EP3610214A1 - Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé - Google Patents

Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé

Info

Publication number
EP3610214A1
EP3610214A1 EP18728209.0A EP18728209A EP3610214A1 EP 3610214 A1 EP3610214 A1 EP 3610214A1 EP 18728209 A EP18728209 A EP 18728209A EP 3610214 A1 EP3610214 A1 EP 3610214A1
Authority
EP
European Patent Office
Prior art keywords
flat tubes
flat
spacers
profile
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18728209.0A
Other languages
German (de)
English (en)
Inventor
Christian Riondet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP3610214A1 publication Critical patent/EP3610214A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/19Soldering, e.g. brazing, or unsoldering taking account of the properties of the materials to be soldered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/06Reinforcing means for fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/02Safety or protection arrangements; Arrangements for preventing malfunction in the form of screens or covers

Definitions

  • the invention relates to the field of heat exchangers and more particularly the heat exchangers placed on the front face of a motor vehicle.
  • the invention also relates to the method of manufacturing such a heat exchanger.
  • heat exchangers placed on the front face generally comprise flat tubes, inside which circulates a coolant, and spacers arranged and brazed between the flat tubes. These heat exchangers can be sprayed with debris or stones that can damage or even pierce the flat tubes.
  • an object of the invention is to at least partially overcome the disadvantages of the prior art and to provide an improved heat exchanger and its manufacturing process.
  • the present invention therefore relates to a heat exchanger comprising a bundle of flat tubes, said bundle of flat tubes comprising:
  • the ripples comprising:
  • the development of the spacers between the first central profile, the second peripheral profile and the transition zone between said profiles has a difference in elongation of between 0 and 5%, preferably less than 1%.
  • the width of the flat tubes, the spacers follow the shape of said flat tubes and their slices.
  • the slices of the flat tubes have a rounded shape.
  • the thickness of the spacers is between 50 ⁇ and 120 ⁇ .
  • the difference between two curved peaks of two spacers covering a wafer is between 0.1 mm and 1 mm.
  • the spacing distance of the spacers relative to the slices of the flat tubes is between 1 mm and 5 mm.
  • the slices of the flat tubes on one and the same side of the bundle are covered.
  • the slices of the flat tubes on both sides of the bundle are covered.
  • the tubes have a wall thickness greater than or equal to 230 ⁇ , for example greater than or equal to 250 ⁇ , for example still greater than or equal to 270 ⁇ .
  • the present invention also relates to a method of manufacturing a heat exchanger comprising a bundle of flat tubes, said bundle of flat tubes comprising:
  • the method comprising a step of manufacturing corrugated spacers and whose width is greater than the width of the flat tubes so as to exceed at least one side of said flat tubes once mounted, said spacers having two distinct profiles of the peaks of their corrugations :
  • the manufacture of the spacers is carried out by passing metal strips between at least two shaping wheels which deform said strips according to the desired pattern.
  • said method comprises a brazing step carried out only at the level of the first central profile, between the vertices having a flat surface and the flat tubes.
  • the present invention also relates to a heat exchanger comprising a bundle of flat tubes, said bundle of flat tubes comprising:
  • the ripples comprising:
  • the present invention also relates to a method of manufacturing a heat exchanger comprising a bundle of flat tubes, said bundle of flat tubes comprising: 0 a plurality of flat tubes in which a first heat transfer fluid is intended to flow and arranged parallel to each other and in a row, said flat tubes having two major planar sides and parallel and two short sides connecting the ends of said long sides, said small sides forming the slices of the flat tubes,
  • the method comprises a step of manufacturing the corrugated inserts and whose width is greater than the width of the flat tubes so as to exceed at least one side of said flat tubes once mounted, said spacers having two distinct profiles of the peaks of their corrugations :
  • FIG. 1 shows a schematic representation in perspective of a heat exchanger
  • FIG. 2 shows a schematic representation in section of a flat tube
  • FIG. 3 shows a diagrammatic representation in side view of the connection between dividers and a flat tube
  • Figure 4 shows a schematic representation of the connection between tabs and a flat tube of Figure 2 along the section plane I-I.
  • first element or second element as well as first parameter and second parameter or else first criterion and second criterion, etc.
  • first criterion and second criterion etc.
  • it is a simple indexing to differentiate and name elements or parameters or criteria close but not identical.
  • This indexing does not imply a priority of one element, parameter or criterion with respect to another, and it is easy to interchange such denominations without departing from the scope of the present description.
  • This indexing does not imply either an order in time for example to appreciate this or that criterion.
  • FIG. 1 shows a heat exchanger 1, generally of parallelepipedal shape, comprising a bundle formed of a multitude of flat tubes 2 within which a first heat transfer fluid can flow between the two ends of the flat tubes 2.
  • the flat tubes 2 are arranged parallel to each other and in a row. Between the tubes 2, interleaves 6 are arranged which act as a disrupter and increase the heat exchange surface with a second heat transfer fluid passing between the tubes 2.
  • the tubes 2 and the spacers 6 are made of metal, for example aluminum or aluminum alloy, and brazed to each other.
  • the spacers 6 are for example corrugated strips or plates and placed between the tubes 2 and fixed to said tubes 2 by soldering.
  • the first heat transfer fluid may for example be brine for a radiator of a motor cooling circuit or a cooling fluid for a condenser of an air conditioning circuit.
  • the second heat transfer fluid can be the outside air.
  • the heat exchanger 1 also comprises two collectors 3 or water boxes, a collector 3 being disposed at each end of the tubes 2. These collectors 3 each comprise a collector plate 4 and a cover 8 coming to cover the collector plate 4 and close the 3. These collectors 3 allow the collection and / or distribution of the first heat transfer fluid so that it circulates in the tubes 2.
  • the header plate 4 is sealingly connected between the collector 3 and the bundle of tubes 2.
  • the header plate 4 may be of generally rectangular shape.
  • the header plate 4 also comprises a multitude of orifices (not shown) having a shape corresponding to the shape of the section of the tubes 2 and adapted to receive the ends of the tubes 2.
  • the tubes 2 are fixed to the header plate 4 so as to waterproof.
  • the flat tubes 2 are oblong in section and comprise for their part two long sides 21 planes and parallel and two small sides connecting the ends of said long sides 21.
  • the short sides of the flat tubes form the slices 22 of the 2.
  • Slices 22 may in particular be rounded as shown in FIG. 2, however it is quite possible to imagine other profiles of slice 22 as for example flat or tapered.
  • the height H of the flat tubes 2 is understood to mean the distance between the external surfaces of their two large ribs 21.
  • the width N of the flat tubes 2 corresponds to the distance between the external surfaces of the two wafers 22 2.
  • the length L of the flat tubes 2 (visible in FIG. 1) corresponds, for its part, to the distance between the two ends of the flat tubes 2.
  • the spacers 6 have periodic corrugations 60 according to FIG. longitudinal axis of the flat tubes. These corrugations 60 have for example a half-period P of between 1 and 1.5 mm.
  • the spacers 6 are more particularly accordion-folded plates or strips in order to form corrugations 60 and placed so that the vertices 61, 62 of the corrugations 60 are disposed against a long side 21 of a flat tube 2.
  • the corrugations 60 comprise more particularly vertices 61,62 and flanks 63 connecting the vertices 61,62.
  • the spacers 6 may also have on their sides 63 edges or openings 64 (visible in Figure 3), perpendicular or oblique with respect to the direction of flow of the second heat transfer fluid within the spacers 6. These edges or openings 64 are particularly suitable to deflect and disrupt the circulation of the second heat transfer fluid to promote heat transfer between the second heat transfer fluid passing through the spacers and the first heat transfer fluid passing through the flat tubes 2.
  • edges or openings 64 are particularly suitable to deflect and disrupt the circulation of the second heat transfer fluid to promote heat transfer between the second heat transfer fluid passing through the spacers and the first heat transfer fluid passing through the flat tubes 2.
  • the spacers 6 exceed said slices 22 on the width N of the flat tubes 2, as shown in Figure 4.
  • the distance D of the tabs 6 exceeded relative to the slices 22 of the flat tubes 2 may in particular be between 1 mm and 5 mm.
  • the spacers 6 at least partially cover one of the slices 22 of the flat tubes 2 on their height H. This increases the protection of the tubes 2 against debris and stones that can reach them
  • the spacers 6 may protrude from the flat tubes 2 over their width N and at least partially cover the slices 22 of said flat tubes 2 on their height H on both sides of the bundle.
  • the spacers 6 are symmetrical and easy to install between the flat tubes 2.
  • side of the beam the sides through which enters and leaves the second heat transfer fluid.
  • the spacers 6 may protrude from the flat tubes 2 over their width N and at least partially cover the slices 22 of said flat tubes 2 on their height H on one and the same side of the bundle, more particularly on the side of the bundle and of the heat exchanger 1 most likely to receive debris and stones.
  • the spacers 6 are asymmetrical and increases in material and weight of the heat exchanger 1 are limited.
  • the spacers 6 more particularly comprise two distinct profiles of their corrugations 60 depending on whether they face the long sides 21 or the slices 22 of the flat tubes 2.
  • a first so-called central profile is disposed at the long sides 21 of the flat tubes 2.
  • the top 61 of the corrugations 60 has in longitudinal section a flat surface against a large side 21 of the flat tube 2.
  • This flat surface allows good brazing between the spacer 6 and the flat tube 2. In addition, this increases the contact surface and therefore the heat transfer between the flat tube 2 and the spacer 6.
  • a second peripheral profile is arranged at the level of the covered slices 22.
  • the top 62 of the corrugations 60 has in longitudinal section a curved profile at least partially covering said wafer 22.
  • longitudinal section that the profiles of the peaks 61, 62 of the corrugations 60 are observed perpendicular to the longitudinal axis of the beam, as shown in Figure 3.
  • the development of the spacers 6 between the first central profile, the second peripheral profile and the transition zone between said profiles has a difference in elongation of between 0 and 5%, preferably less than 1%.
  • the spacer 6 keeps a relatively constant thickness, for example between 50 ⁇ and 120 ⁇ , and reduces the risk of embrittlement or crack formation in this transition.
  • the spacers 6 can thus marry the shape of the flat tubes 2 and their slices 22, as shown in Figure 4, to facilitate mounting and soldering.
  • Brazing between the spacers 6 and the flat tubes 2 may, for example, be performed only at the vertices 61 having a flat surface. This allows in particular in the event of impact a deformation of the insert 6 without the deformation forces being transmitted to the wafer 22 and the flat tube 2.
  • the brazing between the spacers 6 and the flat tubes 2 can be performed at the vertices 61 having a flat surface and at the level of the curved peaks 62.
  • the spacers 6 are then brazed on the long sides 21 and on the slices 22 of the flat tubes. This allows a good fixation of the spacers 6 but also increases the contact surface and heat exchange.
  • the gap E between two vertices 62 curves of two spacers 6 covering a wafer 22 may be between 0.1mm and 1mm.
  • the vertices 61, 62 of the corrugations 60 of the spacers located on either side of a flat tube 2 can face each other, as illustrated in FIG. 2.
  • the vertices 61 , 62 corrugations 60 of the spacers located on either side of a flat tube 2 are offset relative to each other.
  • the present invention also relates to the method of manufacturing the heat exchanger 1 as described above.
  • This manufacturing method includes a step of manufacturing corrugated tabs 6 and whose width is greater than the width N of the flat tubes 2 so as to exceed at least one side of said flat tubes 2 once mounted.
  • These spacers 6 comprise two distinct profiles of the vertices 61, 62 of their corrugations 60:
  • the developed between the first central profile, the second peripheral profile and the transition zone between said profiles has a difference in elongation of between 0 and 5%, preferably less than 1%.
  • corrugations 60 and these two distinct profiles are in particular made by passing a band between at least two shaping wheels that deform the band according to the desired pattern.
  • the fact of creating these two distinct profiles directly during the production of the interlayer 6 and by means of conformation rollers makes it possible to avoid excessive stretching and thinning of the interlayer 6 at the level of the transition between its two profiles. .
  • the deformation forces during the passage between the shaping wheels are identical for the two distinct profiles.
  • the thickness of the interlayer 6 is as constant as possible.
  • the spacers 6 may comprise a second profile on each side so that, when mounted on the flat tubes 2, said spacers 6 protrude and cover the two slices 22 of said flat tubes 2.
  • the spacers 6 may comprise a second profile on one side so that, once mounted on the flat tubes 2, said spacers 6 protrude and cover a single wafer 22 of said flat tubes 2.
  • the spacers 6 are arranged on the flat tubes so that the slices 22 of the flat tubes 2 covered are on the same side of the heat exchanger 1.
  • the manufacturing method also comprises a step of soldering the spacers 6 to the flat tubes 2. This brazing step can be performed only at the first central profile or at the first and second profile.
  • the spacers 6 can maintain a constant thickness both at the level of the first profiles in contact with the long sides 21 of the flat tubes 2 and at the second profiles at the contact of the slices 22 of the flat tubes 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

La présente invention concerne un échangeur de chaleur (1) comportant un faisceau de tubes plats (2), ledit faisceau de tubes plats (2) comportant : ◦ une multitude de tubes plats (2) disposés parallèlement les uns aux autres et en rang, lesdits tubes plats (2) comportant deux grands côtés (21) plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés (21), lesdits petits côtés formant les tranches (22) des tubes plats (2), ◦ une pluralité d'intercalaires (6) disposés et brasés entre les grands côtés (21) des tubes plats (2), les intercalaires (6) présentant un profil ondulé et dépassant d'au moins une des tranches (22) sur la largeur (N) des tubes plats (2), les ondulations (60) comportant : • un premier profil central au niveau des grands côtés (21) des tubes plats (2), et • un deuxième profil périphérique au niveau d'au moins une des tranches (22) des tubes plats (2) recouvrant au moins partiellement ladite tranche (22) sur la hauteur (H) des tubes plats (2).

Description

Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé
L'invention concerne le domaine des échangeurs de chaleur et plus particulièrement les échangeurs de chaleur placés en face avant d'un véhicule automobile. L'invention concerne également le procédé de fabrication d'un tel échangeur de chaleur.
Dans le domaine automobile, les échangeurs de chaleur placés en face avant comportent généralement des tubes plats, à l'intérieur desquels circule un fluide caloporteur, et des intercalaires disposés et brasés entre les tubes plats. Ces échangeurs de chaleurs peuvent subir des projections de débris ou de pierres pouvant endommager ou même percer les tubes plats.
Afin de protéger ces échangeurs de chaleurs et notamment les tubes plats, il est connu de placer au devant de ces derniers un dispositif de protection pouvant absorber ces chocs. Néanmoins la fixation de ces dispositifs de protection nécessite généralement une étape dédiée lors de la fabrication de ces échangeurs de chaleurs, ce qui augmente les temps de production et les coûts.
Afin de limiter les coûts et de ne pas augmenter le temps de fabrication, une solution connue est de disposer entre les tubes plats des intercalaires de largeur supérieure à la largeur des tubes plats de sorte que les intercalaires dépassent des tubes plats. Ainsi si des débris ou pierres arrivent au niveau de échangeur de chaleur ce sont les intercalaires qui sont atteints et les tubes plats sont préservés. Il est également connu que les intercalaires recouvrent également au moins partiellement le flanc du tube plat pour renforcer la protection.
Cependant, afin de former de tels intercalaires, ceux-ci sont déformés et au niveau de cette déformation, l'épaisseur de l'intercalaire est réduite ce qui peut entraîner des fragilités et de potentielles fissures. Ainsi, un des buts de l'invention est de remédier au moins partiellement aux inconvénients de l'art antérieur et de proposer un échangeur de chaleur amélioré et son procédé de fabrication.
La présente invention concerne donc un échangeur de chaleur comportant un faisceau de tubes plats, ledit faisceau de tubes plats comportant :
0 une multitude de tubes plats dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats comportant deux grands côtés plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés, lesdits petits côtés formant les tranches des tubes plats,
0 une pluralité d'intercalaires disposés et brasés entre les grands côtés des tubes plats et entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires présentant un profil ondulé et dépassant d'au moins une des tranches sur la largeur des tubes plats,
les ondulations comportant :
• un premier profil central au niveau des grands côtés des tubes plats dans lequel le sommet des ondulation présente en section longitudinale une surface plane venant au contact desdits grands côtés, et
• un deuxième profil périphérique au niveau d'au moins une des tranches des tubes plats dans lequel les sommets des ondulations présentent en section longitudinale une courbure recouvrant au moins partiellement ladite tranche sur la hauteur des tubes plats.
Selon un autre aspect de l'invention, le développé des intercalaires entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présente une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %. Selon un autre aspect de l'invention, sur la largeur des tubes plats, les intercalaires épousent la forme desdits tubes plats et de leurs tranches.
Selon un autre aspect de l'invention, les tranches des tubes plats ont une forme arrondie.
Selon un autre aspect de l'invention, seuls les sommets des ondulations présentant une surface plane sont brasés sur les tubes plats. Selon un autre aspect de l'invention, l'épaisseur des intercalaires est comprise entre 50 μιη et 120 μιη.
Selon un autre aspect de l'invention, l'écart entre deux sommets courbes de deux intercalaires recouvrant une tranche est compris entre 0,1 mm et 1 mm.
Selon un autre aspect de l'invention, la distance de dépassement des intercalaires par rapport aux tranches des tubes plats est comprise entre 1 mm et 5 mm.
Selon un autre aspect de l'invention, les tranches des tubes plats d'un seul et même côté du faisceau sont recouvertes.
Selon un autre aspect de l'invention, les tranches des tubes plats des deux côtés du faisceau sont recouvertes. Selon un autre aspect de l'invention, les tubes ont une épaisseur de paroi supérieure ou égale à 230 μιη, par exemple supérieure ou égale à 250 μιη, par exemple encore supérieure ou égale à 270 μιη. La présente invention concerne également un procédé de fabrication d'un échangeur de chaleur comportant un faisceau de tubes plats, ledit faisceau de tubes plats comportant :
0 une multitude de tubes plats dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats comportant deux grands côtés plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés, lesdits petits côtés formant les tranches des tubes plats,
0 une pluralité d'intercalaires disposée et brasés entre les grands côtés des tubes plats entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires présentant un profil ondulé et dépassant d'au moins une des tranches des tubes plats,
le procédé comportant une étape de fabrication des intercalaires ondulés et dont la largeur est supérieure à la largeur des tubes plats de sorte à dépasser d'au moins un côté desdits tubes plats une fois montés, lesdits intercalaires comportant deux profils distincts des sommets de leurs ondulations :
0 un premier profil central dans lequel le sommet des ondulations présente en section longitudinale une surface plane destinée à venir contre le grand côté du tube plat, et
0 un deuxième profil périphérique dans lequel le sommet des ondulations présente en section longitudinale un profil courbe destiné à recouvrir au moins partiellement une tranche sur la hauteur du tube plat.
Selon un aspect du procédé selon l'invention, la fabrication des intercalaires est réalisées par passage de bandes métalliques entre au moins deux molettes de conformation qui déforment lesdites bandes selon le motif désiré. Selon un autre aspect du procédé selon l'invention, ledit procédé comporte une étape de brasage réalisée uniquement au niveau du premier profil central, entre les sommets présentant une surface plane et les tubes plats. La présente invention concerne également un échangeur de chaleur comportant un faisceau de tubes plats, ledit faisceau de tubes plats comportant :
0 une multitude de tubes plats dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats comportant deux grands côtés plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés, lesdits petits côtés formant les tranches des tubes plats,
0 une pluralité d'intercalaires disposés et brasés entre les grands côtés des tubes plats et entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires présentant un profil ondulé et dépassant d'au moins une des tranches sur la largeur des tubes plats,
les ondulations comportant :
un premier profil central en section longitudinale au niveau des grands côtés des tubes plats, et
un deuxième profil périphérique en section longitudinale au niveau d'au moins une des tranches des tubes plats recouvrant au moins partiellement ladite tranche sur la hauteur des tubes plats,
le développé des intercalaires entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présentant une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
La présente invention concerne également un procédé de fabrication d'un échangeur de chaleur comportant un faisceau de tubes plats, ledit faisceau de tubes plats comportant : 0 une multitude de tubes plats dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats comportant deux grands côtés plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés, lesdits petits côtés formant les tranches des tubes plats,
0 une pluralité d'intercalaires disposée et brasés entre les grands côtés des tubes entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires présentant un profil ondulé et dépassant d'au moins une des tranches des tubes plats,
le procédé comporte une étape de fabrication des intercalaires ondulés et dont la largeur est supérieure à la largeur des tubes plats de sorte à dépasser d'au moins un côté desdits tubes plats une fois montés, lesdits intercalaires comportant deux profils distincts des sommets de leurs ondulations :
un premier profil central en section longitudinale au niveau des grands côtés des tubes plats, et
un deuxième profil périphérique en section longitudinale au niveau d'au moins une des tranches des tubes plats recouvrant au moins partiellement ladite tranche sur la hauteur des tubes plats,
le développé des intercalaires entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présentant une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, et des dessins annexés parmi lesquels :
• la figure 1 montre une représentation schématique en perspective d'un échangeur de chaleur,
• la figure 2 montre une représentation schématique en coupe d'un tube plat, • la figure 3 montre une représentation schématique en vue de côté de la liaison entre des intercalaires et un tube plat,
• la figure 4 montre une représentation schématique de la liaison entre des intercalaires et un tube plat de la figure 2 selon le plan de coupe I-I.
Sur les différentes figures, les éléments identiques portent les mêmes numéros de référence.
Les réalisations suivantes sont des exemples. Bien que la description se réfère à un ou plusieurs modes de réalisation, ceci ne signifie pas nécessairement que chaque référence concerne le même mode de réalisation, ou que les caractéristiques s'appliquent seulement à un seul mode de réalisation. De simples caractéristiques de différents modes de réalisation peuvent également être combinées et/ou interchangées pour fournir d'autres réalisations.
Dans la présente description, on peut indexer certains éléments ou paramètres, comme par exemple premier élément ou deuxième élément ainsi que premier paramètre et second paramètre ou encore premier critère et deuxième critère etc. Dans ce cas, il s'agit d'un simple indexage pour différencier et dénommer des éléments ou paramètres ou critères proches mais non identiques. Cette indexation n'implique pas une priorité d'un élément, paramètre ou critère par rapport à un autre et on peut aisément interchanger de telles dénominations sans sortir du cadre de la présente description. Cette indexation n'implique pas non plus un ordre dans le temps par exemple pour apprécier tel ou tel critère.
La figure 1 montre un échangeur de chaleur 1, généralement de forme parallélépipédique, comprenant un faisceau formé d'une multitude de tubes plats 2 à l'intérieur desquels peut circuler un premier fluide caloporteur entre les deux extrémités des tubes plats 2. Les tubes plats 2 sont disposés parallèlement entre eux et en rang. Entre les tubes 2, sont disposées des intercalaires 6 qui agissent comme perturbateur et augmentent la surface d'échange thermique avec un deuxième fluide caloporteur passant entre les tubes 2.
Les tubes 2 et les intercalaires 6 sont réalisés en métal, par exemple en aluminium ou alliage d'aluminium, et brasés les uns aux autres. Les intercalaires 6 sont par exemple des bandes ou plaques ondulées et placées entre les tubes 2 et fixées auxdits tubes 2 par brasage.
Dans le cadre d'un échangeur de chaleur 1 disposé en face avant d'un véhicule automobile, le premier fluide caloporteur peut par exemple être de l'eau glycolée pour un radiateur d'un circuit de refroidissement moteur ou encore un fluide réfrigérant pour un condenseur d'un circuit de climatisation. Le deuxième fluide caloporteur peut quant à lui être l'air extérieur.
L'échangeur de chaleur 1 comporte également deux collecteurs 3 ou boîtes à eau, un collecteur 3 étant disposé à chaque extrémité des tubes 2. Ces collecteurs 3 comportent chacun une plaque collectrice 4 et un couvercle 8 venant recouvrir la plaque collectrice 4 et refermer le collecteur 3. Ces collecteurs 3 permettent la collecte et/ou la distribution du premier fluide caloporteur afin qu'il circule dans les tubes 2.
La plaque collectrice 4 fait la liaison de façon étanche entre le collecteur 3 et le faisceau de tubes 2. De plus, la plaque collectrice 4 peut être de forme générale rectangulaire. La plaque collectrice 4 comporte également une multitude d'orifices (non représentés) ayant une forme correspondant à la forme de la section des tubes 2 et propres à recevoir les extrémités des tubes 2. Les tubes 2 sont fixés à la plaque collectrice 4 de façon étanche.
Comme le montre la figure 2, Les tubes plats 2 sont de section oblongues et comprennent quant à eux deux grands côtés 21 plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés 21. Les petits côtés des tubes plats forment les tranches 22 des tubes plats 2. Les tranches 22 peuvent notamment être arrondies comme illustré sur la figure 2, cependant il est tout à fait possible d'imaginer d'autres profils de tranche 22 comme par exemple planes ou effilées. Dans la présente description, on entend par hauteur H des tubes plats 2, la distance entre les surfaces externes de leurs deux grands côtes 21. La largeur N des tubes plats 2 correspond quant à elle à la distance entre les surfaces externes des deux tranches 22 des tubes plats 2. La longueur L des tubes plats 2 (visible sur la figure 1) correspond quand à elle à la distance entre les deux extrémités des tubes plats 2.
Dans la présente description, on pourra alors parler d'axe longitudinal ou de section longitudinale en fonction de l'axe de la longueur L des tubes plats 2. Comme illustré à la figure 3, les intercalaires 6 présentent des ondulations 60 périodiques selon l'axe longitudinal des tubes plats. Ces ondulations 60 ont par exemple une demi-période P comprise entre 1 et 1,5 mm. Les intercalaires 6 sont plus particulièrement des plaques ou bandes repliées en accordéon afin de former des ondulations 60 et placées de sorte que les sommets 61, 62 des ondulations 60 soient disposées contre un grand côté 21 d'un tube plat 2. Les ondulations 60 comportent plus particulièrement des sommets 61,62 et des flancs 63 reliant les sommets 61,62. Les intercalaires 6 peuvent également comporter sur leurs flancs 63 des arêtes ou ouvertures 64 (visibles sur la figure 3), perpendiculaires ou obliques par rapport au sens de circulation du deuxième fluide caloporteur au sein des intercalaires 6. Ces arêtes ou ouvertures 64 sont notamment aptes à dévier et perturber la circulation du deuxième fluide caloporteur afin de favoriser le transfert thermique entre le deuxième fluide caloporteur passant au sein des intercalaires et le premier fluide caloporteur passant dans les tubes plats 2. Afin de protéger les tranches 22 des tubes 2 de projection de débris ou de pierres, notamment dans le cadre d'échangeurs de chaleur 1 de face avant, les intercalaires 6 dépassent desdites tranches 22 sur la largeur N des tubes plats 2, comme illustré à la figure 4. La distance D de dépassement des intercalaires 6 par rapport aux tranches 22 des tubes plats 2 peut notamment être comprise entre 1 mm et 5 mm. De plus, les intercalaires 6 recouvrent au moins partiellement une des tranches 22 des tubes plats 2 sur leur hauteur H. Cela permet d'augmenter la protection des tubes 2 contre les débris et pierres pouvant les atteindre.
Les intercalaires 6 peuvent dépasser des tubes plats 2 sur leur largeur N et recouvrir au moins partiellement les tranches 22 desdits tubes plats 2 sur leur hauteur H des deux côtés du faisceau. Ainsi, les intercalaires 6 sont symétriques et faciles à installer entre les tubes plats 2. On entend ici par côté du faisceau les côtés par lesquels entre et ressort le deuxième fluide caloporteur.
A contrario, les intercalaires 6 peuvent dépasser des tubes plats 2 sur leur largeur N et recouvrir au moins partiellement les tranches 22 desdits tubes plats 2 sur leur hauteur H d'un seul et même côté du faisceau, plus particulièrement sur le côté du faisceau et de l'échangeur de chaleur 1 le plus susceptible de recevoir des débris et des pierres. Ainsi les intercalaires 6 sont asymétriques et les augmentations de matière et de poids de l'échangeur de chaleur 1 sont limitées.
Les intercalaires 6 comportent plus particulièrement deux profils distincts de leurs ondulations 60 selon qu'elles font face aux grands côtés 21 ou aux tranches 22 des tubes plats 2.
Un premier profil dit central est disposé au niveau des grands côtés 21 des tubes plats 2. Pour ce premier profil central, le sommet 61 des ondulations 60 présente en section longitudinale une surface plane venant contre un grand côté 21 du tube plat 2.
Cette surface plane permet un bon brasage entre l'intercalaire 6 et le tube plat 2. De plus, cela augmente la surface de contact et donc le transfert thermique entre le tube plats 2 et l'intercalaire 6.
Un deuxième profil dit périphérique est disposé au niveau des tranches 22 recouvertes. Pour ce deuxième profil périphérique, le sommet 62 des ondulations 60 présente en section longitudinale un profil courbe recouvrant au moins partiellement ladite tranche 22. On entend ici par en section longitudinale, que les profils des sommets 61, 62 des ondulations 60 sont observés perpendiculairement à l'axe longitudinal du faisceau , comme cela est représenté à la figure 3.
Plus précisément, le développé des intercalaires 6 entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présente une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
On entend par développé (ou longueur développée) la longueur de la bande à la fibre neutre (globalement à mi-épaisseur matière). Avoir un développé identique ou proche entre ces trois zones consiste à ne pas créer d'allongements différents ou alors avec une différence d'allongement très faible pour ces zones.
Le fait de présenter ces deux profils distincts de sommets au niveau des grands côtés 21 et des tranches 22 recouvertes, permet d'éviter un étirement et un amincissement trop important de l'intercalaire 6 au niveau de la transition entre ses deux profils. Ainsi l'intercalaire 6 garde une épaisseur relativement constante, par exemple comprise entre 50 μιη et 120 μιη, et réduit les risques de fragilisation ou de formation de fissures au niveau de cette transition.
Les intercalaires 6 peuvent ainsi épouser la forme des tubes plats 2 et de leurs tranches 22, comme illustré à la figure 4, afin de faciliter le montage ainsi que le brasage.
Le brasage entre les intercalaires 6 et les tubes plats 2 peut, par exemple, être effectué uniquement au niveau des sommets 61 présentant une surface plane. Cela permet notamment en cas de choc une déformation de l'intercalaire 6 sans que les efforts de déformation soient transmis à la tranche 22 et au tube plat 2.
Selon un autre mode de réalisation, le brasage entre les intercalaires 6 et les tubes plats 2 peut être effectué au niveau des sommets 61 présentant une surface plane ainsi qu'au niveau des sommets 62 courbes. Les intercalaires 6 sont alors brasés sur les grands côtés 21 ainsi que sur les tranches 22 des tubes plats. Cela permet notamment une bonne fixation des intercalaires 6 mais augmente également la surface de contact et d'échange thermique.
Comme le montre la figure 3, l'écart E entre deux sommets 62 courbes de deux intercalaires 6 recouvrant une tranche 22 peut être compris entre 0,1mm et 1mm. Les sommets 61, 62 des ondulations 60 des intercalaires situées de part et d'autre d'un tube plat 2 peuvent se faire face, comme illustré à la figure 2. Cependant, il est tout à fait possible d'imaginer que les sommets 61, 62 des ondulations 60 des intercalaires situées de part et d'autre d'un tube plat 2 soient décalés les uns par rapport aux autres.
La présente invention concerne également le procédé de fabrication de l'échangeur de chaleur 1 tel que décrit précédemment. Ce procédé de fabrication comporte notamment une étape de fabrication d'intercalaires 6 ondulés et dont la largeur est supérieure à la largeur N des tubes plats 2 de sorte à dépasser d'au moins un côté desdits tubes plats 2 une fois montés. Ces intercalaires 6 comportent deux profils distincts des sommets 61, 62 de leurs ondulations 60 :
• un premier profil central dans lequel le sommet 61 des ondulations 60 présente une surface plane destinée à venir contre le grand côté 21 du tube plat 2, et
• un deuxième profil périphérique dans lequel le sommet 62 des ondulations 60 présente un profil courbe destiné à recouvrir au moins partiellement une tranche
22 sur la hauteur H du tube plat 2.
Lors de cette étape de fabrication des intercalaires 6, le développé entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présente une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
Ces ondulations 60 et ces deux profils distincts sont notamment réalisés par passage d'une bande entre au moins deux molettes de conformation qui déforment la bande selon le motif désiré. Le fait de créer ces deux profils distincts directement lors de la fabrication de l'intercalaire 6 et au moyen de molettes de conformation permet d'éviter un étirement et un amincissement trop important de l'intercalaire 6 au niveau de la transition entre ses deux profils. Les efforts de déformations lors du passage entre les molettes de conformation sont identiques pour les deux profils distincts. Ainsi, l'épaisseur de l'intercalaire 6 est la plus constante possible.
Les intercalaires 6 peuvent comporter un deuxième profil de chaque côtés de sorte que, une fois montés sur les tubes plats 2, lesdits intercalaires 6 dépassent et recouvrent les deux tranches 22 desdits tubes plats 2.
A contrario, les intercalaires 6 peuvent comporter un deuxième profil sur un seul côté de sorte que, une fois montés sur les tubes plats 2, lesdits intercalaires 6 dépassent et recouvrent une seule tranche 22 desdits tubes plats 2. Dans ce cas, les intercalaires 6 sont disposés sur les tubes plats de sorte que les tranches 22 des tubes plats 2 recouvertes soient d'un même côté de l'échangeur de chaleur 1.
Le procédé de fabrication comporte également une étape de brasage des intercalaires 6 sur les tubes plats 2. Cette étape de brasage peut être réalisée uniquement au niveau du premier profil central ou bien au niveau du premier et du deuxième profil.
Ainsi, on voit bien que du fait de leur conformation ainsi que de leur procédé de fabrication, les intercalaires 6 peuvent conserver une épaisseur constante aussi bien au niveau des premiers profils en contact avec les grands côtés 21 des tubes plats 2 que des deuxièmes profils au contact des tranches 22 des tubes plats 2.

Claims

REVENDICATIONS
Échangeur de chaleur (1) comportant un faisceau de tubes plats (2), ledit faisceau de tubes plats (2) comportant :
0 une multitude de tubes plats (2) dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats (2) comportant deux grands côtés (21) plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés (21), lesdits petits côtés formant les tranches (22) des tubes plats (2),
0 une pluralité d'intercalaires (6) disposés et brasés entre les grands côtés (21) des tubes plats (2) et entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires (6) présentant un profil ondulé et dépassant d'au moins une des tranches (22) sur la largeur (N) des tubes plats (2),
caractérisé en ce que les ondulations (60) comportent :
• un premier profil central au niveau des grands côtés (21) des tubes plats (2) dans lequel le sommet (61) des ondulation (60) présente en section longitudinale une surface plane venant au contact desdits grands côtés
(21) , et
• un deuxième profil périphérique au niveau d'au moins une des tranches
(22) des tubes plats (2) dans lequel les sommets (62) des ondulations (60) présentent en section longitudinale une courbure recouvrant au moins partiellement ladite tranche (22) sur la hauteur (H) des tubes plats (2).
2. Échangeur de chaleur (1) selon la revendication précédente, caractérisé en ce que le développé des intercalaires (6) entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présente une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
3. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que sur la largeur (N) des tubes plats (2), les intercalaires (6) épousent la forme desdits tubes plats (2) et de leurs tranches (22). 4. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que les tranches (22) des tubes plats (2) ont une forme arrondie.
5. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que seuls les sommets (61) des ondulations (60) présentant une surface plane sont brasés sur les tubes plats (2).
6. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur des intercalaires (6) est comprise entre 50 μιη et 120 μιη. 7. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que l'écart (E) entre deux sommets (62) courbes de deux intercalaires (6) recouvrant une tranche (22) est compris entre 0,1 mm et 1 mm.
8. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que la distance (D) de dépassement des intercalaires (6) par rapport aux tranches (22) des tubes plats (2) est comprise entre 1 mm et 5 mm.
9. Échangeur de chaleur (1) selon l'une des revendications précédentes, caractérisé en ce que les tranches (22) des tubes plats (2) d'un seul et même côté du faisceau sont recouvertes.
10. Echangeur de chaleur (1) selon l'une des revendications 1 à 8, caractérisé en ce que les tranches (22) des tubes plats (2) des deux côtés du faisceau sont recouvertes.
11. Procédé de fabrication d'un échangeur de chaleur (1) comportant un faisceau de tubes plats (2), ledit faisceau de tubes plats (2) comportant :
0 une multitude de tubes plats (2) dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats (2) comportant deux grands côtés (21) plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés (21), lesdits petits côtés formant les tranches (22) des tubes plats (2),
0 une pluralité d'intercalaires (6) disposée et brasés entre les grands côtés (21) des tubes entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires (6) présentant un profil ondulé et dépassant d'au moins une des tranches (22) des tubes plats (2),
caractérisé en ce que le procédé comporte une étape de fabrication des intercalaires (6) ondulés et dont la largeur est supérieure à la largeur (N) des tubes plats (2) de sorte à dépasser d'au moins un côté desdits tubes plats (2) une fois montés, lesdits intercalaires (6) comportant deux profils distincts des sommets (61,62) de leurs ondulations (60) :
0 un premier profil central dans lequel le sommet (61) des ondulations (60) présente en section longitudinale une surface plane destinée à venir contre le grand côté (21) du tube plat (2), et
0 un deuxième profil périphérique dans lequel le sommet (62) des ondulations (60) présente en section longitudinale un profil courbe destiné à recouvrir au moins partiellement une tranche (22) sur la hauteur (H) du tube plat (2).
12. Procédé de fabrication selon la revendication 11, caractérisé en ce que la fabrication des intercalaires (6) est réalisées par passage de bandes métalliques entre au moins deux molettes de conformation qui déforment lesdites bandes selon le motif désiré.
13. Procédé de fabrication selon l'une des revendications 11 ou 12, caractérisé en ce qu'il comporte une étape de brasage réalisée uniquement au niveau du premier profil central, entre les sommets (61) présentant une surface plane et les tubes plats (2).
14. Échangeur de chaleur (1) comportant un faisceau de tubes plats (2), ledit faisceau de tubes plats (2) comportant :
0 une multitude de tubes plats (2) dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats (2) comportant deux grands côtés (21) plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés (21), lesdits petits côtés formant les tranches (22) des tubes plats (2),
0 une pluralité d'intercalaires (6) disposés et brasés entre les grands côtés (21) des tubes plats (2) et entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires (6) présentant un profil ondulé et dépassant d'au moins une des tranches (22) sur la largeur (N) des tubes plats (2),
caractérisé en ce que les ondulations (60) comportent :
un premier profil central en section longitudinale au niveau des grands côtés (21) des tubes plats (2), et
un deuxième profil périphérique en section longitudinale au niveau d'au moins une des tranches (22) des tubes plats (2) recouvrant au moins partiellement ladite tranche (22) sur la hauteur (H) des tubes plats (2), le développé des intercalaires (6) entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présentant une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
15. Procédé de fabrication d'un échangeur de chaleur (1) comportant un faisceau de tubes plats (2), ledit faisceau de tubes plats (2) comportant :
0 une multitude de tubes plats (2) dans lesquels un premier fluide caloporteur est destiné à circuler et disposés parallèlement les uns aux autres et en rang, lesdits tubes plats (2) comportant deux grands côtés (21) plans et parallèles et deux petits côtés reliant les extrémités desdits grands côtés (21), lesdits petits côtés formant les tranches (22) des tubes plats (2),
0 une pluralité d'intercalaires (6) disposée et brasés entre les grands côtés (21) des tubes entre lesquelles un deuxième fluide caloporteur est destiné à circuler, les intercalaires (6) présentant un profil ondulé et dépassant d'au moins une des tranches (22) des tubes plats (2),
caractérisé en ce que le procédé comporte une étape de fabrication des intercalaires (6) ondulés et dont la largeur est supérieure à la largeur (N) des tubes plats (2) de sorte à dépasser d'au moins un côté desdits tubes plats (2) une fois montés, lesdits intercalaires (6) comportant deux profils distincts des sommets (61,62) de leurs ondulations (60) :
un premier profil central en section longitudinale au niveau des grands côtés (21) des tubes plats (2), et
un deuxième profil périphérique en section longitudinale au niveau d'au moins une des tranches (22) des tubes plats (2) recouvrant au moins partiellement ladite tranche (22) sur la hauteur (H) des tubes plats (2), le développé des intercalaires (6) entre le premier profil central, le deuxième profil périphérique et la zone de transition entre lesdits profils présentant une différence d'allongement comprise entre 0 et 5 %, de préférence inférieur à 1 %.
EP18728209.0A 2017-05-02 2018-05-02 Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé Withdrawn EP3610214A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753850A FR3066014A1 (fr) 2017-05-02 2017-05-02 Echangeur de chaleur avec dispositif de protection et procede de fabrication associe
PCT/FR2018/051092 WO2018202997A1 (fr) 2017-05-02 2018-05-02 Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé

Publications (1)

Publication Number Publication Date
EP3610214A1 true EP3610214A1 (fr) 2020-02-19

Family

ID=61873356

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18728209.0A Withdrawn EP3610214A1 (fr) 2017-05-02 2018-05-02 Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé

Country Status (4)

Country Link
EP (1) EP3610214A1 (fr)
CN (1) CN110998212A (fr)
FR (1) FR3066014A1 (fr)
WO (1) WO2018202997A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114165945A (zh) * 2021-11-01 2022-03-11 常州市常蒸热交换器科技有限公司 洗衣机、衣服护理机用冷凝蒸发一体式换热器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE542365A (fr) * 1900-01-01
US1970105A (en) * 1932-03-24 1934-08-14 Fedders Mfg Co Inc Condenser and method of making the same
GB885150A (en) * 1959-03-24 1961-12-20 Gallay Ltd Improvements in or relating to heat exchangers
CA2180050A1 (fr) * 1996-04-04 1997-10-05 Matthew K. Harris Ailettes encochees pour echangeur de chaleur d'automobile
JP2003279278A (ja) * 2002-01-15 2003-10-02 Denso Corp 熱交換器
CN200965426Y (zh) * 2006-10-25 2007-10-24 陈建国 铝合金板翅式冷却器
FR2941040B1 (fr) * 2009-01-15 2012-08-31 Valeo Systemes Thermiques Intercalaire d'echange de chaleur pour un dispositif d'echange de chaleur
CN204923995U (zh) * 2015-03-31 2015-12-30 特灵空调系统(中国)有限公司 能够防止外力破坏扁管的微通道换热器
DE102015108599A1 (de) * 2015-06-01 2016-12-01 Volkswagen Aktiengesellschaft Verfahren zum Betreiben eines Kühlsystems

Also Published As

Publication number Publication date
WO2018202997A1 (fr) 2018-11-08
CN110998212A (zh) 2020-04-10
FR3066014A1 (fr) 2018-11-09

Similar Documents

Publication Publication Date Title
EP1176378B1 (fr) Procédé de fabrication d'une ailette d'échangeur de chaleur, ailettes selon le procédé et module d'échange comportant ces ailettes
EP2208955B1 (fr) Intercalaire d'échange de chaleur pour un dispositif d'échange de chaleur.
EP1063486B1 (fr) Echangeur de chaleur à plaques, en particulier refroidisseur d'huile pour véhicule automobile
FR3007514A1 (fr) Tube a reservoir de materiau a changement de phases pour faisceau d'echange de chaleur, notamment pour un evaporateur d'un circuit de climatisation d'un vehicule
EP2691722A1 (fr) Tube pour echangeur thermique, echangeur thermique et procede d'obtention correspondants
EP3610214A1 (fr) Échangeur de chaleur avec dispositif de protection et procédé de fabrication associé
FR3066012A1 (fr) Dispositif d'echange de chaleur pour vehicule automobile
WO2004065872A1 (fr) Procede de fabrication d’un module d’echange de chaleur
WO2018202998A1 (fr) Tube pour échangeur thermique et échangeur thermique correspondant
WO2017032567A1 (fr) Échangeur de chaleur
EP3577408B1 (fr) Collecteur pour échangeur de chaleur
EP3308093A1 (fr) Ailette d'un échangeur thermique notamment pour véhicule automobile, et échangeur thermique correspondant
FR3059403B1 (fr) Joue pour echangeur thermique de vehicule automobile
WO2021136897A1 (fr) Échangeur de chaleur à tubes comportant des intercalaires
WO2021136896A1 (fr) Échangeur de chaleur à tubes comportant des intercalaires
FR3062901A1 (fr) Tube d’echangeur thermique, echangeur thermique et procede d’assemblage du tube correspondants
FR2690228A1 (fr) Echangeur de chaleur à tubes agrafés, en particulier pour véhicules automobiles.
WO2015177237A1 (fr) Tube laminé à double rangée de canaux
EP3430341A1 (fr) Échangeur de chaleur et procédé de fabrication associé
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile
FR3086043A1 (fr) Echangeur de chaleur a reservoir de materiau a changement de phase et procede de fabrication
WO2018154227A1 (fr) Échangeur de chaleur brasé et procédé de fabrication associé
FR3069630A1 (fr) Boite collectrice pour echangeur de chaleur et echangeur de chaleur associe
WO2004017005A2 (fr) Echangeur de plan, en particulier pour vehicule automobile, et procede pour sa fabrication
FR2854235A1 (fr) Ailette ondulee a profil optimise pour echangeur de chaleur, notamment de vehicule automobile.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220321

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20220802