EP2027066A1 - Verfahren zur abtrennung von kohlenmonoxid aus einem chlorwasserstoffhaltigen gas - Google Patents
Verfahren zur abtrennung von kohlenmonoxid aus einem chlorwasserstoffhaltigen gasInfo
- Publication number
- EP2027066A1 EP2027066A1 EP07725286A EP07725286A EP2027066A1 EP 2027066 A1 EP2027066 A1 EP 2027066A1 EP 07725286 A EP07725286 A EP 07725286A EP 07725286 A EP07725286 A EP 07725286A EP 2027066 A1 EP2027066 A1 EP 2027066A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- phosgene
- hydrogen chloride
- carbon monoxide
- gas
- separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/14—Methods for preparing oxides or hydroxides in general
- C01B13/16—Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/80—Phosgene
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/50—Inorganic acids
- B01D2251/502—Hydrochloric acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/502—Carbon monoxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present invention relates to a process for the separation of carbon monoxide from a hydrogen chloride-containing gas, which comprises the reaction of the carbon monoxide with chlorine to form phosgene and the subsequent separation of the phosgene from the hydrogen chloride-containing gas.
- the hydrogen chloride-containing gas used preferably originates from the phosgenation or isocyanate formation reaction.
- the process according to the invention is preferably used as part of the chlorine cycle of the isocyanate formation reaction.
- CO carbon monoxide
- a greater amount of carbon monoxide (CO) may be present as an impurity in the HCl exhaust gas.
- CO contents in the range from 0 to 3% by volume are generally found in the HCl offgas of the phosgene wash-off column.
- gas-phase phosgenation DE 42 17 019 A1, DE 103 07 141 A1
- higher amounts of CO (0 to more than 5% by volume) are to be expected, since in this process preferably no condensation of phosgene, and one with it Connected separation of carbon monoxide, before the phosgenation is performed.
- a cause for the Catalyst deactivation lies in the known microstructural change of the catalyst surface, for example by sintering processes, due to the hot-spot formation. Furthermore, the adsorption of carbon monoxide on the surface of the catalyst can not be excluded.
- the formation of metal carbonyls can be reversible or irreversible and thus be in direct competition with HCl oxidation. In fact, carbon monoxide with some elements, such as osmium, rhenium, ruthenium (see Chem. Rev. 103, 3707-3732, 2003), can form very stable bonds even at high temperatures and thus cause an inhibition of the desired target reaction. Another disadvantage could arise from the volatility of these metal carbonyls (see Chem. Rev., 21, 3-38, 1937), whereby not inconsiderable amounts of catalyst are lost and, in addition, require a complicated purification step, depending on the application.
- JP-A-62-270404 (EP-A-0233773) describes a method for HCl oxidation with oxygen, wherein the carbon monoxide content of the gas used is previously adjusted to less than 10 vol .-% by
- the exhaust gas containing hydrogen chloride is passed into an aqueous alkaline absorption system and the exhaust gas freed of hydrogen chloride and phosgene is fed to a combustion plant.
- the inventive method dispenses in particular with the separation of CO from the phosgene, in whose synthesis it is used in excess, by the particularly energy-consuming condensation of the phosgene.
- the carbon monoxide can be left in the phosgene during the isocyanate formation, and is subsequently separated from the exhaust gas before the HCl oxidation by the process according to the invention.
- the formation of hotspots and the associated catalyst deactivation due to the exothermic formation of CO from CO are not to be feared. Furthermore, there is no accumulation of carbon dioxide in the recycle stream in the Deacon process.
- the present invention thus provides a process for separating carbon monoxide from a hydrogen chloride-containing gas, which comprises reacting the carbon monoxide with chlorine to form phosgene.
- the separation of the phosgene then takes place from the gas containing hydrogen chloride, which is subsequently subjected to the hydrogen chloride oxidation by the Deacon process.
- all gases containing hydrogen chloride (HCl) and carbon monoxide (CO) can be used in the process according to the invention. Preference is given to process gases resulting from isocyanate production by reaction of organic amines with phosgene or gases resulting from the chlorination of hydrocarbons.
- the hydrogen chloride-containing gases used have, for example, from about 0.1 to about 20% by volume, preferably from about 0.5 to 15% by volume, of carbon monoxide.
- the content of hydrogen chloride is, for example, from 20 to 99.5% by volume, preferably from 50 to 99.5% by volume.
- the remaining gases of the hydrogen chloride-containing gas are, for example, nitrogen, oxygen, carbon dioxide and noble gases. They form, for example, from about 0.5 to 80% by volume of the hydrogen chloride-containing gas.
- the reaction of the carbon monoxide in the hydrogen chloride-containing gas used takes place in a manner known per se, in particular by the reaction of the carbon monoxide with chlorine to form phosgene, for example on an activated carbon catalyst.
- Alternative catalysts can also be used.
- Reference may be made to the prior art eg DE 3327274; GB 583477; WO 97/30932; WO 96/16898; US 6713035), the content of which belongs to the Offenbamngsgehalt the present patent application.
- ⁇ pressure range from 1 to about 20 bar
- the separation of the carbon monoxide can be carried out with a molar excess of chlorine in order to remove the carbon monoxide as completely as possible
- an excess of carbon monoxide is used to prevent residual chlorine in the phosgene formed.
- the phosgene formed is generally separated by at least one operation selected from the group consisting of:
- the liquefaction may optionally after previous drying of the gas mixture, such as in DE-A-1,567,599, GB 737 442 describes take place (the content of which is part of the disclosure of the present application).
- the separation of the phosgene by condensation or distillation.
- the thus separated phosgene is preferably recycled to a phosgenation reaction, in particular the isocyanate production.
- the separated phosgene is recycled to the same phosgenation reaction in which the hydrogen chloride-containing gas used according to the invention was formed.
- the resulting hydrogen chloride-containing gas has a CO content which is in particular less than 1% by volume, more preferably less than 0.5% by volume.
- the hydrogen chloride-containing gas is preferably subjected to the catalytic oxidation with oxygen in a conventional manner after the separation of the phosgene. This process is commonly referred to as the "Deacon process.” Reference may be made to the relevant prior art for the performance of HCl oxidation.
- ⁇ pressure range from 1 to about 100 bar
- the phosgene can be removed from the gas after HCl oxidation.
- FIG. 2 illustrates a conventional process in which the CO formed in the phosgene synthesis is first separated by condensation of the phosgene and converted into phosgene in a subsequent combination with CI 2 .
- the disadvantage of this process is that the entire phosgene is condensed, which is very energy-consuming.
- FIG. 1 shows schematically the method according to the invention.
- the HC1 / CO feed gas which preferably originates from a phosgenation or isocyanate preparation process, is first preferably reacted on an activated carbon catalyst using chlorine to form a HCl / phosgene gas mixture.
- the separation of the phosgene which is preferably fed again into the phosgenation or isocyanate production process takes place.
- the reaction of the remaining HCl gas in the HCl oxidation according to the Deacon process expediently takes place in a manner known per se, the process gas optionally being able to be returned to the Deacon reactor after removal of the chlorine.
- FIG. 3 shows the incorporation of the process according to the invention in the course of an isocyanate synthesis.
- the CO used in excess in the phosgene synthesis does not need to be separated initially, as a result of which an energy-consuming condensation of the phosgene is eliminated. Also no Nachverier is needed.
- the CO-containing phosgene will be so in the
- Phosgenation reaction can be attributed.
- the CO-depleted HCl gas which preferably has less than about 0.5% CO by volume, is then preferably added to the deaconate.
- Process ie, subjected to the catalytic oxidation of hydrogen chloride with oxygen to form Ch.
- the formed Cl 2 is separated and recycled to the phosgene synthesis process. If appropriate, the residual gas can be recirculated to the Deacon process.
- the isocyanate synthesis is carried out in a conventional manner.
- Phosgene obtained by the process according to the invention can then be used according to the processes known from the prior art for the preparation of TDI or MDI from TDA or MDA.
- the hydrogen chloride which is formed in turn during the phosgenation of TDA and MDA can then be converted to chlorine by the processes described.
- the carbon monoxide content is significantly reduced in the HCl stream, whereby a deactivation of the Deacon catalyst is slowed down at the next stage by uncontrolled temperature increase.
- the precious carbon monoxide will be reused by conversion to phosgene.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Carbon And Carbon Compounds (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung aus Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas, dass die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen und die anschließende Abtrennung des Phosgens aus dem chlorwasserstoffhaltigen Gas umfasst. Das eingesetzte chlorwasserstoffhaltige Gas entstammt bevorzugt der Phosgenierungs- bzw. Isocyanatbildungsreaktion.
Description
Verfahren zur Abtrennung von Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas
Die vorliegende Erfindung betrifft ein Verfahren zur Abtrennung von Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas, das die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen und die anschließende Abtrennung des Phosgens aus dem chlorwasserstoffhaltigen Gas umfasst. Das eingesetzte chlorwasserstoffhaltige Gas entstammt bevorzugt der Phosgenierungs- bzw. Isocyanatbildungsreaktion. Das erfindungsgemäße Verfahren wird bevorzugt als Teil des Chlorkreislaufs der Isocyanatbildungsreaktion eingesetzt.
Eine Vielzahl von chemischen Verfahren zur Umsetzung mit Chlor oder Phosgen, wie die Herstellung von Isocyanaten oder Chlorierungen von Aromaten, führen zu einem Zwangsanfall an Chlorwasserstoff. In der Regel wird dieser Chlorwasserstoff durch Elektrolyse wieder in Chlor umgewandelt (Vgl. z.B. WO9724320A1). Gegenüber dieser sehr energieaufwändigen Methode, bietet die direkte Oxidation von Chlorwasserstoff mit reinem Sauerstoff oder einem sauerstoffhaltigen Gas an heterogenen Katalysatoren (den sogenannten Deacon-Prozess) gemäß
4 HCl + O2 « 2 Cl2 + 2 H2O
deutliche Vorteile hinsichtlich des Energieverbrauchs (s. z.B. WO 04014845).
Bei den meisten Prozessen, wie insbesondere der Phosgenierung, kann eine größere Menge Kohlenmonoxid (CO) als Verunreinigung im HCl-Abgas enthalten sein. In der allgemein verbreiteten Flüssigphasen-Phosgenierung werden im HCl-Abgas der Phosgenauswaschkolonne in der Regel CO-Gehalte im Bereich von 0-3 Vol-% gefunden. Bei der Gasphasen-Phosgenierung (DE 42 17 019 Al, DE 103 07 141 Al) sind höhere CO-Mengen (0 bis zu mehr als 5 Vol-%) zu erwarten, da bei diesem Verfahren bevorzugt keine Kondensation von Phosgen, und eine damit verbundene Abtrennung des Kohlenmonoxids, vor der Phosgenierung durchgeführt wird.
Bei der konventionellen katalytischen HCl-Oxidation mit Sauerstoff bedient man sich verschiedenster Katalysatoren z.B. auf Basis von Ruthenium, Chrom, Kupfer, etc. Diese können allerdings gleichzeitig als Oxidationskatalysatoren für eventuell vorhandene Nebenkomponenten wie Kohlenmonoxid oder organische Verbindungen fungieren. Die katalytische Kohlenmonoxidoxidation zu Kohlendioxid ist jedoch äußerst exotherm und verursacht unkontrollierte lokale Temperaturerhöhungen an der Oberfläche des heterogenen Katalysators (Hot-Spots) in der Art, dass eine Deaktivierung stattfinden kann. In der Tat würde die Oxidation von 5% Kohlenmonoxid in einem inerten Gas (N2) bei einer Eintrittstemperatur von 2500C (Betriebstemperaturen des Deacon- Verfahrens: ca. 200-4500C) eine Temperaturerhöhung von weit über 200 Grad bei einer adiabatischen Umsetzung verursachen. Eine Ursache für die
Katalysatordeaktivierung liegt in der literaturbekannten mikrostrukturellen Veränderung der Katalysatoroberfläche, z.B. durch Sinterprozesse, aufgrund der Hot-Spot-Bildung. Weiterhin ist die Adsorption von Kohlenmonoxid an der Oberfläche des Katalysators nicht auszuschließen. Die Bildung von Metallcarbonylen kann reversibel oder irreversibel erfolgen und somit in direkter Konkurrenz zur HCl-Oxidation stehen. In der Tat kann Kohlenmonoxid mit einigen Elementen, wie z.B. Osmium, Rhenium, Ruthenium (siehe Chem. Rev. 103, 3707-3732, 2003), auch bei hohen Temperaturen sehr stabile Bindungen eingehen und somit eine Inhibierung der gewünschten Zielreaktion verursachen. Ein weiterer Nachteil könnte durch die Flüchtigkeit dieser Metallcarbonyle entstehen (siehe Chem. Rev., 21, 3-38, 1937), wodurch nicht unerhebliche Mengen an Katalysator verloren gehen und zusätzlich je nach Anwendung einen aufwendigen Aufreinigungsschritt benötigen.
So beschreibt die JP-A-62-270404 (EP-A-0233773) ein Verfahren zur HCl-Oxidation mit Sauerstoff, bei dem der Kohlenmonoxid-Gehalt des eingesetzten Gases zuvor auf weniger als 10 Vol.-% eingestellt wird durch
■ Palladium-katalysierte Verbrennung zu Kohlendioxid,
■ Destillative Abtrennung des HCl-Gases, oder
■ Waschen des Gases mit einer Lösung von Kupferchlorid
um die Lebensdauer des eingesetzten Katalysators zu erhöhen.
Ein ähnliches Oxidationsverfahren zur Entfernung von Kohlenmonoxid ist in der JP2003-171103 beschrieben.
In einem weiteren bekannten Verfahren wird das chlorwasserstoffhaltige Abgas in ein wässriges alkalisches Absorptionssystem geleitet und das von Chlorwasserstoff und Phosgen befreite Abgas einer Verbrennungsanlage zugeführt.
Ein Nachteil aller bisherigen Verfahren besteht insbesondere darin, dass mit der Entfernung des CO auch ein kostbarer Rohstoff vernichtet wird.
Daher bestand einerseits der Wunsch das Kohlenmonoxid aus den HCl-haltigen Abgasen abzutrennen, um dadurch verursachte Nachteile insbesondere in einem sich anschließenden Deacon-Prozeß zu vermeiden, und andererseits bestand der Wunsch das Kohlenmonoxid einer möglichst wirtschaftlichen Verwendung zuzuführen.
Die Erfinder fanden nun, dass es dazu überaus vorteilhaft ist, das in einem HCl-Abgas, insbesondere dem einer Isocyanat-Synthese oder einer Chlorierungsreaktion, befindliche Kohlenmonoxid mit Chlor zu Phosgen umzusetzen, das entstandene Phosgen abzutrennen und insbesondere der Isocyanatsynthese wieder zuzuführen. Das im Wesentlichen CO-freie Abgas wird insbesondere einem Deacon-Verfahren zugeführt, wobei das dabei resultierende Chlor wiederum zur Herstellung des Phosgens verwendet werden kann. Durch das erfindungsgemäße Verfahren wird insbesondere die Abtrennung von CO aus dem Phosgen, bei dessen Synthese es im Überschuss eingesetzt wird, durch die besonders energiekonsumierende Kondensation des Phosgens entbehrlich. Das Kohlenmonoxid kann während der Isocyanatbildung im Phosgen belassen werden, und wird erst anschließend aus dem Abgas vor der HCl-Oxidation durch das erfindungsgemäße Verfahren abgetrennt. Im Deacon-Verfahren ist dann die Bildung von Hot-Spots und die damit einhergehende Katalysatordeaktivierung aufgrund der exothermen Bildung von CO2 aus CO nicht zu befürchten. Weiterhin kommt es im Deacon-Verfahren nicht zu einer Anreicherung von Kohlendioxid im Recyclestrom.
Die vorliegende Erfindung stellt somit ein Verfahren zur Abtrennung von Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas bereit, das die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen umfasst.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt anschließend die Abtrennung des Phosgens aus dem chlorwasserstoffhaltigen Gas, welches anschließend bevorzugt der Chlorwasserstoffoxidation nach dem Deacon-Verfahren unterworfen wird.
In dem erfindungsgemäßen Verfahren können im Prinzip sämtliche Chlorwasserstoff (HCl) und Kohlenmonoxid (CO) enthaltenden Gase eingesetzt werden. Bevorzugt handelt es sich um Prozeßgase, die aus der Isocyanatherstellung durch Umsetzung von organischen Aminen mit Phosgen resultieren oder um Gase die aus der Chlorierung von Kohlenwasserstoffen resultieren. Die eingesetzten chlorwasserstoffhaltigen Gase weisen beispielsweise von etwa 0,1 bis etwa 20 Vol.-%, bevorzugt von etwa 0,5 bis 15 Vol.-% Kohlenmonoxid auf. Der Gehalt an Chlorwasserstoff beträgt beispielsweise von 20 bis 99,5 Vol.-%, bevorzugt von 50 bis 99,5 Vol.-%. Die restlichen Gase des chlorwasserstoff-haltigen Gases sind beispielsweise Stickstoff, Sauerstoff, Kohlendioxid und Edelgase. Sie bilden beispielsweise etwa von 0,5 bis 80 Vol.-% des chlorwasserstoffhaltigen Gases.
Die Umsetzung des Kohlenmonoxids in dem eingesetzten chlorwasserstoffhaltigen Gas erfolgt in an sich bekannter Weise, insbesondere durch die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen, zum Beispiel, an einem Aktivkohle-Katalysator. Altemativkatalysatoren können aber auch eingesetzt werden. Hier kann auf den Stand der Technik verwiesen werden (z.B. DE 3327274;
GB 583477; WO 97/30932; WO 96/16898; US 6713035), dessen Inhalt zum Offenbamngsgehalt der vorliegenden Patentanmeldung gehört.
Besonders bevorzugte Parameter der Umsetzung von CO mit Cl2 zu COCl2 sind:
■ Katalysator: Aktivkohle
■ leichter molarer Chlorüberschuss (etwa 1 ,0 bis 1 ,5 Mol Cl2 je Mol CO),
■ Temperaturbereich von 20 bis 600 0C
■ Druckbereich von 1 bis etwa 20 bar;
■ Das Arbeiten unter Druck ermöglicht eine Verringerung der Größe des Reaktionsgefäßes und erleichtert die anschließend im Allgemeinen erfolgende Abtrennung des gebildeten Phosgens,
■ Apparatur: Festbettreaktor.
Im Gegensatz zur „normalen" Herstellung des Phosgens kann beim erfindungsgemäßen Verfahren der Abtrennung des Kohlenmonoxids mit einem molaren Chlorüberschuß gearbeitet werden, um das Kohlenmonoxid möglichst vollständig abzutrennen. Das überschüssige Chlor stört im bevorzugt anschließend durchgeführten Verfahren der Chloroxidation nicht, da es dabei ohnehin gebildet wird. Bei der „normalen" Phosgenherstellung wird mit einem Überschuss von Kohlenmonoxid gearbeitet, um Reste von Chlor im gebildeten Phosgen zu verhindern.
Nach erfolgter Umsetzung des CO mit dem CI2 wird das gebildete Phosgen im Allgemeinen durch mindestens eine Operation abgetrennt, die aus der Gruppe ausgewählt wird, die besteht aus:
■ Verflüssigung bzw. Kondensation des Phosgens,
■ Die Verflüssigung (unter Kühlen und/oder Druck) kann gegebenenfalls nach vorheriger Trocknung des Gasgemischs wie beispielsweise in DE-A-1567599, GB 737442 beschrieben (deren Inhalt zum Offenbarungsgehalt der vorliegenden Anmeldung gehört) erfolgen.
■ Hierbei ist zu betonen, dass die Menge des an dieser Stelle verflüssigten Phosgens natürlich sehr viel kleiner ist, als die Menge des Phosgens die nach der eigentlichen Phosgenherstellung zur Abtrennung des CO zu verflüssigen wäre.
■ Destillation bzw. Rektifikation und/oder
■ Auswaschen des Phosgens mit Lösungsmittel, wie z.B. Monochlorbenzol, ortho- Dichlorbenzol).
Bevorzugt ist die Abtrennung des Phosgens durch Kondensation oder auch Destillation.
Das so abgetrennte Phosgen wird bevorzugt in eine Phosgenierungsreaktion, wie insbesondere die Isocyanatherstellung zurückgeführt. Besonders bevorzugt wird das abgetrennte Phosgen in dieselbe Phosgenierungsreaktion zurückgeführt, in der das erfindungsgemäß eingesetzte chorwasserstoffhaltige Gas gebildet wurde.
Das resultierende chlorwasserstoffhaltige Gas weist einen CO-Gehalt auf, der insbesondere weniger als 1 Vol.-%, bevorzugter weniger als 0,5 Vol.-% beträgt.
Das chlorwasserstoffhaltige Gas wird nach der Abtrennung des Phosgens bevorzugt der katalytischen Oxidation mit Sauerstoff in an sich bekannter Weise unterworfen. Dieses Verfahren wird gemeinhin als „Deacon-Verfahren" bezeichnet. Hinsichtlich der Durchführung der HCl- Oxidation kann auf den einschlägigen Stand der Technik verwiesen werden.
Bevorzugte Parameter sind:
■ Katalysator: Ruthenium-, Chrom-, Kupfer-, Wismuth-Verbindungen
■ molare Verhältnisse HC1/O2: 4/1 bis 1/1
■ Temperaturbereich von 200 bis 450 0C
■ Druckbereich von 1 bis etwa 100 bar;
■ Apparatur: Festbett, Wirbelbett, Mikroreaktor
■ Reaktionsführung: Isotherm oder adiabat.
Eine besonders bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens umfasst die folgenden Schritte:
■ Herstellung von Phosgen durch Umsetzung von CO mit CI2,
■ anschließend Verwendung des Phosgens in der Synthese von organischen Isocyanaten (dieser Schritt erfolgt erfϊndungsgemäß besonders bevorzugt ohne vorherige Abtrennung des CO),
■ Abtrennung der in der Phosgenierung erhaltenen organischen Isocyanate,
■ erfindungsgemäße Abtrennung des Kohlenmonoxids aus dem HCl-haltigen resultierenden Abgas der Isocyanatsynthese durch Umsetzung mit Chlor unter Bildung von Phosgen,
■ Abtrennung des gebildeten Phosgens,
■ Rückführung des gebildeten Phosgens in die Isocyanatsynthese,
■ Unterwerfen des HCl-haltigen, CO-verarmten Gases der HCl-Oxidation und gegebenenfalls Rückführung des gebildeten CI2 in die Herstellung des Phosgens, wobei dies sowohl die anfängliche Phosgenherstellung sein kann als auch die später erfolgende Phosgenherstellung im Rahmen der CO-Abtrennung aus dem HCl-Prozeßgas.
Alternativ kann das Phosgen auch nach der HCl-Oxidation aus dem Gas entfernt werden.
Die nachfolgend beschriebenen Abbildungen 1 und 3 veranschaulichen das erfindungsgemäß durchgeführte Verfahren. Abbildung 2 veranschaulicht im Unterschied dazu ein konventionelles Verfahren bei dem das in der Phosgensynthese gebildete CO zunächst durch Kondensation des Phosgens abgetrennt und in einem Nachvereiniger mit CI2 zu Phosgen umgesetzt wird. Der Nachteil dieses Verfahren besteht wie eingangs bereits dargelegt darin, dass das gesamte Phosgen kondensiert wird, was sehr energieaufwändig ist.
Abbildung 1 zeigt demgegenüber schematisch das erfϊndungsgemäße Verfahren. Das HC1/CO- Einsatzgas, das bevorzugt aus einem Phosgenierungs- bzw. Isocyanat-Herstellungsprozess stammt, wird zunächst bevorzugt an einem Aktivkohle-Katalysator unter Einsatz von Chlor zu einem HCl/Phosgengasgemisch umgesetzt. Anschließend erfolgt die Abtrennung des Phosgens, welches bevorzugt erneut in den Phosgenierungs- bzw. Isocyanat-Herstellungsprozess eingespeist wird. Anschließend erfolgt zweckmäßig die Umsetzung des verbleibenden HCl-Gases in der HCl- Oxidation gemäß dem Deacon-Verfahren in an sich bekannter Weise, wobei das Prozessgas nach Abtrennung des Chlors gegebenenfalls in den Deacon-Reaktor zurückgeführt werden kann.
Abbildung 3 zeigt die Einbindung des Verfahrens gemäß der Erfindung in den Ablauf einer Isocyanatsynthese. Dabei braucht das in der Phosgensynthese im Überschuss eingesetzte CO zunächst nicht abgetrennt zu werden, wodurch eine energieaufwändige Kondensation des Phosgens entfällt. Auch wird kein Nachvereiniger benötigt. Das CO-haltige Phosgen wird also so in der
Isocyanat-Synthese (oder sonstigen Synthese) eingesetzt. Nach Abtrennung des gebildeten
Isocyanats wird das resultierende CO/HCl-haltige Abgas dem erfϊndungsgemäßen Abtrennverfahren unter Bildung von Phosgen unterworfen, welches abgetrennt und in die
Phosgenierungsreaktion zurückgeführt werden kann. Das an CO abgereicherte HCl-Gas, welches bevorzugt weniger als etwa 0,5 Vol.-% CO aufweist, wird dann bevorzugt in das Deacon-
Verfahren, d.h. der katalytischen Oxidation von Chlorwasserstoff mit Sauerstoff unter Bildung von Ch unterworfen. Das gebildete Cl2 wird abgetrennt und in die Verfahren der Phosgensynthese zurückgeführt. Das Restgas kann gegebenenfalls erneut in das Deacon-Verfahren zurückgeführt werden. Die Isocyanatsynthese wird in an sich bekannter Weise durchgeführt. Nach dem erfindungsgemäßen Verfahren erhaltenes Phosgen kann anschließend nach den aus dem Stand der Technik bekannten Verfahren für die Herstellung von TDI oder MDI aus TDA beziehungsweise MDA eingesetzt werden. Der bei der Phosgenierung von TDA und MDA wiederum entstehende Chlorwasserstoff kann anschließend nach den beschriebenen Verfahren zu Chlor umgesetzt werden.
Durch das erfindungsgemäße Verfahren wird der Kohlenmonoxid-Gehalt im HCl-Strom deutlich verringert, wodurch eine Deaktivierung des Deacon-Katalysators auf der nächsten Stufe durch unkontrollierte Temperaturerhöhung verlangsamt wird. Gleichzeitig wird das kostbare Kohlenmonoxid durch Umwandlung zu Phosgen wieder eingesetzt werden.
Claims
1. Verfahren zur Abtrennung von Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas, das die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen umfasst.
2. Verfahren nach Anspruch 1, das die anschließende Abtrennung des gebildeten Phosgens aus dem chlorwasserstoffhaltigen Gas umfasst.
3. Verfahren nach Anspruch 1 oder 2, worin das chlorwasserstoffhaltige Gas von 0,5 bis 15 Vol.-% Kohlenmonoxid enthält.
4. Verfahren nach einem der Ansprüche 1 bis 3, worin das chlorwasserstoffhaltige Gas von 20 bis 99,5 Vol.-% Chlorwasserstoff enthält.
5. Verfahren nach einem der Ansprüche 1 bis 4, worin die Umsetzung des Kohlenmonoxids mit Chlor zu Phosgen an einem Katalysator, vorzugsweise Aktivkohle-Katalysator, erfolgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, worin die Abtrennung des Phosgens durch mindestens eine Operation durchgeführt wird, die aus der Gruppe ausgewählt wird, die besteht aus: Verflüssigung bzw. Kondensation des Phosgens, Destillation bzw.
Rektifikation und/oder Auswaschen des Phosgens mit Lösungsmittel.
7. Verfahren nach einem der Ansprüche 1 bis 6, worin das abgetrennte Phosgen in eine Phosgenierungsreaktion zurückgeführt wird.
8. Verfahren nach Anspruch 7, worin das abgetrennte Phosgen in dieselbe Phosgenierungsreaktion zurückgeführt wird, in der das eingesetzte chorwasserstoffhaltige
Gas gebildet wurde.
9. Verfahren nach einem der Ansprüche 1 bis 8, worin das chlorwasserstoffhaltige Gas nach der Abtrennung des Phosgens der katalytischen Oxidation mit Sauerstoff unterworfen wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006024542A DE102006024542A1 (de) | 2006-05-23 | 2006-05-23 | Verfahren zur Abtrennung von Kohlenmonoxid aus einem chlorwasserstoffhaltigen Gas |
PCT/EP2007/004370 WO2007134773A1 (de) | 2006-05-23 | 2007-05-16 | Verfahren zur abtrennung von kohlenmonoxid aus einem chlorwasserstoffhaltigen gas |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2027066A1 true EP2027066A1 (de) | 2009-02-25 |
Family
ID=38320935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07725286A Withdrawn EP2027066A1 (de) | 2006-05-23 | 2007-05-16 | Verfahren zur abtrennung von kohlenmonoxid aus einem chlorwasserstoffhaltigen gas |
Country Status (9)
Country | Link |
---|---|
US (1) | US7612234B2 (de) |
EP (1) | EP2027066A1 (de) |
JP (1) | JP2009537450A (de) |
KR (1) | KR20090009897A (de) |
CN (1) | CN101448739A (de) |
DE (1) | DE102006024542A1 (de) |
RU (1) | RU2008150594A (de) |
TW (1) | TW200811042A (de) |
WO (1) | WO2007134773A1 (de) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2965490B1 (fr) | 2010-09-30 | 2013-01-11 | Aet Group | Dispositif et procede pour la phosgenation en continu |
CN102060295B (zh) * | 2010-11-06 | 2012-08-08 | 青岛科技大学 | 一种低氯化氢含量的高纯光气的生产工艺 |
CN103796991B (zh) * | 2011-03-31 | 2016-05-18 | 巴斯夫欧洲公司 | 制备异氰酸酯的方法 |
EP2559658A1 (de) * | 2011-08-19 | 2013-02-20 | Huntsman International LLC | Verfahren zum Trennen von Phosgen und Chlorwasserstoff aus einem Flüssigkeitsstrom mit Phosgen und Chlorwasserstoff |
EP2559659A1 (de) * | 2011-08-19 | 2013-02-20 | Huntsman International Llc | Verfahren zum Trennen von Chlorwasserstoffgas aus einer Mischung von Chlorwasserstoff und Phosgen |
CN104492237A (zh) * | 2014-12-28 | 2015-04-08 | 甘肃银光聚银化工有限公司 | 一种光气合成尾气的回收方法 |
EP3421426A1 (de) * | 2017-06-29 | 2019-01-02 | Covestro Deutschland AG | Energieeffizientes verfahren zur bereitstellung von phosgen-dampf |
CN111111432B (zh) * | 2019-12-31 | 2022-05-27 | 南京工大环境科技有限公司 | 一种光气化反应尾气的处理方法 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE469139A (de) | 1943-10-04 | |||
US2444289A (en) * | 1945-08-13 | 1948-06-29 | Socony Vacuum Oil Co Inc | Preparation of phosgene |
GB737442A (en) | 1952-12-19 | 1955-09-28 | Bayer Ag | Recovery of phosgene |
NL6404460A (de) | 1964-04-23 | 1965-10-25 | ||
GB1073855A (en) | 1965-07-02 | 1967-06-28 | Ici Ltd | Chemical process |
US3996273A (en) * | 1971-07-05 | 1976-12-07 | Rhone-Progil | Manufacture of phosgene from chlorine obtained by oxidation of hydrochloric gas and fixed on reactional chlorine exchanger masses |
US3960916A (en) * | 1975-01-24 | 1976-06-01 | Basf Aktiengesellschaft | Manufacture of organic isocyanates |
DE2624285C2 (de) * | 1976-05-31 | 1987-03-12 | Basf Ag, 6700 Ludwigshafen | Verfahren zur kontinuierlichen Herstellung von organischen Isocyanaten |
US4190639A (en) * | 1978-09-25 | 1980-02-26 | The Lummus Company | Recovery of hydrogen chloride in carbo-chlorination of metal oxides |
US4346047A (en) * | 1978-10-02 | 1982-08-24 | The Lummus Company | Production of phosgene |
DE3327274A1 (de) | 1983-07-28 | 1985-02-07 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von phosgen unter gleichzeitiger erzeugung von dampf |
JPS62270404A (ja) | 1986-05-16 | 1987-11-24 | Mitsui Toatsu Chem Inc | 塩素の製造方法 |
US4774070A (en) | 1986-02-19 | 1988-09-27 | Mitsui Toatsu Chemicals, Incorporated | Production process of chlorine |
CA1260229A (en) | 1986-06-30 | 1989-09-26 | Mitsui Chemicals, Inc. | Production process of chlorine |
JP2625443B2 (ja) * | 1987-09-25 | 1997-07-02 | 三菱瓦斯化学株式会社 | 固定触媒層反応器 |
DE4217019A1 (de) | 1992-05-22 | 1993-11-25 | Bayer Ag | Verfahren zur Herstellung von aromatischen Diisocyanaten |
US5707919A (en) | 1994-11-14 | 1998-01-13 | Mitsui Toatsu Chemicals, Inc. | Catalyst for preparing chlorine from hydrogen chloride |
JP3124455B2 (ja) | 1994-12-01 | 2001-01-15 | 出光石油化学株式会社 | ホスゲンの製造方法 |
DE19533660A1 (de) | 1995-09-12 | 1997-03-13 | Basf Ag | Verfahren zur Herstellung von Chlor |
IN190134B (de) | 1995-12-28 | 2003-06-21 | Du Pont | |
AU7551296A (en) | 1996-02-21 | 1997-09-10 | E.I. Du Pont De Nemours And Company | Phosgene manufacturing process |
US5672747A (en) * | 1996-05-17 | 1997-09-30 | Stauffer; John E. | Phosgene process |
KR101516812B1 (ko) | 1998-02-16 | 2015-04-30 | 스미또모 가가꾸 가부시끼가이샤 | 염소의 제조방법 |
BRPI0008181B8 (pt) | 2000-01-19 | 2017-03-21 | Sumitomo Chemical Co | processo de preparação de cloro. |
DE10129233A1 (de) * | 2001-06-19 | 2003-01-02 | Basf Ag | Verfahren zur Herstellung von Isocyanaten |
JP4081597B2 (ja) | 2001-12-04 | 2008-04-30 | 住友化学株式会社 | 触媒酸化方法 |
DE10235476A1 (de) * | 2002-08-02 | 2004-02-12 | Basf Ag | Integriertes Verfahren zur Herstellung von Isocyanaten |
DE10242400A1 (de) * | 2002-09-12 | 2004-03-18 | Basf Ag | Festbettverfahren zur Herstellung von Chlor durch katalytische Gasphasen-Oxidation von Chlorwasserstoff |
DE10250131A1 (de) * | 2002-10-28 | 2004-05-06 | Basf Ag | Verfahren zur Herstellung von Chlor aus Salzsäure |
DE10260084A1 (de) * | 2002-12-19 | 2004-07-01 | Basf Ag | Auftrennung eines Stoffgemisches aus Clorwasserstoff und Phosgen |
DE10307141A1 (de) | 2003-02-20 | 2004-09-02 | Bayer Ag | Verfahren zur Herstellung von (Poly)isocyanaten in der Gasphase |
-
2006
- 2006-05-23 DE DE102006024542A patent/DE102006024542A1/de not_active Withdrawn
-
2007
- 2007-05-16 JP JP2009511378A patent/JP2009537450A/ja active Pending
- 2007-05-16 EP EP07725286A patent/EP2027066A1/de not_active Withdrawn
- 2007-05-16 KR KR1020087028585A patent/KR20090009897A/ko not_active Application Discontinuation
- 2007-05-16 WO PCT/EP2007/004370 patent/WO2007134773A1/de active Application Filing
- 2007-05-16 CN CNA2007800183015A patent/CN101448739A/zh active Pending
- 2007-05-16 RU RU2008150594/15A patent/RU2008150594A/ru not_active Application Discontinuation
- 2007-05-22 TW TW096118055A patent/TW200811042A/zh unknown
- 2007-05-23 US US11/752,391 patent/US7612234B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007134773A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2008150594A (ru) | 2010-06-27 |
JP2009537450A (ja) | 2009-10-29 |
DE102006024542A1 (de) | 2007-11-29 |
KR20090009897A (ko) | 2009-01-23 |
CN101448739A (zh) | 2009-06-03 |
WO2007134773A1 (de) | 2007-11-29 |
TW200811042A (en) | 2008-03-01 |
US7612234B2 (en) | 2009-11-03 |
WO2007134773A8 (de) | 2008-12-11 |
US20070276158A1 (en) | 2007-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007134774A1 (de) | Verfahren zur herstellung von organischen isocyanaten | |
EP2027066A1 (de) | Verfahren zur abtrennung von kohlenmonoxid aus einem chlorwasserstoffhaltigen gas | |
EP1529033B1 (de) | Integriertes verfahren zur herstellung von isocyanaten | |
EP1558521B1 (de) | Verfahren zur herstellung von chlor aus salzsäure und ein damit integriertes verfahren zur herstellung von isocyanaten | |
EP1981806B1 (de) | Verfahren zur herstellung von chlor | |
EP2024279B1 (de) | Verfahren zur abtrennung von chlor aus dem produktgas eines hci-oxidationsprozesses | |
EP1992592B1 (de) | Verfahren zur Oxidation eines Chlorwasserstoff enthaltenden Gasgemisches | |
EP1765751B1 (de) | Verfahren zur herstellung von 1,6-hexandiol in einer reinheit von über 99,5% | |
WO2007134775A1 (de) | Verfahren zur oxidation eines chlorwasserstoff enthaltenden gases | |
EP1542923B1 (de) | Festbettverfahren zur herstellung von chlor durch katalytische gasphasen-oxidation von chlorwasserstoff | |
WO2008131870A1 (de) | Verfahren zur oxidation von kohlenmonoxid in einem hcl enthaltenden gasstrom | |
EP1935877A1 (de) | Verfahren zur Herstellung von Toluylendiisocyanat | |
EP2599770B1 (de) | Verfahren zur Herstellung von Isocyanaten | |
EP1656322A1 (de) | Verfahren zur herstellung von chlor | |
EP2027064A1 (de) | Verfahren zur herstellung von chlor aus chlorwasserstoff und sauerstoff | |
DE10252859A1 (de) | Verfahren zur Herstellung von 1,2-Dichlorethan und von Vinylchlorid | |
WO2008131869A1 (de) | Verfahren zur reinigung und oxidation eines chlorwasserstoff enthaltenden gases | |
DE69902683T2 (de) | Verfahren zur herstellung von gamma-butyrolacton und tetrahydrofuran | |
EP2986562B1 (de) | Verfahren zur aufarbeitung von abwasser aus der nitro-benzolherstellung | |
EP3653604B1 (de) | Verfahren zur herstellung eines isocyanats durch teilweise adiabatisch betriebene phosgenierung des korrespondierenden amins | |
DE2536261B2 (de) | Verfahren zur kontinuierlichen herstellung von o- und p-chlortoluol | |
DE10234908B4 (de) | Verfahren zur Herstellung von Chlor aus einem (Chlor)kohlenwasserstoffe enthaltenden Chlorwasserstoffstrom | |
DE19542245A1 (de) | Phosgenierungsverfahren | |
DE2845403A1 (de) | Katalysator fuer die herstellung von vinylchlorid und dessen verwendung | |
DE112010002611T5 (de) | Verfahren zur Aktivierung eines Katalysators für die Chlorherstellung und Verfahren zur Herstellung von Chlor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20081223 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20101201 |