulant dans les éléments 20 dans le sens de la flèche F2.
Dans le cas où l'échangeur de chaleur considéré est un radiateur de moteur de véhicules automobiles, le premier fluide est de l'eau additionnée de glycol refroidie par le deuxième fluide qui est alors de l'air. Dans le cas d'un évaporateur de climatisation, le premier fluide est du fréon chargé de refroidir [e deuxième fluide, à savoir l'air circulant dans l'habitacle d'un véhicule automobile.
Quelles que soient la constitution des tubes et la destination de l'échangeur de chaleur, les éiéments intercalaires 20 présentent la forme, montrée sur la figure 3, d'une surface ondulée dont la direction des génératrices, qui est aussi celle de la circulation du deuxième fluide, est sensiblement perpendiculaire à la direction de circulation du premier fluide.
Autrement dit, les éléments intercalaires 20 comportent des ondulations présentant une aiternance de sommets 22 et de creux 23 brasés aux tubes. Les sommets 22 et les creux 23 sont reliés par l'intermédiaire de zones planes
24. Les sommets 22 et les creux 23 sont ainsi parallèles à l'axe transversal AT des tubes 10 ou 10'.
L'orientation des éléments intercalaires 20, c'est-à-dire le fait que les sommets 22 et les creux 23 soient parallèles à l'axe transversal AT des tubes 10 ou 10', permet d'avoir des pertes de charge équivalente aux pertes de charges des intercalaires à persiennes de l'art antérieur.
On peut également observer sur la figure 3 que la surface de l'élément intercalaire 20 présente une pluralité de trous 21 disposés selon une structure en grille. Ainsi et contrairement aux intercalaires munis de persiennes de l'art antérieur, aucun élément ne dépasse des zones planes 24. Autrement dit, la pluralité de trous 21 permet la définition d'une grille au moins au niveau de la zone plane 24, le maiϋage de ladite grilie étant entièrement comprise dans le pian de la zone plane 24. Ou encore autrement dit, le maillage de la grilie permet la définition de cellules. Comme cela a été expliqué plus haut, ce type d'élément intercalaire offre l'avantage de créer au sein du deuxième fluide un régime plus favorable aux échanges thermiques.
De plus, dans le cas d'un évaporateur, la multiplicité des trous permet un drainage efficace de l'eau provenant de la condensation de la vapeur d'eau contenue dans l'air circulant le long des intercalaires. La chute de pression de l'air entre l'entrée et la sortie des intercalaires s'en trouve diminuée et maintenue sensiblement constante par rapport aux intercalaires à fentes en persiennes, comme on peut le voir sur la figure 4.
Par ailleurs, la structure en grille confère aux intercaiaires 20 une souplesse mécanique permettant de resserrer ondulations et donc d'augmenter la surface développée des intercalaires. îl est ainsi possible de compenser les pertes en terme d'échange thermique dues à ia présence des trous. La figure 5 montre que l'on peut obtenir un meilleur coefficient de transfert de chaleur avec les intercalaires conformes à l'invention qu'avec les intercalaires conventionnels à fentes en persiennes.
Les dimensions des trous de la grilie sont choisies en fonction des performances finales recherchées. Le pas entre chaque trou ou cellule 21 pourra être compris entre 0,5 et 3 mm. Autrement dit, ce pas entre chaque trou correspond à la matière séparant deux trous ou cellules adjacentes. Le pas de l'élément intercalaire 20 est compris entre 0,2 à 1 ,5 mm et de préférence entre 0,2 et 1 mm, et notamment entre 0,4 et 0,9 mm ou entre 0,5 et 0,8 mm.
La hauteur de l'éiément intercalaire 20 est comprise entre 2,5 et 8 mm et de préférence entre 3 et 7 mm. De préférence, la hauteur sera inférieure à 5 mm et de préférence comprise entre 3 et 5 mm.
La figure 6 illustre ies étapes d'un procédé de réalisation des éléments 20 d'échange de chaleur conformes à l'invention.
Une feuilie d'aluminium d'épaisseur pouvant notamment être comprise entre 0.04 et 0.1 mm est découpée (a), puis perforée (b) afin d'obtenir un réseau de fentes disposées selon la structure en grille désirée, et enfin étirée (c) sur une distance qui dépend de la hauteur souhaitée pour les trous. La feuille est ensuite conformée en ondulations pour obtenir l'intercalaire 20 de la figure 3.
Un mode de réalisation prévoit que la découpe (a) décrite ci-dessus est réalisée. après les étapes de perforation (b) et d'étirement (c).
La figure 7 illustre une variante du procédé de Ia figure 6 dans laquelle des bandes 22 de la feuille d'aluminium sont épargnées lors de la perforation des fentes. Ces bandes exemptes de trous sont destinées à améliorer le contact thermique entre les intercalaires et ies tubes ou plaques de l'échangeur, ainsi que de servir de surfaces de brasage. La conformation de la feuille en surface ondulée est effectuée autour de chacune des bandes 22.
La figure 8 représente un mode de réalisation particulier d'un élément intercalaire 20. Dans ce mode de réalisation, la structure en grille de l'élément intercalaire 20 est formée par une pluralité de ceilules 30 qui ont ici une forme de quadrilatère et en particulier de losange. Les dimensions des celiules peuvent être notamment définies par deux diagonales a et b qui sont perpendiculaires entre eues. Selon un mode de réalisation particulier, longueur de la diagonale a dite longue diagonale est comprise entre 0,8 et 3,3 mm et de préférence entre 1 et 2,8 mm. Selon un autre mode de réalisation particulier, longueur de la diagonale b dite petite diagonale est comprise entre 0,7 et 2 mm et de préférence entre 1 et 1 ,8 mm.
Les cellules comportent ainsi quatre cotés ou branches. Ces cotés sont formés par une bande de matière qui, selon un mode de réalisation, présente une largeur comprise entre 0,11 et 0,45 mm et de préférence entre 0,15 et 0,35 mm.

Claims

REVENDICATIONS
1. Echangβur de chaleur comportant au moins un tube (10, 10') de circulation d'un premier fluide dans une direction (F1) donnée, et au moins un élément (20) d'échange de chaleur en forme de surface ondulée, de génératrices sensiblement perpendiculaires à la direction (F1) de circulation du premier fluide, lesditθs génératrices définissant une direction (F2) de circulation d'un deuxième fluide à l'intérieur de l'élément (20) d'échange de chaleur, caractérisé en ce que !a surface ondulée formant l'élément (20) d'échange de chaleur présente au moins partiellement une pluralité de trous (21) disposés selon une structure en grille,
2, Echangeur selon la revendication 1 , dans lequel le pas de l'élément d'échange de chaleur (20) est compris entre 0,2 à 1 mm.
3. Echangeur selon la revendication 1 ou 2, dans lequel la hauteur de l'élément intercalaire (20) est comprise entre 3 et 7 mm.
4. Echangeur de chaleur selon l'une des revendications précédentes, dans lequel IΘ pas entre chaque trou (21 ) est compris entre 0,5 et 3 mm.
5, Echangeur de chaleur selon l'une revendications précédentes, dans lequel ladite surface ondulée est exempte de trous sur au moins une bande (22) définie le long d'une génératrice en contact avec le tube (10, 10') de circulation du premier fluide.
6, Echangeur de chaleur selon l'une des revendications précédentes, dans lequel l'élément (20) d'échange de chaleur est en aluminium.
7. Procédé de réalisation d'un élément d'échange de chaleur pour un échangeur de chaleur selon l'une des revendications précédentes, caractérisé en ce que ledit procédé comprend les étapes suivantes ;
- perforer une feuilie d'un matériau conducteur de la chaleur en un ensemble de fentes parallèles disposées selon ladite structure en grille,
- étirer la feuille métallique perpendiculairement aux fentes,
- conformer la feuille métallique étirée en une surface ondulée.
8. Procédé selon la revendication précédente, dans lequel au moins une bande (22) de feuille parallèle auxdites fentes est épargnée, la conformation en surface ondulée étant réalisée autour de ladite bande (22).
9. Procédé selon l'une des revendications 7 ou 8, dans lequel ledit matériau conducteur de la chaleur est de i'aluminium.
EP07820147A 2006-09-19 2007-09-12 Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur Withdrawn EP2064508A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0608235A FR2906018B1 (fr) 2006-09-19 2006-09-19 Echangeur de chaleur a ailettes pour vehicule automobile.
PCT/EP2007/059576 WO2008034749A1 (fr) 2006-09-19 2007-09-12 Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur

Publications (1)

Publication Number Publication Date
EP2064508A1 true EP2064508A1 (fr) 2009-06-03

Family

ID=37565140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820147A Withdrawn EP2064508A1 (fr) 2006-09-19 2007-09-12 Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur

Country Status (4)

Country Link
EP (1) EP2064508A1 (fr)
JP (1) JP2010503818A (fr)
FR (1) FR2906018B1 (fr)
WO (1) WO2008034749A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063700A1 (de) * 2008-12-19 2010-06-24 Behr Gmbh & Co. Kg Wärmetauscher

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456320A (en) * 1966-10-05 1969-07-22 Modine Mfg Co Method of making an expanded metal fin for an oil cooler
CA1237879A (fr) * 1982-11-01 1988-06-14 Ryomyo Hamanaka Dispositif de faconnage d'ailettes pour echangeurs thermiques
JPS61121379U (fr) * 1985-01-16 1986-07-31
JPS62186193A (ja) * 1986-02-13 1987-08-14 Nippon Radiator Co Ltd 熱交換器用フインとその製造方法
JPS62156274U (fr) * 1986-03-20 1987-10-03
JPS62255792A (ja) * 1986-04-30 1987-11-07 Nippon Denso Co Ltd 熱交換器
JPS6349185U (fr) * 1986-09-10 1988-04-02
JPS6449891A (en) * 1987-08-21 1989-02-27 Aisin Seiki Heat exchanger
JPH0783591A (ja) * 1993-09-14 1995-03-28 Nippondenso Co Ltd 熱交換器
JPH07324884A (ja) * 1994-05-31 1995-12-12 Showa Alum Corp 熱交換器用コルゲート・フィン
KR100297189B1 (ko) * 1998-11-20 2001-11-26 황해웅 열전달촉진효과를갖는고효율모듈형오엘에프열교환기
US6439300B1 (en) * 1999-12-21 2002-08-27 Delphi Technologies, Inc. Evaporator with enhanced condensate drainage
KR20040017957A (ko) * 2002-08-23 2004-03-02 엘지전자 주식회사 열교환기의 응축수 배출장치
JP3903888B2 (ja) * 2002-09-10 2007-04-11 株式会社デンソー 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008034749A1 *

Also Published As

Publication number Publication date
FR2906018B1 (fr) 2015-06-26
FR2906018A1 (fr) 2008-03-21
WO2008034749A1 (fr) 2008-03-27
JP2010503818A (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
EP2831527B1 (fr) Echangeur thermique, notamment pour vehicule
EP1424531B1 (fr) Echangeur de chaleur à inertie thermique pour circuit de fluide caloporteur, notamment de véhicule automobile
EP2726808B1 (fr) Echangeur de chaleur, boitier et circuit de climatisation comprenant un tel echangeur
FR2757259A1 (fr) Ailette metallique perfectionnee pour echangeur de chaleur, notamment pour vehicule automobile
FR2846736A1 (fr) Module d'echange de chaleur a plaques empilees, notamment pour un vehicule automobile
WO2005100901A1 (fr) Tubes d'echangeur de chaleur favorisant le drainage des condensats
EP1058807B1 (fr) Echangeur de chaleur a tubes souples
EP2064508A1 (fr) Echangeur de chaleur et procede de realisation d'un element d'echange de chaleur pour un tel echangeur de chaleur
EP2856056A1 (fr) Intercalaire pour echangeur thermique et echangeur thermique associe
EP1579162A1 (fr) Procede de fabrication d'un module d'echange de chaleur
FR2944591A1 (fr) Tube de circulation de fluide refrigerant, faisceau d'echange de chaleur et echangeur de chaleur comportant de tels tubes
FR2924491A1 (fr) Intercalaire ondule muni de persiennes pour echangeur de chaleur
FR2872891A1 (fr) Ailette de dispositif d'echange de chaleur a persiennes et lanieres
EP3002538B1 (fr) Echangeur de chaleur, notamment pour véhicule automobile
FR2860288A1 (fr) Element de circuit pour echangeur de chaleur, et echangeur de chaleur ainsi obtenu
EP3794299A1 (fr) Echangeur de chaleur de véhicule automobile
EP3009784B1 (fr) Echangeur thermique à dégivrage amélioré
EP3610214A1 (fr) Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé
EP2878908B1 (fr) Installation de traitement d'air comprenant un échangeur air/air à double flux
FR2974623A1 (fr) Echangeur de chaleur pour systeme d'air conditionne de vehicule
EP2901096B1 (fr) Tube pour un échangeur de chaleur de véhicule automobile
FR2866948A1 (fr) Echangeur de chaleur a deflecteur de flux ameliore
FR2980739A1 (fr) Tube de radiateur de refroidissement pour vehicule automobile et radiateur de refroidissement pour vehicule automobile comprenant un tel tube.
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile
WO2019243754A1 (fr) Boite collectrice et échangeur thermique correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090311

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20161005

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170216