EP2032805A2 - Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure - Google Patents

Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure

Info

Publication number
EP2032805A2
EP2032805A2 EP07729781A EP07729781A EP2032805A2 EP 2032805 A2 EP2032805 A2 EP 2032805A2 EP 07729781 A EP07729781 A EP 07729781A EP 07729781 A EP07729781 A EP 07729781A EP 2032805 A2 EP2032805 A2 EP 2032805A2
Authority
EP
European Patent Office
Prior art keywords
ion exchanger
measuring device
measuring
flow paths
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07729781A
Other languages
German (de)
English (en)
Inventor
Michael Rziha
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP07729781A priority Critical patent/EP2032805A2/fr
Publication of EP2032805A2 publication Critical patent/EP2032805A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/14Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/06Treating live steam, other than thermodynamically, e.g. for fighting deposits in engine

Definitions

  • Measuring device for purity measurements of a medium cycle of a power plant and method for operating the measuring device
  • the invention relates to a measuring device for Rösmes ⁇ solutions of a media circuit of a power plant with an ion exchanger device and a measuring means for measuring a parameter of the ion exchanger device by flowing media stream. Moreover, the invention relates to a method for operating such a measuring device.
  • the first object is achieved by a measuring device of the aforementioned type, wherein said the Ionenleyerein- device according to the invention two flow paths for two under ⁇ Kunststofferie operating modes of the power plant.
  • the invention is based on the consideration that
  • Purge time is set. Due to these contradictory conditions, reliable measured values can only be obtained after a relatively long waiting time after starting up the motor vehicle. exchange device can be achieved. To solve these conflicting conditions, a high purge flow through the ion exchanger at the beginning of a start-up phase can be selected. However, this prevents the build up of a reaction equilibrium in the ion exchanger, whereby a correct measurement is accelerated, but not achieved satisfactorily fast. In addition, the establishment of a special flushing flow is associated with a high control effort of the measuring device.
  • the flow paths may adapted to the operation modes and hence each other recalcitrant conditions are distributed to the two flow paths. It is possible to combine a long service life of an ion exchanger with a fast acquisition of reliable measured values.
  • the medium cycle may be a water cycle, which may include the vaporous state of matter of the water.
  • the purity measurements can be a purity monitoring.
  • the flow paths advantageously extend both through to ⁇ least one ion exchanger of the ion exchanger device.
  • the measuring means may be a conductivity sensor for measuring the conductivity of the medium, in particular of the water or
  • the measuring device can evaluation umfas ⁇ sen, such as electronic evaluation, however, must not be on ⁇ handen or may be the measuring device separately.
  • the ion exchange device expediently comprises a cation exchanger.
  • the power plant may be a single or multiple turbines with attached media circulation, a total power plant, such as a combined cycle plant, or only part of it.
  • one of the flow paths is provided for a start of operation of the ion exchange device. Reliable readings can be achieved quickly. This is the flow volume this flow path is advantageously smaller than that of the other flow path.
  • the operation start after a pause operation ⁇ may be a mode of operation, in particular of the power plant, for example a part of a start-up mode of the power plant.
  • both flow paths comprise a separate ion exchanger, in particular a cation exchanger.
  • the ion exchangers can each be individually adapted to the respective operating mode and individually exchanged.
  • both flow paths extend through a single ion exchanger, which has two different, in particular parallel flow paths, of which at least one can be operated separately from the other. It can reduce the number of parts to be serviced.
  • one of the ion exchangers is provided for a start-up operation and has a smaller flow volume than the other ion exchanger. It can be a quick flush and thus a quick operational readiness can be achieved.
  • a further embodiment of the invention is characterized in that the flow paths are arranged in parallel. This can cause both an independent operation of the two flow paths for the purpose of conserving resources and an example of short-term joint operation led to achieve a trouble-free measurement transfer ⁇ to.
  • the two ion exchangers of the two flow paths are arranged in parallel.
  • each ion exchanger is assigned its own measuring means for measuring the parameter which is disposed behind the particular time jewei ⁇ ion exchanger.
  • a simple operation of the measuring device can be achieved by a manual control, for example by manually switching between the flow paths, valves are manually operated or the measuring means is manually read by an operator ⁇ read.
  • a control unit for activating one of the flow paths when starting the power plant an efficient start can be achieved.
  • an efficient start can be achieved.
  • the object relating to the method is achieved by a Ver ⁇ drive of the aforementioned type, in which fiction, ⁇ according to a start of operation of the ion exchanger means comprises a first flow path of the ion exchanger device is activated and a purity measurement is operated above and Ge at a later regular operation, the first flow path ⁇ blocks and a measurement via a second flow path is be ⁇ driven. Due to the different operation of the two flow paths for two different operating modes of
  • the flow paths can be adapted to the operating modes and thus ver ⁇ divergent conditions on the two flow paths ver ⁇ shares. It is possible to combine a long service life of an ion exchanger with a fast acquisition of reliable measured values. A start of operation may take place after a break in operation and may be at least a period of time until an equilibrium operation of the ion exchanger for a regular operation.
  • FIG. 1 shows a measuring device with two cation exchangers in a sampling system a water cycle of a power plant
  • FIG. 2 shows a further measuring device with a two paral ⁇ lel flow paths comprehensive cation exchanger.
  • the measuring device 4 comprises an ion exchange device 6 with two different size ion exchangers 8, 10, which are designed as cation exchanger and via several lines 12th , 14, 16, 18, 20 are interconnected.
  • a Vo ⁇ volume of 60 l / h is taken very pure form, alkalized water vapor from the rest of the water circuit and supplied to the sample-taking system ⁇ 2 via a sampling line 22nd In a sampling cooler 24, the vapor is condensed.
  • 10 l / h of water are fed via an open valve 26 to the large 1.5 l ion exchanger 8.
  • the alkalization of the water is neutralized and Ka ⁇ tions of example salts are exchanged for H + ions.
  • the water thus changed is passed via the line 18 through an open valve 28 to a conductivity measuring device.
  • supplied measuring device 30 supplied, which measures the Leitfä ⁇ ability of the water and displays. From the conductivity, the purity of the water can be determined.
  • the remaining 50 l / h are passed via a line 32 into other sample areas of the sampling system, for example, in a hand sampling, from which the water is removed and analyzed.
  • the measuring device 4 comprises the small ion exchanger 10, which holds a volume of 150 ml.
  • a stream of 10 l / h of water via the line 12 and an open valve 34 to the ion exchanger 10 is supplied, which is sufficiently rinsed in this way after about 3 min.
  • the water is supplied via the line 14 and an open valve 36 to the measuring means 30, so that purity measurements are ⁇ out.
  • the valve 28 is closed in this case.
  • a stream of 10 l / h of water is passed through the ion exchanger 8, which is rinsed in this way in order to be ready for use after 26 min.
  • the water from the ion exchanger 8 is guided into a reject line 38 and drained via an open valve 40.
  • the valves 34, 36, 40 are closed and the valve 28 geöff ⁇ net, so that through a flow path 42, the purity measurement can be maintained solely through the large ion exchanger 8 and a flow path 44 via the small ion exchanger 10 can be closed.
  • the measuring means 30 With the flow path 42, the measuring means 30 now receives the sample water from the ion exchanger. shear 8, which is already in equilibrium state, and since no current through the ion exchanger 8 changes as a result of the switching of the valves 34, 36, 40, the equilibrium is maintained and reliable measurement results can be obtained immediately.
  • the measuring device 4 comprises a second measuring means 46 which is connected to the ion exchanger 10 via an additional line 48.
  • the sample water from the ion exchanger 10 can be supplied to the measuring means 46, the valve 36 being closed.
  • the sample water from the ion exchanger 8 is supplied to the measuring means 30 when the valve 28 is open, so that the two measuring means 30, 46 can be read in parallel. In this way, achieving a meaningful state of equilibrium after purging the ion exchanger 8 can be recognized quickly, namely by matching the measured values of the two measuring means 30, 46.
  • the life of the small ion exchanger 10 is about 3-4 h, so that it is suitable for some startup processes. After that, he must be replaced ⁇ to.
  • the large ion exchanger 8 has a service life of 3-4 weeks at the same flow rate and must then be replaced. If not too many start-up processes are run in this time of 3-4 weeks, the replacement of the ion exchangers 8, 10 can be simplified by a common cation exchanger 50, which is shown in FIG.
  • the cation exchanger 50 has two flow paths 54, 56, the flow path 54 for regular operation and the flow path 54. Route 56 for a start-up operation of the power plant.
  • the Strö ⁇ mungsweg 56 extends only by about 300 ml of the front part of the cation exchanger 50 so that this part is rapidly scavenged by ⁇ , analogous to the ion exchanger 10, operation at a start-up, a valve can be opened 58 such that 10 l / h flow through the flow path 56 and additionally 10 l / h through the flow path 54.
  • the 300 ml large front part of the cation exchanger is flowed through by both flow paths and that with 20 l / h, so that this part is flushed through as fast as the ion exchanger 10.
  • the valve 58 is closed.
  • valve can be actuated 58, as well as, optionally, further valves 36, 28 and 40.
  • control unit switching between the flow for 54, 56, for example by an automatic meter reading system from the measuring means 30, 46, are caused.
  • a start of operation can be kept short and the intended for a start operation ion exchanger 10 and the front part of the ion exchanger 50 are spared.
  • manual operation is conceivable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

L'invention concerne un dispositif de mesure (4, 52) de la propreté d'un circuit de fluides d'une centrale électrique, comprenant un équipement d'échange ionique (6) et un moyen de mesure (30, 46) pour la mesure d'un paramètre d'un flux fluidique traversant l'équipement d'échange ionique (6). Pour obtenir rapidement des mesures fiables lors de la mise en marche de l'équipement d'échange ionique (6), par exemple, lors du démarrage de la centrale électrique, l'équipement d'échange ionique (6) présente deux voies d'écoulement (42, 44, 54, 56) pour deux modes de fonctionnement différents de la centrale électrique.
EP07729781A 2006-06-28 2007-06-01 Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure Withdrawn EP2032805A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07729781A EP2032805A2 (fr) 2006-06-28 2007-06-01 Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06013354A EP1873361A1 (fr) 2006-06-28 2006-06-28 Dispositif de mesure pour mesurer la purété d'un circuit d'un fluid de travail d'une centrale et procédé d'opération du dispositif de mesure
EP07729781A EP2032805A2 (fr) 2006-06-28 2007-06-01 Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure
PCT/EP2007/055380 WO2008000580A2 (fr) 2006-06-28 2007-06-01 Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure

Publications (1)

Publication Number Publication Date
EP2032805A2 true EP2032805A2 (fr) 2009-03-11

Family

ID=37973415

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06013354A Withdrawn EP1873361A1 (fr) 2006-06-28 2006-06-28 Dispositif de mesure pour mesurer la purété d'un circuit d'un fluid de travail d'une centrale et procédé d'opération du dispositif de mesure
EP07729781A Withdrawn EP2032805A2 (fr) 2006-06-28 2007-06-01 Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06013354A Withdrawn EP1873361A1 (fr) 2006-06-28 2006-06-28 Dispositif de mesure pour mesurer la purété d'un circuit d'un fluid de travail d'une centrale et procédé d'opération du dispositif de mesure

Country Status (6)

Country Link
US (1) US8258794B2 (fr)
EP (2) EP1873361A1 (fr)
CN (1) CN101460711B (fr)
EG (1) EG25333A (fr)
IL (1) IL195680A0 (fr)
WO (1) WO2008000580A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9075016B2 (en) 2009-12-31 2015-07-07 Emilcott Associates, Inc. Automated control of analytical sampling with environmental monitoring system
US8584509B2 (en) * 2009-12-31 2013-11-19 Emilcott Associates, Inc. Environmental monitoring system and method with a prefilter
US20140137564A1 (en) * 2012-11-19 2014-05-22 General Electric Company Mitigation of Hot Corrosion in Steam Injected Gas Turbines
DE102017125246A1 (de) * 2017-10-27 2019-05-02 Endress+Hauser Conducta Gmbh+Co. Kg Analyseteil eines Dampfanalysesystems

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1751808A1 (de) * 1968-08-01 1971-08-12 Licentia Gmbh Verfahren und Einrichtung zum Betrieb einer Dampf-Kraftwerksanlage
US3862032A (en) * 1973-04-17 1975-01-21 Combustion Eng Ion exchange waste water treatment process
JPS58170807A (ja) * 1982-03-31 1983-10-07 Toshiba Corp 火力発電プラントの腐食抑制装置
FR2582849B1 (fr) * 1985-05-29 1987-08-21 Framatome Sa Circuit d'ultrafiltration du fluide primaire de refroidissement d'un reacteur nucleaire a eau sous pression
JPH068914B2 (ja) * 1986-10-20 1994-02-02 株式会社日立製作所 沸騰水型原子力プラントの放射性物質の付着抑制方法
US4833622A (en) * 1986-11-03 1989-05-23 Combustion Engineering, Inc. Intelligent chemistry management system
JP2808970B2 (ja) * 1992-03-19 1998-10-08 株式会社日立製作所 原子力プラント及びその水質制御方法並びにその運転方法
EP1044717B1 (fr) * 1994-05-20 2003-09-17 United States Filter Corporation Appareil et procédé d'électrodésionisation à inversion de polarité et double inversion
JP3149738B2 (ja) * 1995-07-26 2001-03-26 株式会社日立製作所 沸騰水型原子力発電プラント及びその運転方法
JP3169831B2 (ja) * 1995-11-30 2001-05-28 株式会社荏原製作所 水中の陰イオンの検出装置
CN2278937Y (zh) * 1996-05-08 1998-04-15 东北电力学院电子技术工程研究所 阳离子交换器失效监督仪传感装置
DE19721854A1 (de) * 1997-05-26 1998-12-03 Asea Brown Boveri Verbesserung des Abscheidegrades von Dampfverunreinigungen in einem Dampf-Wasser-Separator
DE19810963C1 (de) * 1998-03-13 1999-11-04 Siemens Ag Nukleare Kraftwerksanlage mit einer Begasungsvorrichtung für ein Kühlmedium
WO2002014850A1 (fr) * 2000-08-11 2002-02-21 Ionics, Incorporated Procede et dispositif de controle ionique continu de solutions aqueuses
JP4299961B2 (ja) * 2000-09-29 2009-07-22 株式会社東芝 原子炉の水質制御方法
DE10104771A1 (de) * 2001-02-02 2002-08-08 Basf Ag Verfahren und Vorrichtung zum Entionisieren von Kühlmedien für Brennstoffzellen
CN1479094A (zh) * 2002-08-27 2004-03-03 上海电力学院 消除co2影响的氢电导率测量中的方法及装置
JP4481577B2 (ja) * 2003-02-28 2010-06-16 日産自動車株式会社 燃料電池システム
US20030180186A1 (en) * 2003-05-19 2003-09-25 Carson William W. Process and device for continuous tonic monitoring of aqueous solutions
US8377279B2 (en) * 2003-11-13 2013-02-19 Siemens Industry, Inc. Water treatment system and method
US7703272B2 (en) * 2006-09-11 2010-04-27 Gas Turbine Efficiency Sweden Ab System and method for augmenting turbine power output

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2008000580A2 *

Also Published As

Publication number Publication date
US20110181291A1 (en) 2011-07-28
CN101460711B (zh) 2012-01-04
WO2008000580A2 (fr) 2008-01-03
EP1873361A1 (fr) 2008-01-02
EG25333A (en) 2011-12-14
CN101460711A (zh) 2009-06-17
IL195680A0 (en) 2009-09-01
WO2008000580A3 (fr) 2008-10-16
US8258794B2 (en) 2012-09-04

Similar Documents

Publication Publication Date Title
EP0305897B1 (fr) Installation compacte pour le traitement de l'eau de refroidissement
DE102013113641A1 (de) Vorrichtung und Verfahren zur Wasseraufbereitung
DE2822032A1 (de) Vorrichtung und verfahren zur ionenregulierung von fluessigkeiten
DE1648988A1 (de) Verfahren und Vorrichtung zur Steuerung chemischer Prozesse
DE1498526B2 (de) Verfahren und Gerat zur Betriebsüberwachung und Steuerung der Regenerierung von Vorrichtungen zur Wasserenthärtung
EP3018102A1 (fr) Mesure du chlore d'une installation de production d'eau
EP2032805A2 (fr) Dispositif de mesure destiné à des mesures de la propreté d'un circuit de fluides d'une centrale électrique et procédé de fonctionnement de ce dispositif de mesure
DE102006024717B4 (de) Verfahren zum Betrieb eines Drucklufthebersystems für eine Kleinkläranlage und Drucklufthebersystem
DE3808288A1 (de) Einrichtung zum spuelen des innenraums einer baueinheit im testbetrieb
DE10059255C1 (de) Trinkwasserversorgungsanlage
WO2005073690A1 (fr) Dispositif de controle d'au moins un parametre de qualite d'un fluide
DE102012011195B4 (de) Vorrichtung und Verfahren zur Überwachung der Wasserqualität eines druckbeaufschlagtenWassersystems
EP0989405B1 (fr) Dispositif et procédé de détermination des teneurs des substances chimiques d'un liquide
DE4415563C2 (de) Verfahren und Vorrichtung zur Rückgewinnung von Wasserlack
DE19520917A1 (de) Umkehrosmoseanlage sowie Verfahren und Vorrichtung zu ihrer Regelung
DE102008008789A1 (de) Vorrichtung und Verfahren zum Detektieren einer Metallkonzentration in einer Gasatmosphäre
EP2848862B1 (fr) Procédé de fonctionnement d'une chaudière à vapeur et dispositif destiné à l'exécution du procédé
EP2846087A2 (fr) Procédé de fonctionnement d'une chaudière à vapeur et dispositif destiné à l'exécution du procédé
DE102015104972B4 (de) Vorrichtung und Verfahren zur Aufbereitung einer Flüssigkeit, insbesondere durch Umkehrosmose
DE10348806B3 (de) Hochdruckwasserstrahl-Anlage mit Prüfdüse
DE202011051876U1 (de) Solardusche
DE102016005346A1 (de) Verfahren zur Überwachung des Kühlschmiermittels für eine Werkzeugmaschine
DE102017125246A1 (de) Analyseteil eines Dampfanalysesystems
EP2110362B1 (fr) Dispositif de surveillance d'eau douce
DE2420327A1 (de) Verfahren und anordnung zur ermittlung des desinfektionsmittelanteils in schwimmbeckenwassern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081103

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 21/06 20060101ALI20160401BHEP

Ipc: B01J 47/14 20060101AFI20160401BHEP

Ipc: C02F 1/42 20060101ALI20160401BHEP

Ipc: F22D 11/00 20060101ALI20160401BHEP

INTG Intention to grant announced

Effective date: 20160419

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160830