EP2027423A2 - Process for liquefying hydrogen - Google Patents

Process for liquefying hydrogen

Info

Publication number
EP2027423A2
EP2027423A2 EP07725781A EP07725781A EP2027423A2 EP 2027423 A2 EP2027423 A2 EP 2027423A2 EP 07725781 A EP07725781 A EP 07725781A EP 07725781 A EP07725781 A EP 07725781A EP 2027423 A2 EP2027423 A2 EP 2027423A2
Authority
EP
European Patent Office
Prior art keywords
hydrogen
stream
precooling
hydrogen stream
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07725781A
Other languages
German (de)
French (fr)
Inventor
Andreas KÜNDIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP2027423A2 publication Critical patent/EP2027423A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0067Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/60Expansion by ejector or injector, e.g. "Gasstrahlpumpe", "venturi mixing", "jet pumps"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/90Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
    • F25J2270/904External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration by liquid or gaseous cryogen in an open loop

Definitions

  • the invention relates to a process for liquefying hydrogen.
  • Hydrogen in particular, is currently gaining in importance as an energy carrier due to the increasing energy demand and increased environmental awareness.
  • trucks, buses, cars and locomotives are powered by means of natural gas or hydrogen-powered engines and combinations of fuel cell and electric motor.
  • the storage of hydrogen "on board" the above-mentioned means of transport is most useful in liquid form.
  • the hydrogen must be cooled to about 25 K and held at this temperature - which can be realized only by appropriate insulation measures on the storage tanks or tanks -, but is a storage in the gaseous state due to the low density of GH 2 in the Rule in the above means of transport unfavorable, as the
  • processes for liquefying hydrogen include two process stages, namely the so-called pre-cooling stage and the subsequent liquefaction stage.
  • Hydrogen has to be cooled below its upper Joule-Thomson inversion temperature - which is the temperature below which an expanding gas cools - before it can be liquefied.
  • the hydrogen must therefore be pre-cooled to a temperature of at least -150 0 C, before it can be fed to the subsequent liquefaction process.
  • Gaseous hydrogen is usually about 75% as ortho and about 25% as para-hydrogen.
  • the ortho must be converted into para-hydrogen.
  • the aim is usually a para-hydrogen content of at least 99%. If such a conversion is not made, it will be faster Evaporation of liquefied hydrogen.
  • the conversion of ortho into para-hydrogen takes place by means of suitable conversion catalysts.
  • the object of the present invention is to specify a method for liquefying hydrogen which has a lower specific energy consumption than the processes belonging to the prior art.
  • the process according to the invention for liquefying hydrogen has the following process steps: a) precooling of the hydrogen stream by indirect heat exchange against a pressurized LNG stream up to a temperature between 140 and 130 K. b) precooling of the hydrogen stream by indirect heat exchange against a refrigerant bis to a temperature between 85 and 75 K, c) wherein the pre-cooling of the refrigerant takes place against a pressurized LNG stream, and d) cooling and at least partially liquefying the pre-cooled
  • Hydrogen stream by indirect heat exchange against another hydrogen stream, which is guided in a closed refrigeration cycle, e) wherein the precooling of the compressed, guided in the closed refrigeration cycle hydrogen flow takes place against a pressurized LNG stream.
  • the inventive method for liquefying hydrogen will be explained in more detail below with reference to the embodiment shown in the figure.
  • the hydrogen stream to be liquefied at a pressure of 2200 kPa and a temperature of 300 K is fed to the heat exchanger E1.
  • the hydrogen flow is cooled to a temperature of 135 K against an LNG flow, which is conducted via the conduit A through the heat exchanger E1 and has a temperature of 125 K and a pressure of 7,800 kPa.
  • Heat exchanger E2 fed and cooled in this against a nitrogen refrigerant circuit - which will be discussed in more detail below - to a temperature of 80 K.
  • the pre-cooled to 80 K hydrogen stream via line 3 of a preferably adsorptive cleaning device 4 are removed in the last trace contaminants from the hydrogen stream to be liquefied.
  • the cleaning device 4 consists of at least two adsorbers arranged in parallel, so that a continuous cleaning process can be realized by switching over.
  • Relaxation device 8 is a pressure reduction to about 200 kPa, resulting in a partial liquefaction of the cooled hydrogen stream results. After the liquefaction of the gas phase in the heat exchanger E7 a liquid hydrogen product stream is withdrawn via line 9 and fed to its further use and / or intermediate storage.
  • the expansion device 8 can also be formed from a combination consisting of an expansion valve and an ejector downstream of the expansion valve. In this case, the ejector can be supplied with gaseous hydrogen which accumulates during the intermediate storage of the liquid hydrogen product stream.
  • the open hydrogen refrigeration cycle is formed by the line sections 17, 11, 13, 15 and 16, the heat exchangers E4, E5, E6 and E7, at least one expansion device 12 and a preferably multi-stage compressor 14. Hydrogen is first fed via line 17 to the heat exchanger E4 and cooled in this. Subsequently, it is supplied via line 11 to the expansion device 12 and relaxed in this for the purpose of providing the required for the liquefaction of hydrogen peak cooling.
  • the compressed hydrogen stream is fed to a heat exchanger E6 and in this against another LNG substream, the
  • Heat exchanger E6 is supplied via line C, cooled. Via line 16, this cooled hydrogen stream is then fed to the heat exchanger E5, cooled in this against itself and then fed via the line sections 17 in turn to the already described heat exchanger E4.
  • each of these cooled hydrogen partial streams from the line sections 17 and 11 are supplied and fed to the illustrated refrigerant circuit 13 above the expansion device 12 (before and / or after E4) after the cold-performing relaxation.
  • the already mentioned nitrogen refrigeration cycle which serves to precool the natural gas flow to be liquefied by means of the heat exchanger E2, has, in addition to the line regions 20, 21, 23 and 24, a further heat exchanger E3, an expansion device 25 and a preferably multi-stage compressor unit 22.
  • the nitrogen stream which has been cooled to a low temperature in the expansion device 25, is fed via line 20 to the already mentioned heat exchanger E2 and warmed in this zone against the hydrogen stream to be cooled and evaporated. Subsequently, the vaporized nitrogen stream is fed via line 21 of the compressor unit 22 and compressed in this to the desired circuit pressure. Via line 23, the compressed nitrogen flow to the heat exchanger E3 zugeept rt and in this against a further LNG stream, which is supplied to the heat exchanger E3 via line B, cooled. Subsequently, the cooled nitrogen stream is fed via line 24 to the already mentioned expansion device 25.
  • the LNG which is provided in the environment of the hydrogen liquefaction process now serves for precooling the hydrogen stream to be liquefied (heat exchanger E1), cooling the compressed nitrogen in the nitrogen refrigeration cycle (heat exchanger E3) and cooling the compressed hydrogen stream circulating in the open hydrogen refrigeration cycle ( Heat exchanger E6).
  • the catalysts or catalyst internals required for the desired or optionally required ortho-para conversion of the hydrogen are not shown in the figure.
  • a first ortho-para conversion after the cleaning device 4 will be provided.
  • an increase in the para-hydrogen content of about 25 to about 43% take place.
  • the subsequent ortho-para conversion is preferably carried out by arranged in the passages of the heat exchanger E4 catalysts.
  • the withdrawn via line 9 liquid hydrogen product stream should consist of at least 99% of para-hydrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

The invention relates to a process for liquefying hydrogen. To reduce the specific energy consumption, the following process steps are used: a) the precooling of the hydrogen stream by indirect heat exchange against a pressurized LNG stream to a temperature of between 140 and 130 K, b) the precooling of the hydrogen stream by indirect heat exchange against a coolant to a temperature of between 85 and 75 K, c) where the precooling of the coolant takes place against a pressurized LNG stream, and d) the cooling and at least partial liquefaction of the precooled hydrogen stream takes place by indirect heat exchange against another hydrogen stream channeled through a closed cooling circuit, e) where the precooling of the condensed hydrogen stream, which is channeled through a closed cooling circuit, takes place against a pressurized LNG stream.

Description

Beschreibung description
Verfahren zum Verflüssigen von WasserstoffProcess for liquefying hydrogen
Die Erfindung betrifft ein Verfahren zum Verflüssigen von Wasserstoff.The invention relates to a process for liquefying hydrogen.
Insbesondere Wasserstoff gewinnt als Energieträger gegenwärtig durch den steigenden Energiebedarf und das gestiegene Umweltbewusstsein zunehmend an Bedeutung. So werden bereits Lastkraftwagen, Busse, Personenkraftwagen und Lokomotiven mittels mit Erdgas- oder Wasserstoff-betriebenen Motoren sowie mittels Kombinationen aus Brennstoffzelle und Elektromotor angetrieben. Die Speicherung des Wasserstoffs "an Bord" der oben genannten Verkehrsmittel ist dabei in flüssiger Form am sinnvollsten. Zwar muss der Wasserstoff hierzu auf etwa 25 K abgekühlt und auf dieser Temperatur gehalten werden - was nur durch entsprechende Isoliermaßnahmen an den Speicherbehältern bzw. -tanks realisiert werden kann -, doch ist eine Speicherung in gasförmigem Zustand aufgrund der geringen Dichte von GH2 in der Regel in den oben genannten Verkehrsmitteln ungünstiger, da dieHydrogen, in particular, is currently gaining in importance as an energy carrier due to the increasing energy demand and increased environmental awareness. Thus, trucks, buses, cars and locomotives are powered by means of natural gas or hydrogen-powered engines and combinations of fuel cell and electric motor. The storage of hydrogen "on board" the above-mentioned means of transport is most useful in liquid form. Although the hydrogen must be cooled to about 25 K and held at this temperature - which can be realized only by appropriate insulation measures on the storage tanks or tanks -, but is a storage in the gaseous state due to the low density of GH 2 in the Rule in the above means of transport unfavorable, as the
Speicherung hierbei in großvolumigen und schweren Speicherbehältern bei hohen Drücken erfolgen muss.Storage must be done here in large-volume and heavy storage containers at high pressures.
Verfahren zum Verflüssigen von Wasserstoff beinhalten im Regelfall zwei Verfahrensstufen, nämlich die sog. Vorkühl-Stufe sowie die ihr nachgeschaltete Verflüssigungsstufe. Wasserstoff muss dabei bis unterhalb seiner oberen Joule- Thomson-Inversionstemperatur - darunter versteht man diejenige Temperatur, unterhalb derer ein expandierendes Gas abkühlt - abgekühlt werden, bevor er verflüssigt werden kann. Im Regelfall muss der Wasserstoff deshalb auf eine Temperatur von wenigstens -150 0C vorgekühlt werden, bevor er dem nachfolgenden Verflüssigungsprozess zugeführt werden kann.As a rule, processes for liquefying hydrogen include two process stages, namely the so-called pre-cooling stage and the subsequent liquefaction stage. Hydrogen has to be cooled below its upper Joule-Thomson inversion temperature - which is the temperature below which an expanding gas cools - before it can be liquefied. As a rule, the hydrogen must therefore be pre-cooled to a temperature of at least -150 0 C, before it can be fed to the subsequent liquefaction process.
Gasförmiger Wasserstoff liegt üblicherweise zu ca. 75 % als Ortho- und zu ca. 25 % als Para-Wasserstoff vor. Während des Verflüssigungsprozesses muss daher - da der verflüssigte Wasserstoff im Regelfall über einen längeren Zeitraum zwischengespeichert werden soll - der Ortho- in Para-Wasserstoff umgewandelt werden. Angestrebt wird üblicherweise ein Para-Wasserstoff-Anteil von wenigstens 99 %. Wird eine derartige Konversion nicht vorgenommen, kommt es zu einer schnelleren Verdampfung des verflüssigten Wasserstoffes. Die Umwand lung von Ortho- in ParaWasserstoff geschieht mittels geeigneter Umwandlungs-Katalysatoren.Gaseous hydrogen is usually about 75% as ortho and about 25% as para-hydrogen. During the liquefaction process, therefore, as the liquefied hydrogen is usually to be stored for a longer period of time, the ortho must be converted into para-hydrogen. The aim is usually a para-hydrogen content of at least 99%. If such a conversion is not made, it will be faster Evaporation of liquefied hydrogen. The conversion of ortho into para-hydrogen takes place by means of suitable conversion catalysts.
Aus der Literatur ist eine Vielzahl von Verfahren zum Verflüssigen von Wasserstoff bekannt, bei denen die Vorkühlung des gasförmigen Wasserstoffs gegen einen Kältemittel- oder Kältemittelgemischkreislauf erfolgt. Als Kältemittel kommt hierbei oftmals Stickstoff zur Anwendung. Aus der internationalen Patentanmeldung WO 2005/080892 sowie der europäischen Patentanmeldung 1 580 506 sind Wasserstoff-Verflüssigungsverfahren bekannt, bei denen die Vorkühlung des zu verflüssigenden Wasserstoffstromes im indirekten Wärmetausch mit einem unter Druck stehenden LNG(Liquid Natural Gas)-Strom erfolgt. Das dabei verdampfende LNG gibt seine Kälte an den vorzukühlenden gasförmigen Wasserstoffstrom ab. Die Verdampfung von LNG ist insbesondere an LNG-Terminals ein Thema. Im Regelfall erfolgt diese Verdampfung mittels geeigneter, in Wasserbäder eingetauchter Erdgasbrenner, die mit einem kleinen Teilstrom des LNGs betrieben werden.From the literature a variety of methods for liquefying hydrogen is known in which the pre-cooling of the gaseous hydrogen takes place against a refrigerant or refrigerant mixture cycle. Nitrogen is often used as the refrigerant here. From the international patent application WO 2005/080892 and the European patent application 1 580 506 hydrogen liquefaction processes are known in which the precooling of the hydrogen stream to be liquefied takes place in indirect heat exchange with a pressurized LNG (liquid natural gas) stream. The thereby evaporating LNG releases its cold to the vorzukühlenden gaseous hydrogen flow. The evaporation of LNG is an issue especially at LNG terminals. As a rule, this evaporation takes place by means of suitable natural gas burners immersed in water baths, which are operated with a small partial flow of the LNG.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zum Verflüssigen von Wasserstoff anzugeben, das gegenüber den zum Stand der Technik zählenden Verfahren einen geringeren spezifischen Energieverbrauch aufweist.The object of the present invention is to specify a method for liquefying hydrogen which has a lower specific energy consumption than the processes belonging to the prior art.
Das erfindungsgemäße Verfahren zum Verflüssigen von Wasserstoff weist folgende Verfahrensschritte auf: a) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen einen unter Druck stehenden LNG-Strom bis auf eine Temperatur zwischen 140 und 130 K, b) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen ein Kältemittel bis auf eine Temperatur zwischen 85 und 75 K, c) wobei die Vorkühlung des Kältemittels gegen einen unter Druck stehenden LNG-Strom erfolgt, und d) Abkühlen und zumindest Teilverflüssigen des vorgekühltenThe process according to the invention for liquefying hydrogen has the following process steps: a) precooling of the hydrogen stream by indirect heat exchange against a pressurized LNG stream up to a temperature between 140 and 130 K. b) precooling of the hydrogen stream by indirect heat exchange against a refrigerant bis to a temperature between 85 and 75 K, c) wherein the pre-cooling of the refrigerant takes place against a pressurized LNG stream, and d) cooling and at least partially liquefying the pre-cooled
Wasserstoffsstromes durch indirekten Wärmetausch gegen einen weiteren Wasserstoffsstrom, der in einem geschlossenen Kältekreislauf geführt wird, e) wobei die Vorkühlung des verdichteten, im geschlossenen Kältekreislauf geführten Wasserstoffsstromes gegen einen unter Druck stehenden LNG-Strom erfolgt. Das erfindungsgemäße Verfahren zum Verflüssigen von Wasserstoff sei im Folgenden anhand des in der Figur dargestellten Ausführungsbeispieles näher erläutert.Hydrogen stream by indirect heat exchange against another hydrogen stream, which is guided in a closed refrigeration cycle, e) wherein the precooling of the compressed, guided in the closed refrigeration cycle hydrogen flow takes place against a pressurized LNG stream. The inventive method for liquefying hydrogen will be explained in more detail below with reference to the embodiment shown in the figure.
Über Leitung 1 wird der zu verflüssigende Wasserstoffstrom mit einem Druck von 2200 kPa und einer Temperatur von 300 K dem Wärmetauscher E1 zugeführt. In diesem wird der Wasserstoffstrom gegen einen LNG-Strom, der über die Leitung A durch den Wärmetauscher E1 geführt wird und eine Temperatur von 125 K und einen Druck von 7.800 kPa aufweist, auf eine Temperatur von 135 K abgekühlt.Via line 1, the hydrogen stream to be liquefied at a pressure of 2200 kPa and a temperature of 300 K is fed to the heat exchanger E1. In this, the hydrogen flow is cooled to a temperature of 135 K against an LNG flow, which is conducted via the conduit A through the heat exchanger E1 and has a temperature of 125 K and a pressure of 7,800 kPa.
Es sei betont, dass sämtliche in der Figur dargestellten Wärmetauscher jeweils einen oder auch mehrere, ggf. unterschiedliche Wärmetauscher bzw. Wärmetauschertypen repräsentieren.It should be emphasized that all heat exchangers shown in the figure each represent one or more, possibly different heat exchanger or heat exchanger types.
Der vorgekühlte Wasserstoffstrom wird nunmehr über Leitung 2 einem weiterenThe pre-cooled hydrogen flow is now via line 2 another
Wärmetauscher E2 zugeführt und in diesem gegen einen Stickstoff-Kältekreislauf - auf den im Folgenden noch näher eingegangen werden wird - auf eine Temperatur von 80 K abgekühlt.Heat exchanger E2 fed and cooled in this against a nitrogen refrigerant circuit - which will be discussed in more detail below - to a temperature of 80 K.
Anschließend wird der auf 80 K vorgekühlte Wasserstoffstrom über Leitung 3 einer vorzugsweise adsorptiv arbeitenden Reinigungsvorrichtung 4, in der letzte Verunreinigungsspuren aus dem zu verflüssigenden Wasserstoffstrom entfernt werden, zugeführt. Im Regelfall besteht die Reinigungsvorrichtung 4 aus wenigstens zwei, parallel angeordneten Adsorbern, so dass durch Umschalten ein kontinuierlicher Reinigungsprozess realisierbar ist.Subsequently, the pre-cooled to 80 K hydrogen stream via line 3 of a preferably adsorptive cleaning device 4, are removed in the last trace contaminants from the hydrogen stream to be liquefied. As a rule, the cleaning device 4 consists of at least two adsorbers arranged in parallel, so that a continuous cleaning process can be realized by switching over.
Der aus der Reinigungsvorrichtung 4 über Leitung 5 abgezogene, zu verflüssigende Wasserstoffstrom wird dem Wärmetauscher E4 zugeführt und in diesem gegen den noch zu beschreibenden, geschlossenen Wasserstoff-Kältekreislauf auf eine Temperatur von 26 K abgekühlt. In der dem Wärmetauscher E4 nachgeschaltetenThe withdrawn from the cleaning device 4 via line 5, to be liquefied hydrogen stream is fed to the heat exchanger E4 and cooled in this against the yet to be described, closed hydrogen refrigeration cycle to a temperature of 26 K. In the downstream of the heat exchanger E4
Entspannungsvorrichtung 8 erfolgt eine Druckminderung auf ca. 200 kPa, woraus eine Teilverflüssigung des abgekühlten Wasserstoffstromes resultiert. Nach erfolgter Verflüssigung der Gasphase im Wärmetauscher E7 wird über Leitung 9 ein flüssiger Wasserstoffproduktstrom abgezogen und seiner weiteren Verwendung und/oder Zwischenspeicherung zugeführt. Alternativ kann die Entspannungsvorrichtung 8 auch aus einer Kombination, bestehend aus einem Entspannungsventil und einem dem Entspannungsventil nachgeschalteten Ejektor, gebildet werden. Dem Ejektor kann hierbei während der Zwischenspeicherung des flüssigen Wasserstoffproduktstromes anfallender gasförmiger Wasserstoff zugeführt werden.Relaxation device 8 is a pressure reduction to about 200 kPa, resulting in a partial liquefaction of the cooled hydrogen stream results. After the liquefaction of the gas phase in the heat exchanger E7 a liquid hydrogen product stream is withdrawn via line 9 and fed to its further use and / or intermediate storage. Alternatively, the expansion device 8 can also be formed from a combination consisting of an expansion valve and an ejector downstream of the expansion valve. In this case, the ejector can be supplied with gaseous hydrogen which accumulates during the intermediate storage of the liquid hydrogen product stream.
Der offene Wasserstoff-Kältekreislauf wird durch die Leitungsabschnitte 17, 11 , 13, 15 und 16, die Wärmetauscher E4, E5, E6 und E7, wenigstens eine Entspannungsvorrichtung 12 und einen vorzugsweise mehrstufig ausgebildeten Verdichter 14 gebildet. Wasserstoff wird über Leitung 17 zunächst dem Wärmetauscher E4 zugeführt und in diesem abgekühlt. Anschließend wird er über Leitung 11 der Entspannungsvorrichtung 12 zugeführt und in dieser zum Zwecke der Bereitstellung der für die Verflüssigung des Wasserstoffes benötigten Spitzenkälte entspannt.The open hydrogen refrigeration cycle is formed by the line sections 17, 11, 13, 15 and 16, the heat exchangers E4, E5, E6 and E7, at least one expansion device 12 and a preferably multi-stage compressor 14. Hydrogen is first fed via line 17 to the heat exchanger E4 and cooled in this. Subsequently, it is supplied via line 11 to the expansion device 12 and relaxed in this for the purpose of providing the required for the liquefaction of hydrogen peak cooling.
Anschließend erfolgt im Wärmetauscher E7 die Verdampfung und im Wärmetauscher E4 ein Anwärmen des entspannten Wasserstoffstromes im indirekten Wärmetausch mit dem abzukühlenden und zu verflüssigenden Wasserstoffstrom in Leitung 17. Über Leitung 13 wird der angewärmte Wasserstoffstrom dem Wärmetauscher E5 zugeführt und in diesem gegen sich selbst angewärmt, bevor er in der Verdichtereinheit 14 auf den gewünschten Kreislaufdruck verdichtet wird.Subsequently, in the heat exchanger E7, the evaporation and in the heat exchanger E4, a warming of the expanded hydrogen stream in indirect heat exchange with the cooled and to be liquefied hydrogen stream in line 17. Via line 13, the heated hydrogen stream is fed to the heat exchanger E5 and warmed in this against itself before it is compressed in the compressor unit 14 to the desired circuit pressure.
Über Leitung 15 wird der verdichtete Wasserstoffstrom einem Wärmetauscher E6 zugeführt und in diesem gegen einen weiteren LNG-Teilstrom, der demVia line 15, the compressed hydrogen stream is fed to a heat exchanger E6 and in this against another LNG substream, the
Wärmetauscher E6 über Leitung C zugeführt wird, abgekühlt. Über Leitung 16 wird dieser abgekühlte Wasserstoffstrom anschließend dem Wärmetauscher E5 zugeführt, in diesem gegen sich selbst abgekühlt und sodann über die Leitungsabschnitte 17 wiederum dem bereits beschrieben Wärmetauscher E4 zugeführt.Heat exchanger E6 is supplied via line C, cooled. Via line 16, this cooled hydrogen stream is then fed to the heat exchanger E5, cooled in this against itself and then fed via the line sections 17 in turn to the already described heat exchanger E4.
In der Figur sind der Übersichtlichkeit halber mehrere Entspannungsvorrichtungen nicht dargestellt; diesen werden jeweils abgekühlte Wasserstoffteilströme aus den Leitungsabschnitten 17 und 11 zugeführt und nach erfolgter kälteleistender Entspannung wieder dem dargestellten Kältekreislauf 13 oberhalb der Entspannungsvorrichtung 12 (vor und/oder hinter E4) zugeführt. Der bereits erwähnte Stickstoff-Kältekreislauf, der der Vorkühlung des zu verflüssigenden Erdgasstromes mittels des Wärmetauschers E2 dient, weist neben den Leitungsbereichen 20, 21 , 23 und 24 einen weiteren Wärmetauscher E3, eine Entspannungsvorrichtung 25 sowie eine vorzugsweise mehrstufig ausgebildete Verdichtereinheit 22 auf.In the figure, for the sake of clarity, a plurality of expansion devices are not shown; each of these cooled hydrogen partial streams from the line sections 17 and 11 are supplied and fed to the illustrated refrigerant circuit 13 above the expansion device 12 (before and / or after E4) after the cold-performing relaxation. The already mentioned nitrogen refrigeration cycle, which serves to precool the natural gas flow to be liquefied by means of the heat exchanger E2, has, in addition to the line regions 20, 21, 23 and 24, a further heat exchanger E3, an expansion device 25 and a preferably multi-stage compressor unit 22.
Der in der Entspannungsvorrichtung 25 kälteleistend entspannte Stickstoffstrom wird über Leitung 20 dem bereits erwähnten Wärmetauscher E2 zugeführt und in diesem gegen den abzukühlenden Wasserstoffstrom angewärmt und verdampft. Anschließend wird der verdampfte Stickstoffstrom über Leitung 21 der Verdichtereinheit 22 zugeführt und in dieser auf den gewünschten Kreislaufdruck verdichtet. Über Leitung 23 wird der verdichtete Stickstoffstrom dem Wärmetauscher E3 zugefüh rt und in diesem gegen einen weiteren LNG-Strom, der dem Wärmetauscher E3 über Leitung B zugeführt wird, abgekühlt. Anschließend wird der abgekühlte Stickstoffstrom über Leitung 24 der bereits erwähnten Entspannungsvorrichtung 25 zugeführt.The nitrogen stream, which has been cooled to a low temperature in the expansion device 25, is fed via line 20 to the already mentioned heat exchanger E2 and warmed in this zone against the hydrogen stream to be cooled and evaporated. Subsequently, the vaporized nitrogen stream is fed via line 21 of the compressor unit 22 and compressed in this to the desired circuit pressure. Via line 23, the compressed nitrogen flow to the heat exchanger E3 zugefüh rt and in this against a further LNG stream, which is supplied to the heat exchanger E3 via line B, cooled. Subsequently, the cooled nitrogen stream is fed via line 24 to the already mentioned expansion device 25.
Erfindungsgemäß dient das im Umfeld des Wasserstoff-Verflüssigungsprozesses bereitstehende LNG nunmehr der Vorkühlung des zu verflüssigenden Wasserstoffstromes (Wärmetauscher E1 ), der Abkühlung des verdichteten Stickstoffes im Stickstoff-Kältekreislauf (Wärmetauscher E3) sowie der Abkühlung des in dem offenen Wasserstoff-Kältekreislauf zirkulierenden verdichteten Wasserstoffstromes (Wärmetauscher E6).According to the invention, the LNG which is provided in the environment of the hydrogen liquefaction process now serves for precooling the hydrogen stream to be liquefied (heat exchanger E1), cooling the compressed nitrogen in the nitrogen refrigeration cycle (heat exchanger E3) and cooling the compressed hydrogen stream circulating in the open hydrogen refrigeration cycle ( Heat exchanger E6).
Der Übersichtlichkeit halber sind in der Figur die für die gewünschte bzw. ggf. erforderliche Ortho-Para-Konversion des Wasserstoffes erforderlichen Katalysatoren bzw. Katalysatoreinbauten nicht dargestellt. Im Regelfall wird eine erste Ortho-Para- Konversion nach der Reinigungsvorrichtung 4 vorgesehen werden. In dieser kann eine Erhöhung des Para-Wasserstoffgehaltes von ca. 25 auf ca. 43 % erfolgen. Die nachfolgende Ortho-Para-Konversion erfolgt vorzugsweise durch in den Passagen des Wärmetauschers E4 angeordnete Katalysatoren. Vorzugsweise sollte der über Leitung 9 abgezogene flüssige Wasserstoffproduktstrom zu wenigstens 99 % aus ParaWasserstoff bestehen. For the sake of clarity, the catalysts or catalyst internals required for the desired or optionally required ortho-para conversion of the hydrogen are not shown in the figure. As a rule, a first ortho-para conversion after the cleaning device 4 will be provided. In this, an increase in the para-hydrogen content of about 25 to about 43% take place. The subsequent ortho-para conversion is preferably carried out by arranged in the passages of the heat exchanger E4 catalysts. Preferably, the withdrawn via line 9 liquid hydrogen product stream should consist of at least 99% of para-hydrogen.

Claims

Patentansprüche claims
1. Verfahren zum Verflüssigen von Wasserstoff, aufweisend die folgenden Verfahrensschritte: a) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen einen unter Druck stehenden LNG-Strom bis auf eine Temperatur zwischen 140 und 130 K, b) Vorkühlen des Wasserstoffsstromes durch indirekten Wärmetausch gegen ein Kältemittel bis auf eine Temperatur zwischen 85 und 75 K, c) wobei die Vorkühlung des Kältemittels gegen einen unter Druck stehenden LNG-Strom erfolgt, und d) Abkühlen und zumindest Teilverflüssigen des vorgekühlten Wasserstoffsstromes durch indirekten Wärmetausch gegen einen weiteren Wasserstoffsstrom, der in einem geschlossenen Kältekreislauf geführt wird, e) wobei die Vorkühlung des verdichteten, im geschlossenen Kältekreislauf geführten Wasserstoffsstromes gegen einen unter Druck stehenden LNG-Strom erfolgt.1. A process for liquefying hydrogen, comprising the following process steps: a) precooling of the hydrogen stream by indirect heat exchange against a pressurized LNG stream to a temperature between 140 and 130 K. b) precooling of the hydrogen stream by indirect heat exchange against a refrigerant c) wherein the precooling of the refrigerant takes place against a pressurized LNG stream, and d) cooling and at least partially liquefying the precooled hydrogen stream by indirect heat exchange against another hydrogen stream which is in a closed refrigeration cycle e) wherein the precooling of the compressed, guided in the closed refrigeration cycle hydrogen flow is carried out against a pressurized LNG stream.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als Kältemittel für die Vorkühlung des Wasserstoffsstromes Stickstoff verwendet wird. 2. The method according to claim 1, characterized in that is used as the refrigerant for the pre-cooling of the hydrogen stream nitrogen.
EP07725781A 2006-06-12 2007-06-01 Process for liquefying hydrogen Withdrawn EP2027423A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006027199A DE102006027199A1 (en) 2006-06-12 2006-06-12 Process for liquefying hydrogen
PCT/EP2007/004902 WO2007144078A2 (en) 2006-06-12 2007-06-01 Process for liquefying hydrogen

Publications (1)

Publication Number Publication Date
EP2027423A2 true EP2027423A2 (en) 2009-02-25

Family

ID=38663834

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07725781A Withdrawn EP2027423A2 (en) 2006-06-12 2007-06-01 Process for liquefying hydrogen

Country Status (9)

Country Link
US (1) US20100083695A1 (en)
EP (1) EP2027423A2 (en)
JP (1) JP2009540259A (en)
KR (1) KR20090016515A (en)
CN (1) CN101466990A (en)
CA (1) CA2655037A1 (en)
DE (1) DE102006027199A1 (en)
RU (1) RU2009100154A (en)
WO (1) WO2007144078A2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102080919B (en) * 2011-01-18 2013-08-07 四川亚联高科技股份有限公司 Hydrogen liquefaction process
JP5783945B2 (en) * 2012-03-30 2015-09-24 大陽日酸株式会社 Liquefaction device and starting method thereof
GB2512360B (en) * 2013-03-27 2015-08-05 Highview Entpr Ltd Method and apparatus in a cryogenic liquefaction process
KR101458098B1 (en) * 2013-06-26 2014-11-05 한국과학기술연구원 A pre-cooler for hydrogen liquefying apparatus
EP3163236A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Large-scale hydrogen liquefaction by means of a high pressure hydrogen refrigeration cycle combined to a novel single mixed-refrigerant precooling
EP3162871A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
EP3163235A1 (en) * 2015-10-27 2017-05-03 Linde Aktiengesellschaft Novel cascade process for cooling and liquefying hydrogen in large-scale
WO2017154044A1 (en) * 2016-03-10 2017-09-14 日揮株式会社 Novel production equipment and production method of liquefied hydrogen and liquefied natural gas
US10634425B2 (en) * 2016-08-05 2020-04-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of industrial gas site with liquid hydrogen production
CN106352656B (en) * 2016-08-23 2018-10-09 杭州福斯达深冷装备股份有限公司 It is a kind of with the devices and methods therefor of liquid nitrogen washing ammonia synthesis gas coproduction LNG
KR20200109054A (en) * 2019-03-12 2020-09-22 주식회사 한국초저온 Apparatus for hydrogen liquefaction using cold energy of liquid natural gas
KR102267677B1 (en) 2019-10-22 2021-06-22 고등기술연구원연구조합 System for cold heat transfer and hydrogen liquefaction using cold heat circulation of liguified hydrogen
US20210131725A1 (en) * 2019-10-31 2021-05-06 Hylium Industries, Inc. Hydrogen liquefaction system
KR102328753B1 (en) * 2019-12-02 2021-11-18 한국기계연구원 Hydrogen liquefying apparatus and hydrogen liquefying process
KR102470782B1 (en) * 2020-08-19 2022-11-28 고등기술연구원연구조합 Hydrogen Liquefaction System and Method
CN112557577A (en) * 2020-10-22 2021-03-26 合肥综合性国家科学中心能源研究院(安徽省能源实验室) System for testing dynamic performance of catalytic conversion of para-hydrogen
KR102373686B1 (en) 2020-12-23 2022-03-15 주식회사 헥사 Pre-cooling module of hydrogen and hydrogen liquefier containing thereof
FR3123422B1 (en) * 2021-05-31 2024-01-19 Engie DEVICE AND METHOD FOR COOLING A FLOW OF A TARGET FLUID TO A TEMPERATURE LESS OR EQUAL TO 90 K
FR3132566B1 (en) 2022-02-04 2024-03-08 Air Liquide Method and apparatus for cooling carbon dioxide and hydrogen
US20230249119A1 (en) * 2022-02-08 2023-08-10 Air Products And Chemicals, Inc. Method for producing high purity hydrogen
CN117168087A (en) * 2022-05-25 2023-12-05 上海司氢科技有限公司 Modular hydrogen liquefaction system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE573733A (en) * 1957-12-11 1900-01-01
US3398545A (en) * 1965-03-19 1968-08-27 Conch Int Methane Ltd Hydrogen recovery from a refinery tail gas employing two stage scrubbing
US3347055A (en) * 1965-03-26 1967-10-17 Air Reduction Method for recuperating refrigeration
US4090361A (en) * 1976-03-15 1978-05-23 Terry Lynn E Power cycles based upon cyclical hydriding and dehydriding of a material
GB2142423B (en) * 1983-03-10 1986-08-06 Smith Dr Eric Murray Production of liquid hydrogen
JPS61140777A (en) * 1984-12-11 1986-06-27 株式会社神戸製鋼所 Manufacture of liquid h2 and gas natural gas
JPH0448184A (en) * 1990-06-13 1992-02-18 Tokyo Gas Co Ltd Manufacture of liquid hydrogen
FR2723183B1 (en) * 1994-07-29 1997-01-10 Grenier Maurice HYDROGEN LIQUEFACTION PROCESS AND PLANT
JP3647028B2 (en) * 2001-02-19 2005-05-11 日本エア・リキード株式会社 Liquid hydrogen production method and liquid hydrogen production equipment
JP4429552B2 (en) * 2001-07-16 2010-03-10 関西電力株式会社 Liquid hydrogen production system
JP2004210597A (en) * 2003-01-06 2004-07-29 Toshiba Corp Waste-heat-using hydrogen/oxygen system and method for producing liquid hydrogen
JP4217656B2 (en) * 2004-01-27 2009-02-04 関西電力株式会社 Hydrogen liquefier and liquid hydrogen production system
WO2005080892A1 (en) * 2004-02-23 2005-09-01 Shell Internationale Research Maatschappij B.V. Liquefying hydrogen
GB0406615D0 (en) * 2004-03-24 2004-04-28 Air Prod & Chem Process and apparatus for liquefying hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007144078A2 *

Also Published As

Publication number Publication date
JP2009540259A (en) 2009-11-19
CN101466990A (en) 2009-06-24
DE102006027199A1 (en) 2007-12-13
KR20090016515A (en) 2009-02-13
WO2007144078A2 (en) 2007-12-21
CA2655037A1 (en) 2007-12-21
US20100083695A1 (en) 2010-04-08
RU2009100154A (en) 2010-07-20
WO2007144078A3 (en) 2008-01-17

Similar Documents

Publication Publication Date Title
EP2027423A2 (en) Process for liquefying hydrogen
EP2880267B1 (en) Method and device for generating electrical energy
DE112007003171T5 (en) System and method for producing liquefied natural gas
DE1226616B (en) Process and device for the production of gaseous pressurized oxygen with simultaneous production of liquid decomposition products by low-temperature air separation
WO2010121752A2 (en) Method for liquefying a hydrocarbon-rich fraction
DE102011014678A1 (en) Process and apparatus for treating a carbon dioxide-containing gas stream
EP4001462A1 (en) A liquid hydrogen product and method and system for producing a liquid oxygen product
DE19612173C1 (en) Procedure for liquefaction of hydrocarbon rich process flow, especially natural gas
DE102004005305A1 (en) Process for reliquefying a gas
DE102012017654A1 (en) Process and apparatus for nitrogen liquefaction
DE102006021620B4 (en) Pretreatment of a liquefied natural gas stream
DE102023100732A1 (en) A photovoltaic hydrogen storage unit coupled with cold recovery for the production of dry ice and its method of use
EP1913319A2 (en) Method and arrangement for liquefying a stream rich in hydrocarbons
WO2001014044A2 (en) Method and device for obtaining carbon dioxide from exhaust gas
DE102010047300A1 (en) Method for filling portable storage tank with cryogenic medium, particularly with hydrogen or helium, involves recondensing gaseous medium contained in portable storage container to start refueling procedure
DE1023061B (en) Process for the decomposition of gas mixtures containing hydrogen, in particular coke oven gas, and device for carrying out the process
DE102006013686B3 (en) Process for the liquefaction of natural gas
DE955867C (en) Process for separating a compressed, hydrogen-rich gas mixture
DE102004036708A1 (en) Process for liquefying a hydrocarbon-rich stream
DE2736491A1 (en) Thermal insulation system for gas liquefaction plant - utilises vacuum in plant carrying out liquefaction with use of adsorbers
DE102021117030B4 (en) Gas mixture separation system and method for separating at least one main fluid from a gas mixture
DE102011115987B4 (en) Liquefied Natural gas
DE102020130946B4 (en) Cryogenic process for recovering valuable substances from a hydrogen-rich feed gas
DE551358C (en) Process for the decomposition of coke oven gas or similar combustible gas mixtures by liquefying its components
DE102009032992A1 (en) Method for warming or evaporation of liquefied natural gas, involves warming liquefied natural gas against heating medium, and warming or evaporating partial flow of liquefied natural gas against technical gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081211

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LINDE AG

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20101104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110315