EP2027423A2 - Verfahren zum verflüssigen von wasserstoff - Google Patents

Verfahren zum verflüssigen von wasserstoff

Info

Publication number
EP2027423A2
EP2027423A2 EP07725781A EP07725781A EP2027423A2 EP 2027423 A2 EP2027423 A2 EP 2027423A2 EP 07725781 A EP07725781 A EP 07725781A EP 07725781 A EP07725781 A EP 07725781A EP 2027423 A2 EP2027423 A2 EP 2027423A2
Authority
EP
European Patent Office
Prior art keywords
hydrogen
stream
precooling
hydrogen stream
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07725781A
Other languages
English (en)
French (fr)
Inventor
Andreas KÜNDIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2027423A2 publication Critical patent/EP2027423A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Definitions

  • the invention relates to a process for liquefying hydrogen.
  • Hydrogen in particular, is currently gaining in importance as an energy carrier due to the increasing energy demand and increased environmental awareness.
  • trucks, buses, cars and locomotives are powered by means of natural gas or hydrogen-powered engines and combinations of fuel cell and electric motor.
  • the storage of hydrogen "on board" the above-mentioned means of transport is most useful in liquid form.
  • the hydrogen must be cooled to about 25 K and held at this temperature - which can be realized only by appropriate insulation measures on the storage tanks or tanks -, but is a storage in the gaseous state due to the low density of GH 2 in the Rule in the above means of transport unfavorable, as the
  • processes for liquefying hydrogen include two process stages, namely the so-called pre-cooling stage and the subsequent liquefaction stage.
  • Hydrogen has to be cooled below its upper Joule-Thomson inversion temperature - which is the temperature below which an expanding gas cools - before it can be liquefied.
  • the hydrogen must therefore be pre-cooled to a temperature of at least -150 0 C, before it can be fed to the subsequent liquefaction process.
  • Gaseous hydrogen is usually about 75% as ortho and about 25% as para-hydrogen.
  • the ortho must be converted into para-hydrogen.
  • the aim is usually a para-hydrogen content of at least 99%. If such a conversion is not made, it will be faster Evaporation of liquefied hydrogen.
  • the conversion of ortho into para-hydrogen takes place by means of suitable conversion catalysts.
  • the object of the present invention is to specify a method for liquefying hydrogen which has a lower specific energy consumption than the processes belonging to the prior art.
  • the process according to the invention for liquefying hydrogen has the following process steps: a) precooling of the hydrogen stream by indirect heat exchange against a pressurized LNG stream up to a temperature between 140 and 130 K. b) precooling of the hydrogen stream by indirect heat exchange against a refrigerant bis to a temperature between 85 and 75 K, c) wherein the pre-cooling of the refrigerant takes place against a pressurized LNG stream, and d) cooling and at least partially liquefying the pre-cooled
  • Hydrogen stream by indirect heat exchange against another hydrogen stream, which is guided in a closed refrigeration cycle, e) wherein the precooling of the compressed, guided in the closed refrigeration cycle hydrogen flow takes place against a pressurized LNG stream.
  • the inventive method for liquefying hydrogen will be explained in more detail below with reference to the embodiment shown in the figure.
  • the hydrogen stream to be liquefied at a pressure of 2200 kPa and a temperature of 300 K is fed to the heat exchanger E1.
  • the hydrogen flow is cooled to a temperature of 135 K against an LNG flow, which is conducted via the conduit A through the heat exchanger E1 and has a temperature of 125 K and a pressure of 7,800 kPa.
  • Heat exchanger E2 fed and cooled in this against a nitrogen refrigerant circuit - which will be discussed in more detail below - to a temperature of 80 K.
  • the pre-cooled to 80 K hydrogen stream via line 3 of a preferably adsorptive cleaning device 4 are removed in the last trace contaminants from the hydrogen stream to be liquefied.
  • the cleaning device 4 consists of at least two adsorbers arranged in parallel, so that a continuous cleaning process can be realized by switching over.
  • Relaxation device 8 is a pressure reduction to about 200 kPa, resulting in a partial liquefaction of the cooled hydrogen stream results. After the liquefaction of the gas phase in the heat exchanger E7 a liquid hydrogen product stream is withdrawn via line 9 and fed to its further use and / or intermediate storage.
  • the expansion device 8 can also be formed from a combination consisting of an expansion valve and an ejector downstream of the expansion valve. In this case, the ejector can be supplied with gaseous hydrogen which accumulates during the intermediate storage of the liquid hydrogen product stream.
  • the open hydrogen refrigeration cycle is formed by the line sections 17, 11, 13, 15 and 16, the heat exchangers E4, E5, E6 and E7, at least one expansion device 12 and a preferably multi-stage compressor 14. Hydrogen is first fed via line 17 to the heat exchanger E4 and cooled in this. Subsequently, it is supplied via line 11 to the expansion device 12 and relaxed in this for the purpose of providing the required for the liquefaction of hydrogen peak cooling.
  • the compressed hydrogen stream is fed to a heat exchanger E6 and in this against another LNG substream, the
  • Heat exchanger E6 is supplied via line C, cooled. Via line 16, this cooled hydrogen stream is then fed to the heat exchanger E5, cooled in this against itself and then fed via the line sections 17 in turn to the already described heat exchanger E4.
  • each of these cooled hydrogen partial streams from the line sections 17 and 11 are supplied and fed to the illustrated refrigerant circuit 13 above the expansion device 12 (before and / or after E4) after the cold-performing relaxation.
  • the already mentioned nitrogen refrigeration cycle which serves to precool the natural gas flow to be liquefied by means of the heat exchanger E2, has, in addition to the line regions 20, 21, 23 and 24, a further heat exchanger E3, an expansion device 25 and a preferably multi-stage compressor unit 22.
  • the nitrogen stream which has been cooled to a low temperature in the expansion device 25, is fed via line 20 to the already mentioned heat exchanger E2 and warmed in this zone against the hydrogen stream to be cooled and evaporated. Subsequently, the vaporized nitrogen stream is fed via line 21 of the compressor unit 22 and compressed in this to the desired circuit pressure. Via line 23, the compressed nitrogen flow to the heat exchanger E3 zugeept rt and in this against a further LNG stream, which is supplied to the heat exchanger E3 via line B, cooled. Subsequently, the cooled nitrogen stream is fed via line 24 to the already mentioned expansion device 25.
  • the LNG which is provided in the environment of the hydrogen liquefaction process now serves for precooling the hydrogen stream to be liquefied (heat exchanger E1), cooling the compressed nitrogen in the nitrogen refrigeration cycle (heat exchanger E3) and cooling the compressed hydrogen stream circulating in the open hydrogen refrigeration cycle ( Heat exchanger E6).
  • the catalysts or catalyst internals required for the desired or optionally required ortho-para conversion of the hydrogen are not shown in the figure.
  • a first ortho-para conversion after the cleaning device 4 will be provided.
  • an increase in the para-hydrogen content of about 25 to about 43% take place.
  • the subsequent ortho-para conversion is preferably carried out by arranged in the passages of the heat exchanger E4 catalysts.
  • the withdrawn via line 9 liquid hydrogen product stream should consist of at least 99% of para-hydrogen.

Abstract

Die Erfindung betrifft ein Verfahren zum Verflüssigen von Wasserstoff. Zum Verringern des spezifischen Energieverbrauchs werden folgende Verfahrensschritte eingesetzt: a) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen einen unter Druck stehenden LNG-Strom bis auf eine Temperatur zwischen 140 und 130 K, b) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen ein Kältemittel bis auf eine Temperatur zwischen 85 und 75 K, c) wobei die Vorkühlung des Kältemittels gegen einen unter Druck stehenden LNG- Strom erfolgt, und d) Abkühlen und zumindest Teilverflüssigen des vorgekühlten Wasserstoffsstromes durch indirekten Wärmetausch gegen einen weiteren Wasserstoffs ström, der in einem geschlossenen Kältekreislauf geführt wird, e) wobei die Vorkühlung des verdichteten, im geschlossenen Kältekreislauf geführten Wasserstoffsstromes gegen einen unter Druck stehenden LNG-Strom erfolgt.

Description

Beschreibung
Verfahren zum Verflüssigen von Wasserstoff
Die Erfindung betrifft ein Verfahren zum Verflüssigen von Wasserstoff.
Insbesondere Wasserstoff gewinnt als Energieträger gegenwärtig durch den steigenden Energiebedarf und das gestiegene Umweltbewusstsein zunehmend an Bedeutung. So werden bereits Lastkraftwagen, Busse, Personenkraftwagen und Lokomotiven mittels mit Erdgas- oder Wasserstoff-betriebenen Motoren sowie mittels Kombinationen aus Brennstoffzelle und Elektromotor angetrieben. Die Speicherung des Wasserstoffs "an Bord" der oben genannten Verkehrsmittel ist dabei in flüssiger Form am sinnvollsten. Zwar muss der Wasserstoff hierzu auf etwa 25 K abgekühlt und auf dieser Temperatur gehalten werden - was nur durch entsprechende Isoliermaßnahmen an den Speicherbehältern bzw. -tanks realisiert werden kann -, doch ist eine Speicherung in gasförmigem Zustand aufgrund der geringen Dichte von GH2 in der Regel in den oben genannten Verkehrsmitteln ungünstiger, da die
Speicherung hierbei in großvolumigen und schweren Speicherbehältern bei hohen Drücken erfolgen muss.
Verfahren zum Verflüssigen von Wasserstoff beinhalten im Regelfall zwei Verfahrensstufen, nämlich die sog. Vorkühl-Stufe sowie die ihr nachgeschaltete Verflüssigungsstufe. Wasserstoff muss dabei bis unterhalb seiner oberen Joule- Thomson-Inversionstemperatur - darunter versteht man diejenige Temperatur, unterhalb derer ein expandierendes Gas abkühlt - abgekühlt werden, bevor er verflüssigt werden kann. Im Regelfall muss der Wasserstoff deshalb auf eine Temperatur von wenigstens -150 0C vorgekühlt werden, bevor er dem nachfolgenden Verflüssigungsprozess zugeführt werden kann.
Gasförmiger Wasserstoff liegt üblicherweise zu ca. 75 % als Ortho- und zu ca. 25 % als Para-Wasserstoff vor. Während des Verflüssigungsprozesses muss daher - da der verflüssigte Wasserstoff im Regelfall über einen längeren Zeitraum zwischengespeichert werden soll - der Ortho- in Para-Wasserstoff umgewandelt werden. Angestrebt wird üblicherweise ein Para-Wasserstoff-Anteil von wenigstens 99 %. Wird eine derartige Konversion nicht vorgenommen, kommt es zu einer schnelleren Verdampfung des verflüssigten Wasserstoffes. Die Umwand lung von Ortho- in ParaWasserstoff geschieht mittels geeigneter Umwandlungs-Katalysatoren.
Aus der Literatur ist eine Vielzahl von Verfahren zum Verflüssigen von Wasserstoff bekannt, bei denen die Vorkühlung des gasförmigen Wasserstoffs gegen einen Kältemittel- oder Kältemittelgemischkreislauf erfolgt. Als Kältemittel kommt hierbei oftmals Stickstoff zur Anwendung. Aus der internationalen Patentanmeldung WO 2005/080892 sowie der europäischen Patentanmeldung 1 580 506 sind Wasserstoff-Verflüssigungsverfahren bekannt, bei denen die Vorkühlung des zu verflüssigenden Wasserstoffstromes im indirekten Wärmetausch mit einem unter Druck stehenden LNG(Liquid Natural Gas)-Strom erfolgt. Das dabei verdampfende LNG gibt seine Kälte an den vorzukühlenden gasförmigen Wasserstoffstrom ab. Die Verdampfung von LNG ist insbesondere an LNG-Terminals ein Thema. Im Regelfall erfolgt diese Verdampfung mittels geeigneter, in Wasserbäder eingetauchter Erdgasbrenner, die mit einem kleinen Teilstrom des LNGs betrieben werden.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Verflüssigen von Wasserstoff anzugeben, das gegenüber den zum Stand der Technik zählenden Verfahren einen geringeren spezifischen Energieverbrauch aufweist.
Das erfindungsgemäße Verfahren zum Verflüssigen von Wasserstoff weist folgende Verfahrensschritte auf: a) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen einen unter Druck stehenden LNG-Strom bis auf eine Temperatur zwischen 140 und 130 K, b) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen ein Kältemittel bis auf eine Temperatur zwischen 85 und 75 K, c) wobei die Vorkühlung des Kältemittels gegen einen unter Druck stehenden LNG-Strom erfolgt, und d) Abkühlen und zumindest Teilverflüssigen des vorgekühlten
Wasserstoffsstromes durch indirekten Wärmetausch gegen einen weiteren Wasserstoffsstrom, der in einem geschlossenen Kältekreislauf geführt wird, e) wobei die Vorkühlung des verdichteten, im geschlossenen Kältekreislauf geführten Wasserstoffsstromes gegen einen unter Druck stehenden LNG-Strom erfolgt. Das erfindungsgemäße Verfahren zum Verflüssigen von Wasserstoff sei im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.
Über Leitung 1 wird der zu verflüssigende Wasserstoffstrom mit einem Druck von 2200 kPa und einer Temperatur von 300 K dem Wärmetauscher E1 zugeführt. In diesem wird der Wasserstoffstrom gegen einen LNG-Strom, der über die Leitung A durch den Wärmetauscher E1 geführt wird und eine Temperatur von 125 K und einen Druck von 7.800 kPa aufweist, auf eine Temperatur von 135 K abgekühlt.
Es sei betont, dass sämtliche in der Figur dargestellten Wärmetauscher jeweils einen oder auch mehrere, ggf. unterschiedliche Wärmetauscher bzw. Wärmetauschertypen repräsentieren.
Der vorgekühlte Wasserstoffstrom wird nunmehr über Leitung 2 einem weiteren
Wärmetauscher E2 zugeführt und in diesem gegen einen Stickstoff-Kältekreislauf - auf den im Folgenden noch näher eingegangen werden wird - auf eine Temperatur von 80 K abgekühlt.
Anschließend wird der auf 80 K vorgekühlte Wasserstoffstrom über Leitung 3 einer vorzugsweise adsorptiv arbeitenden Reinigungsvorrichtung 4, in der letzte Verunreinigungsspuren aus dem zu verflüssigenden Wasserstoffstrom entfernt werden, zugeführt. Im Regelfall besteht die Reinigungsvorrichtung 4 aus wenigstens zwei, parallel angeordneten Adsorbern, so dass durch Umschalten ein kontinuierlicher Reinigungsprozess realisierbar ist.
Der aus der Reinigungsvorrichtung 4 über Leitung 5 abgezogene, zu verflüssigende Wasserstoffstrom wird dem Wärmetauscher E4 zugeführt und in diesem gegen den noch zu beschreibenden, geschlossenen Wasserstoff-Kältekreislauf auf eine Temperatur von 26 K abgekühlt. In der dem Wärmetauscher E4 nachgeschalteten
Entspannungsvorrichtung 8 erfolgt eine Druckminderung auf ca. 200 kPa, woraus eine Teilverflüssigung des abgekühlten Wasserstoffstromes resultiert. Nach erfolgter Verflüssigung der Gasphase im Wärmetauscher E7 wird über Leitung 9 ein flüssiger Wasserstoffproduktstrom abgezogen und seiner weiteren Verwendung und/oder Zwischenspeicherung zugeführt. Alternativ kann die Entspannungsvorrichtung 8 auch aus einer Kombination, bestehend aus einem Entspannungsventil und einem dem Entspannungsventil nachgeschalteten Ejektor, gebildet werden. Dem Ejektor kann hierbei während der Zwischenspeicherung des flüssigen Wasserstoffproduktstromes anfallender gasförmiger Wasserstoff zugeführt werden.
Der offene Wasserstoff-Kältekreislauf wird durch die Leitungsabschnitte 17, 11 , 13, 15 und 16, die Wärmetauscher E4, E5, E6 und E7, wenigstens eine Entspannungsvorrichtung 12 und einen vorzugsweise mehrstufig ausgebildeten Verdichter 14 gebildet. Wasserstoff wird über Leitung 17 zunächst dem Wärmetauscher E4 zugeführt und in diesem abgekühlt. Anschließend wird er über Leitung 11 der Entspannungsvorrichtung 12 zugeführt und in dieser zum Zwecke der Bereitstellung der für die Verflüssigung des Wasserstoffes benötigten Spitzenkälte entspannt.
Anschließend erfolgt im Wärmetauscher E7 die Verdampfung und im Wärmetauscher E4 ein Anwärmen des entspannten Wasserstoffstromes im indirekten Wärmetausch mit dem abzukühlenden und zu verflüssigenden Wasserstoffstrom in Leitung 17. Über Leitung 13 wird der angewärmte Wasserstoffstrom dem Wärmetauscher E5 zugeführt und in diesem gegen sich selbst angewärmt, bevor er in der Verdichtereinheit 14 auf den gewünschten Kreislaufdruck verdichtet wird.
Über Leitung 15 wird der verdichtete Wasserstoffstrom einem Wärmetauscher E6 zugeführt und in diesem gegen einen weiteren LNG-Teilstrom, der dem
Wärmetauscher E6 über Leitung C zugeführt wird, abgekühlt. Über Leitung 16 wird dieser abgekühlte Wasserstoffstrom anschließend dem Wärmetauscher E5 zugeführt, in diesem gegen sich selbst abgekühlt und sodann über die Leitungsabschnitte 17 wiederum dem bereits beschrieben Wärmetauscher E4 zugeführt.
In der Figur sind der Übersichtlichkeit halber mehrere Entspannungsvorrichtungen nicht dargestellt; diesen werden jeweils abgekühlte Wasserstoffteilströme aus den Leitungsabschnitten 17 und 11 zugeführt und nach erfolgter kälteleistender Entspannung wieder dem dargestellten Kältekreislauf 13 oberhalb der Entspannungsvorrichtung 12 (vor und/oder hinter E4) zugeführt. Der bereits erwähnte Stickstoff-Kältekreislauf, der der Vorkühlung des zu verflüssigenden Erdgasstromes mittels des Wärmetauschers E2 dient, weist neben den Leitungsbereichen 20, 21 , 23 und 24 einen weiteren Wärmetauscher E3, eine Entspannungsvorrichtung 25 sowie eine vorzugsweise mehrstufig ausgebildete Verdichtereinheit 22 auf.
Der in der Entspannungsvorrichtung 25 kälteleistend entspannte Stickstoffstrom wird über Leitung 20 dem bereits erwähnten Wärmetauscher E2 zugeführt und in diesem gegen den abzukühlenden Wasserstoffstrom angewärmt und verdampft. Anschließend wird der verdampfte Stickstoffstrom über Leitung 21 der Verdichtereinheit 22 zugeführt und in dieser auf den gewünschten Kreislaufdruck verdichtet. Über Leitung 23 wird der verdichtete Stickstoffstrom dem Wärmetauscher E3 zugefüh rt und in diesem gegen einen weiteren LNG-Strom, der dem Wärmetauscher E3 über Leitung B zugeführt wird, abgekühlt. Anschließend wird der abgekühlte Stickstoffstrom über Leitung 24 der bereits erwähnten Entspannungsvorrichtung 25 zugeführt.
Erfindungsgemäß dient das im Umfeld des Wasserstoff-Verflüssigungsprozesses bereitstehende LNG nunmehr der Vorkühlung des zu verflüssigenden Wasserstoffstromes (Wärmetauscher E1 ), der Abkühlung des verdichteten Stickstoffes im Stickstoff-Kältekreislauf (Wärmetauscher E3) sowie der Abkühlung des in dem offenen Wasserstoff-Kältekreislauf zirkulierenden verdichteten Wasserstoffstromes (Wärmetauscher E6).
Der Übersichtlichkeit halber sind in der Figur die für die gewünschte bzw. ggf. erforderliche Ortho-Para-Konversion des Wasserstoffes erforderlichen Katalysatoren bzw. Katalysatoreinbauten nicht dargestellt. Im Regelfall wird eine erste Ortho-Para- Konversion nach der Reinigungsvorrichtung 4 vorgesehen werden. In dieser kann eine Erhöhung des Para-Wasserstoffgehaltes von ca. 25 auf ca. 43 % erfolgen. Die nachfolgende Ortho-Para-Konversion erfolgt vorzugsweise durch in den Passagen des Wärmetauschers E4 angeordnete Katalysatoren. Vorzugsweise sollte der über Leitung 9 abgezogene flüssige Wasserstoffproduktstrom zu wenigstens 99 % aus ParaWasserstoff bestehen.

Claims

Patentansprüche
1. Verfahren zum Verflüssigen von Wasserstoff, aufweisend die folgenden Verfahrensschritte: a) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen einen unter Druck stehenden LNG-Strom bis auf eine Temperatur zwischen 140 und 130 K, b) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen ein Kältemittel bis auf eine Temperatur zwischen 85 und 75 K, c) wobei die Vorkühlung des Kältemittels gegen einen unter Druck stehenden LNG-Strom erfolgt, und d) Abkühlen und zumindest Teilverflüssigen des vorgekühlten Wasserstoffsstromes durch indirekten Wärmetausch gegen einen weiteren Wasserstoffsstrom, der in einem geschlossenen Kältekreislauf geführt wird, e) wobei die Vorkühlung des verdichteten, im geschlossenen Kältekreislauf geführten Wasserstoffsstromes gegen einen unter Druck stehenden LNG-Strom erfolgt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Kältemittel für die Vorkühlung des Wasserstoffsstromes Stickstoff verwendet wird.
EP07725781A 2006-06-12 2007-06-01 Verfahren zum verflüssigen von wasserstoff Withdrawn EP2027423A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027199A DE102006027199A1 (de) 2006-06-12 2006-06-12 Verfahren zum Verflüssigen von Wasserstoff
PCT/EP2007/004902 WO2007144078A2 (de) 2006-06-12 2007-06-01 Verfahren zum verflüssigen von wasserstoff

Publications (1)

Publication Number Publication Date
EP2027423A2 true EP2027423A2 (de) 2009-02-25

Family

ID=38663834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07725781A Withdrawn EP2027423A2 (de) 2006-06-12 2007-06-01 Verfahren zum verflüssigen von wasserstoff

Country Status (9)

Country Link
US (1) US20100083695A1 (de)
EP (1) EP2027423A2 (de)
JP (1) JP2009540259A (de)
KR (1) KR20090016515A (de)
CN (1) CN101466990A (de)
CA (1) CA2655037A1 (de)
DE (1) DE102006027199A1 (de)
RU (1) RU2009100154A (de)
WO (1) WO2007144078A2 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080919B (zh) * 2011-01-18 2013-08-07 四川亚联高科技股份有限公司 一种氢液化工艺
JP5783945B2 (ja) * 2012-03-30 2015-09-24 大陽日酸株式会社 液化装置及びその起動方法
GB2512360B (en) 2013-03-27 2015-08-05 Highview Entpr Ltd Method and apparatus in a cryogenic liquefaction process
KR101458098B1 (ko) * 2013-06-26 2014-11-05 한국과학기술연구원 수소 액화 장치용 프리쿨러
EP3162871A1 (de) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Kältekreislauf mit wasserstoff-neon-mischung zur wasserstoffmassekühlung oder -verflüssigung
EP3163235A1 (de) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Neuartiges kaskadenverfahren zur kühlung und verflüssigung von wasserstoff in grossem umfang
EP3163236A1 (de) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Grossflächige wasserstoffverflüssigung mittels eines hochdruck-wasserstoff-kältekreislaufs in kombination mit einer neuartigen vorkühlung mit einzelnem gemischtem kühlmittel
RU2713556C1 (ru) * 2016-03-10 2020-02-05 ДжГК Корпорейшн Новое производственное оборудование и способ получения сжиженного водорода и сжиженного природного газа
US10634425B2 (en) * 2016-08-05 2020-04-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of industrial gas site with liquid hydrogen production
CN106352656B (zh) * 2016-08-23 2018-10-09 杭州福斯达深冷装备股份有限公司 一种用液氮洗制氨合成气联产lng的装置及其方法
KR20200109054A (ko) * 2019-03-12 2020-09-22 주식회사 한국초저온 액화 천연 가스의 냉열을 이용하는 수소 액화 장치
KR102267677B1 (ko) 2019-10-22 2021-06-22 고등기술연구원연구조합 액체 수소 냉열 순환을 이용한 수소 액화 및 냉열 이송 시스템
US20210131725A1 (en) * 2019-10-31 2021-05-06 Hylium Industries, Inc. Hydrogen liquefaction system
KR102328753B1 (ko) * 2019-12-02 2021-11-18 한국기계연구원 수소 액화장치 및 수소 액화방법
KR102470782B1 (ko) * 2020-08-19 2022-11-28 고등기술연구원연구조합 수소 액화 시스템 및 방법
CN112557577A (zh) * 2020-10-22 2021-03-26 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种正仲氢催化转化动态性能测试的系统
KR102373686B1 (ko) 2020-12-23 2022-03-15 주식회사 헥사 수소의 예냉기모듈 및 이를 포함하는 수소액화기
FR3123422B1 (fr) * 2021-05-31 2024-01-19 Engie Dispositif et procédé de refroidissement d’un flux d’un fluide cible à une température inférieure ou égale à 90 k
FR3132566B1 (fr) 2022-02-04 2024-03-08 Air Liquide Procédé et appareil de refroidissement de dioxyde de carbone et d’hydrogène
CN117168087A (zh) * 2022-05-25 2023-12-05 上海司氢科技有限公司 模块化氢液化系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE573733A (de) * 1957-12-11 1900-01-01
US3398545A (en) * 1965-03-19 1968-08-27 Conch Int Methane Ltd Hydrogen recovery from a refinery tail gas employing two stage scrubbing
US3347055A (en) * 1965-03-26 1967-10-17 Air Reduction Method for recuperating refrigeration
US4090361A (en) * 1976-03-15 1978-05-23 Terry Lynn E Power cycles based upon cyclical hydriding and dehydriding of a material
GB2142423B (en) * 1983-03-10 1986-08-06 Smith Dr Eric Murray Production of liquid hydrogen
JPS61140777A (ja) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 液体h2及び気体天然ガスの製造方法
JPH0448184A (ja) * 1990-06-13 1992-02-18 Tokyo Gas Co Ltd 液体水素の製造方法
FR2723183B1 (fr) * 1994-07-29 1997-01-10 Grenier Maurice Procede et installation de liquefaction d'hydrogene
JP3647028B2 (ja) * 2001-02-19 2005-05-11 日本エア・リキード株式会社 液体水素の製造方法および液体水素の製造設備
JP4429552B2 (ja) * 2001-07-16 2010-03-10 関西電力株式会社 液体水素の製造システム
JP2004210597A (ja) * 2003-01-06 2004-07-29 Toshiba Corp 排熱利用水素・酸素システムおよび液体水素の製造方法
JP4217656B2 (ja) * 2004-01-27 2009-02-04 関西電力株式会社 水素液化装置及び液体水素製造システム
WO2005080892A1 (en) * 2004-02-23 2005-09-01 Shell Internationale Research Maatschappij B.V. Liquefying hydrogen
GB0406615D0 (en) * 2004-03-24 2004-04-28 Air Prod & Chem Process and apparatus for liquefying hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007144078A2 *

Also Published As

Publication number Publication date
US20100083695A1 (en) 2010-04-08
KR20090016515A (ko) 2009-02-13
RU2009100154A (ru) 2010-07-20
CA2655037A1 (en) 2007-12-21
WO2007144078A2 (de) 2007-12-21
WO2007144078A3 (de) 2008-01-17
JP2009540259A (ja) 2009-11-19
DE102006027199A1 (de) 2007-12-13
CN101466990A (zh) 2009-06-24

Similar Documents

Publication Publication Date Title
EP2027423A2 (de) Verfahren zum verflüssigen von wasserstoff
DE112007003171T5 (de) System und Verfahren zur Herstellung von Flüssigerdgas
DE1226616B (de) Verfahren und Einrichtung zur Gewinnung von gasfoermigem Drucksauerstoff mit gleichzeitiger Erzeugung fluessiger Zerlegungsprodukte durch Tieftemperatur-Luftzerlegung
EP2880267B1 (de) Verfahren und vorrichtung zur erzeugung elektrischer energie
WO2010121752A2 (de) Verfahren zum verflüssigen einer kohlenwasserstoff-reichen fraktion
DE102011014678A1 (de) Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms
DE19612173C1 (de) Verfahren zum Verflüssigen eines kohlenwasserstoffreichen Einsatzstromes
DE102004005305A1 (de) Verfahren zum Rückverflüssigen eines Gases
DE102012017654A1 (de) Verfahren und Vorrichtung zur Stickstoffverflüssigung
EP4001462A1 (de) Verfahren und anlage zur herstellung eines flüssigsauerstoff- produkts und eines flüssigwasserstoffprodukts
DE102023100732A1 (de) Eine photovoltaische Wasserstoffspeichereinheit gekoppelt mit Kälterückgewinnung zur Herstellung von Trockeneis und deren Verwendungsverfahren
WO2007020252A2 (de) Verfahren und anlage zum verflüssigen eines kohlenwasserstoffreichen stroms
DE947711C (de) Verfahren zur Gewinnung einer kohlenoxydreichen Fraktion durch Tiefkuehlung verdichteter kohlenoxydhaltiger Gase
DE102006021620A1 (de) Vorbehandlung eines zu verflüssigenden Erdgasstromes
DE102010047300A1 (de) Minimierung von Produktionsverlusten kryogener Medien
DE1023061B (de) Verfahren zur Zerlegung von Wasserstoff enthaltenden Gasgemischen, insbesondere Koksofengas, und Vorrichtung zur Durchfuehrung des Verfahrens
DE102006013686B3 (de) Verfahren zur Verflüssigung von Erdgas
EP2770286B1 (de) Verfahren und Vorrichtung zur Gewinnung von Hochdruck-Sauerstoff und Hochdruck-Stickstoff
DE955867C (de) Verfahren zum Trennen eines verdichteten, wasserstofreichen Gasgemisches
DE102004036708A1 (de) Verfahren zum Verflüssigen eines Kohlenwasserstoff-reichen Stromes
DE2736491A1 (de) Verfahren zum thermischen isolieren einer verfluessigungsanlage fuer tiefsiedende gase
DE102021117030B4 (de) Gasgemisch-Zerlegungsanlage sowie Verfahren zum Abtrennen von wenigstens einem Hauptfluid aus einem Gasgemisch
DE102011115987B4 (de) Erdgasverflüssigung
DE102020130946B4 (de) Kryogenes Verfahren zur Wertstoffgewinnung aus einem wasserstoffreichen Einsatzgas
DE551358C (de) Verfahren zur Zerlegung von Koksofengas oder aehnlicher brennbarer Gasgemische durchVerfluessigen seiner Bestandteile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110315