EP2017373A2 - Hochgeschwindigkeitsverfahren zur Plattierung von Palladium und Palladiumlegierungen - Google Patents
Hochgeschwindigkeitsverfahren zur Plattierung von Palladium und Palladiumlegierungen Download PDFInfo
- Publication number
- EP2017373A2 EP2017373A2 EP08160839A EP08160839A EP2017373A2 EP 2017373 A2 EP2017373 A2 EP 2017373A2 EP 08160839 A EP08160839 A EP 08160839A EP 08160839 A EP08160839 A EP 08160839A EP 2017373 A2 EP2017373 A2 EP 2017373A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- palladium
- ammonia
- bath
- plating
- high speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title claims abstract description 225
- 229910052763 palladium Inorganic materials 0.000 title claims abstract description 96
- 238000000034 method Methods 0.000 title claims abstract description 68
- 229910001252 Pd alloy Inorganic materials 0.000 title claims abstract description 51
- 238000007747 plating Methods 0.000 title description 60
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 208
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 95
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 239000000203 mixture Substances 0.000 claims description 54
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 25
- 239000004202 carbamide Substances 0.000 claims description 25
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 239000002184 metal Substances 0.000 claims description 22
- -1 ammonium ions Chemical class 0.000 claims description 19
- 238000005275 alloying Methods 0.000 claims description 9
- 150000002739 metals Chemical class 0.000 claims description 7
- 150000003839 salts Chemical class 0.000 claims description 7
- 239000002253 acid Substances 0.000 claims description 5
- 150000007513 acids Chemical class 0.000 claims description 5
- 238000000151 deposition Methods 0.000 abstract description 11
- 238000000576 coating method Methods 0.000 abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 46
- 238000009713 electroplating Methods 0.000 description 30
- 229910052759 nickel Inorganic materials 0.000 description 20
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 15
- 229910000990 Ni alloy Inorganic materials 0.000 description 14
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- 238000013019 agitation Methods 0.000 description 9
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 229910001369 Brass Inorganic materials 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910001297 Zn alloy Inorganic materials 0.000 description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 6
- 239000004327 boric acid Substances 0.000 description 6
- 239000010951 brass Substances 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 235000011130 ammonium sulphate Nutrition 0.000 description 5
- 229910002056 binary alloy Inorganic materials 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910017052 cobalt Inorganic materials 0.000 description 4
- 239000010941 cobalt Substances 0.000 description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 4
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 4
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 150000003868 ammonium compounds Chemical class 0.000 description 3
- 239000000908 ammonium hydroxide Substances 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000003446 ligand Substances 0.000 description 3
- 230000001473 noxious effect Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229940124530 sulfonamide Drugs 0.000 description 3
- 229910002058 ternary alloy Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910000531 Co alloy Inorganic materials 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- NQRYJNQNLNOLGT-UHFFFAOYSA-N Piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940111121 antirheumatic drug quinolines Drugs 0.000 description 2
- 239000006172 buffering agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 231100001261 hazardous Toxicity 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 150000002941 palladium compounds Chemical class 0.000 description 2
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 2
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 2
- 150000005041 phenanthrolines Chemical class 0.000 description 2
- 150000003248 quinolines Chemical class 0.000 description 2
- 238000005185 salting out Methods 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical compound O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- AGGKEGLBGGJEBZ-UHFFFAOYSA-N tetramethylenedisulfotetramine Chemical compound C1N(S2(=O)=O)CN3S(=O)(=O)N1CN2C3 AGGKEGLBGGJEBZ-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 2
- 229910000368 zinc sulfate Inorganic materials 0.000 description 2
- 239000011686 zinc sulphate Substances 0.000 description 2
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical compound C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical class CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical class [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- DVARTQFDIMZBAA-UHFFFAOYSA-O ammonium nitrate Chemical class [NH4+].[O-][N+]([O-])=O DVARTQFDIMZBAA-UHFFFAOYSA-O 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 150000004675 formic acid derivatives Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910002094 inorganic tetrachloropalladate Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 229960003512 nicotinic acid Drugs 0.000 description 1
- 239000011664 nicotinic acid Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000013110 organic ligand Substances 0.000 description 1
- 150000003891 oxalate salts Chemical class 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- LWHYKTAISUZRAD-UHFFFAOYSA-L palladium(2+);carbonate Chemical compound [Pd+2].[O-]C([O-])=O LWHYKTAISUZRAD-UHFFFAOYSA-L 0.000 description 1
- RFLFDJSIZCCYIP-UHFFFAOYSA-L palladium(2+);sulfate Chemical compound [Pd+2].[O-]S([O-])(=O)=O RFLFDJSIZCCYIP-UHFFFAOYSA-L 0.000 description 1
- 229910000364 palladium(II) sulfate Inorganic materials 0.000 description 1
- INIOZDBICVTGEO-UHFFFAOYSA-L palladium(ii) bromide Chemical compound Br[Pd]Br INIOZDBICVTGEO-UHFFFAOYSA-L 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- SIOXPEMLGUPBBT-UHFFFAOYSA-N picolinic acid Chemical class OC(=O)C1=CC=CC=N1 SIOXPEMLGUPBBT-UHFFFAOYSA-N 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical group C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 229940081974 saccharin Drugs 0.000 description 1
- 235000019204 saccharin Nutrition 0.000 description 1
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229960002317 succinimide Drugs 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical class [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 1
- 229940117986 sulfobetaine Drugs 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/50—Electroplating: Baths therefor from solutions of platinum group metals
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
- C25D3/567—Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of platinum group metals
Definitions
- the present invention is directed to high speed methods for plating palladium and palladium alloys using ammonia-based palladium and palladium alloy plating compositions. More specifically, the present invention is directed to high speed methods for plating palladium and palladium alloys using ammonia-based palladium and palladium alloy plating compositions where the level of free ammonia is reduced.
- Vigorous agitation may also be supplied without the jet stream by moving the solution very rapidly past the substrate being plated by use of a pump or by moving the substrate rapidly through the solution.
- Another form of high speed plating is selective plating. Such selective plating uses specialized plating equipment such as chemical or mechanical masks which limit metal deposits to specific required areas while leaving other areas free of the metal.
- the industry desires palladium and palladium alloy deposits that are crack-free at usable current densities in high speed plating from 10 to 100 Amps/dm 2 and higher.
- the industry desires palladium and palladium alloys which have high wear resistance, high corrosion resistance, low electrical resistance and good solderability, such as for use as coatings for electrical contacts.
- a number of process parameters must be addressed. Such parameters include, but are not limited to, the composition of the bath, bath temperature, agitation rate during plating and bath pH. The specific parameters to achieve an optimum process may vary widely depending on whether the process is for low speed or high speed plating. Many palladium and palladium alloy plating processes use ammonia as a ligand for metals. Ammonia based processes have many advantages over ammonia free processes.
- Such advantages include: 1) no detrimental decomposition products from organic ligands in contrast to other types of ligands, such as polyamine type ligands; 2) highly ductile deposits; and 3) palladium-ammonia salts are more economical and readily available than many exotic palladium salts which are required for ammonia free processes.
- ammonia-based processes operate from the low acidic to high alkaline pH range, such as from a pH of 6 and higher.
- free ammonia escapes from the baths as ammonia vapor. This alters the pH of the bath and destabilizes it to seriously compromise the bath performance. This is especially problematic at high speed plating where plating rates are faster and bath agitation is more vigorous than with low speed plating, thus causing a greater rate of free ammonia loss.
- plating at high temperatures or an increase in temperature during plating which is typical for high speed plating, causes ammonia loss from the bath, thus destabilizing the plating process.
- Ammonia-based plating processes require periodic replacement of ammonia to maintain the stability and optimum operation of the process.
- free ammonia levels are kept at 50 g/L to 150 g/L, more typically 100 g/L.
- ammonia replenishment is difficult.
- Ammonia is often replenished by adding ammonium salts, e.g. ammonium sulfate for sulfate-based solutions, to the plating bath; however, this results in an accumulation of anions in the plating bath which dramatically reduces the life of the bath due to salting out of bath components.
- Ammonia gas and ammonium hydroxide also may be added to the baths; however, such compounds are inconvenient and problematic to handle. Both present potential serious noxious and toxic hazards to workers using them.
- the more free ammonia added to the bath the greater the ammonia loss, thus presenting a hazard to the environment. Accordingly, the industry desires a high speed plating method where the free ammonia level is reduced.
- ammonia loss is greater, thus requiring a greater rate of ammonia replacement and increasing the difficulty of maintaining a stable plating process.
- the high temperatures and rapid agitation of the bath during high speed plating further increase the loss of ammonia and destabilize the bath.
- a rapid loss of ammonia results in an unstable bath and poor process performance. This reduces the overall efficiency of the process and increases the cost of plating.
- U.S. 5,415,685 discloses an ammonia-based palladium plating composition and process.
- the patent alleges that the ammonia-based palladium plating composition is both stable and provides a whiter palladium deposit over a wider range of plating thicknesses than conventional processes.
- the process described in the patent is a low speed process with current densities ranging from 0.1 Amps/ft2 to 50 Amps/ft 2 (0.01 Amps/dm 2 to 5 Amps/dm 2 ).
- Such processes are not suitable in an industry where high speed plating is mandatory to achieve economic efficiency. Accordingly, there is a need for a high speed method for plating palladium and palladium alloys from an ammonia-based bath.
- a method includes: a) providing a composition consisting essentially of one or more sources of palladium, ammonium ions and urea; b) contacting a substrate with the composition; and c) generating a current density of at least 10 Amps/dm 2 to deposit palladium on the substrate.
- a method includes: a) providing a composition consisting essentially of one or more sources of palladium, one or more sources of alloying metals, ammonium ions and urea; b) contacting a substrate with the composition; and c) generating a current density of at least 10 Amps/dm 2 to deposit a palladium alloy on the substrate.
- the high speed methods provide stable palladium and palladium alloy baths and eliminate the need to add ammonium sulfates, ammonium hydroxide, ammonia gas or other ammonium compounds to replenish the free ammonia levels in the bath. Thus, the hazards and other disadvantages of adding such compounds to the plating baths are eliminated.
- the high speed methods also reduce the amount of free ammonia in the bath in contrast to many conventional high speed palladium and palladium alloy processes. Accordingly, the vapor level of ammonia is reduced.
- the high speed methods provide bright, ductile and crack free palladium and palladium alloy deposits on substrates at high current densities.
- the high speed methods may be used to plate palladium and palladium alloys on any substrate where palladium and palladium alloy coatings are desired.
- substrates include electronic components as well as jewelry.
- Electronic components may include electrical contacts where high wear resistance, high corrosion resistance and low electrical contact resistance and good solderability are desired.
- °C degrees Centigrade
- g gram
- mg milligrams
- L liter
- mL milliliter
- Amp amperes
- dm decimeter
- rpm revolutions per minute.
- the methods are high speed electroplating methods for depositing palladium and palladium alloys with low levels of free ammonia, thus reducing the generation of ammonia vapor during high speed electroplating and vigorous bath agitation.
- the free ammonia in the electroplating baths is less than 50 g/L.
- the reduction in free ammonia also provides for a more environmentally friendly bath since less ammonia vapor is generated during electroplating in contrast to many conventional ammonia-based baths.
- the unpleasant and annoying odor of ammonia is eliminated or at least reduced.
- constantly evaporating ammonia causes considerable difficulties in controlling the pH value.
- ammonia is continuously added in metered quantities to maintain an optimum pH.
- ammonium sulfate, ammonium hydroxide and ammonia gas are used.
- Such compounds are difficult to handle are noxious and are hazardous to workers. Further, adding such compounds to the baths often cause the salting out of bath components, thus compromising bath performance.
- the high speed methods eliminate the need to add such compounds to the plating baths.
- Urea is included in the baths to stabilize the baths by compensating for the reduced free ammonia and for preventing changes in the pH due to the loss of ammonia.
- the high speed electroplating baths have a pH range of 6 to 10, typically, from 7 to 8.
- Including urea in the baths eliminates the need to replenish ammonia by the addition of ammonium compounds or ammonia.
- Urea is easier to handle than ammonia or ammonium compounds.
- Urea is a weak complexing agent and addition of large quantities of urea to ammonia-based plating baths does not detrimentally affect the microstructure of palladium and palladium alloy deposits. Further, there is no accumulation of decomposition products which limit the bath life.
- one of the hydrolysis products of urea is ammonia and this ammonia is used to replenish the loss of free-ammonia and help maintain the desired pH and the bath stability.
- Urea is included in the baths in amounts such that the total amount of urea and free ammonia in the baths are from 100 g/L to 150 g/L.
- palladium compounds may be used as a source of palladium in the high speed electroplating methods provided that they are compatible with the high speed process and other bath components.
- Such palladium compounds include, but are not limited to, palladium complex ion compounds with ammonia as the complexing agent.
- Such compounds include, but are not limited to, dichlorodiammine palladium (II), dinitrodiammine palladium (II), tetrammine palladium (II) chloride, tetrammine palladium (II) sulfate, tetrammine palladium tetrachloropalladate, tetramine palladium carbonate and tetramine palladium hydrogen carbonate.
- Additional sources of palladium include, but are not limited to, palladium dichloride, palladium dibromide, palladium sulfate, palladium nitrate, palladium monoxide-hydrate, palladium acetates, palladium propionates, palladium oxalates and palladium formates.
- One or more sources of palladium may be mixed together in the bath.
- the ammonia palladium complexes are used in the bath.
- Sufficient amounts of one or more sources of palladium are added to the bath to provide 10 g/L to 50 g/L of palladium for deposition, or such as from 20 g/L to 40 g/L of palladium.
- Ammonia may be added to the bath by water soluble ammonium salts.
- ammonium salts include, but are not limited to, ammonium halides, such as ammonium chloride and ammonium bromides, ammonium sulfates and ammonium nitrates.
- Sources of ammonia are added to the baths in sufficient amounts to provide free ammonia in amounts of less than 50 g/L, or such as from 10 g/L to 45 g/L, or such as from 15 g/L to 35 g/L.
- Alloying metals which may be added to the high speed electroplating baths to form palladium alloys include, but are not limited to, one or more of nickel, cobalt, iron and zinc.
- the alloys may be binary alloys or ternary alloys.
- the alloys are binary alloys such as palladium/nickel, palladium/cobalt and palladium/zinc. More typically, the binary alloy is palladium/nickel.
- the ternary alloy is palladium/nickel/zinc.
- One or more alloying metals may be added to the baths as a water soluble salt.
- Such salts include, but are not limited to, halides, sulfates, sulfites, phosphates, pyrophosphates, nitrates and salts with organic acids, such as acetates, propionates, oxalates and formates.
- the halide and sulfate salts are used.
- Sufficient amounts of one or more alloying metal salts are added to the baths to provide alloying metal ions in amounts of 0.1 g/L to 15 g/L, or such as from 1 g/L to 10 g/L.
- Palladium alloys made by the high speed methods are stable. Stability means that the alloy composition remains substantially constant over a wide current density as well as changes in the pH of the bath, temperature fluctuations and bath agitation rates.
- the weight ranges ofpalladium in the binary alloys range from 50wt% to 90wt% with the balance being the alloying metal.
- An example of such a binary alloy which is used for coatings on electrical contacts is palladium/nickel (80wt%/20wt%).
- the weight ranges of palladium in a ternary alloy range from 40wt% to 80wt% with the balance being the two alloying metals in equal or unequal proportions.
- the palladium electroplating baths used in the high speed methods consist essentially of one or more sources of palladium, ammonium ions, free ammonia and urea.
- the bath is used for depositing a palladium alloy, one or more alloying metal ions are added to the bath.
- the palladium and palladium alloys deposited by the high speed methods are bright, crack free and adhere to substrates.
- One or more conventional additives also may be added to the bath.
- Such conventional additives include, but are not limited to, buffers, brighteners, surfactants and mixtures thereof. Such additives may be included in the bath in conventional amounts.
- surfactants which do not compromise the performance of the bath may be included.
- surfactants include, but are not limited to, non-ionic surfactants, cationic surfactants and anionic surfactants.
- non-ionic surfactants include polyethylene glycols, alkyl quaternary ammonium salts and sulfopropylated alkylalkoxylates.
- Buffering agents include, but are not limited to, one or more of acetic acid, boric acid, carbonic acid, citric acid, tetraboric acid, maleic acid, itaconic acid and salts thereof. Other conventional water soluble acids also may be included as buffering agents.
- Mineral acids and bases also may be added to the baths to help maintain the pH.
- Such mineral acids include sulfuric acid, hydrochloric acid and nitric acid.
- Bases include, but are not limited to, sodium hydroxide and potassium hydroxide. Typically, sulfuric acid or sodium hydroxide is used.
- Suitable brighteners are those compounds which provide a bright palladium or palladium alloy deposit.
- Such brighteners include conventional organic brighteners.
- organic brighteners include, but are not limited to, succinimide, maleimide, quinolines, substituted quinolines, phenanthrolines and substituted phenanthrolines and quaternized derivatives thereof, pyridine and its derivatives, such as pyridine carboxylic acids, pyridine carboxylic acid amines, and polypyridines, such as bipyridines, nicotinic acid and its derivatives, pyridinium alkyl sulfobetaine, piperidine and its derivatives, piperazine and its derivatives, pyrazine and its derivatives and mixtures thereof.
- the brighteners used in the high speed baths are organic brighteners which have nitrogen containing heterocyclic rings, however, excluding aromatic sulfonamides. More typically, the brighteners used are pyridine derivatives, pyrazine derivatives or mixtures thereof.
- stress reducing agents are, in general, excluded from the baths.
- An example of such stress reducing agents are the aromatic sulfonamides.
- a typical aromatic sulfonamide which is used as a stress reducing agent is saccharin.
- Bath temperatures may be maintained by conventional heating apparatus. Bath temperatures range from 40 to 70° C, or such as from 50 to 60° C. Maintaining the bath temperature within the ranges, in particular at the higher end of the range, is highly desirable because as the temperature increases the amount of ammonia vapor leaving the bath also increases. Accordingly, temperature maintenance is important.
- the high speed electroplating methods use current densities from 10 Amps/dm 2 and higher. Typically, current densities range from 10 Amps/dm 2 to 100 Amps/dm 2 , or such as from 20 Amps/dm 2 to 80 Amps/dm 2 . Such current densities are controlled using conventional rectifiers.
- Conventional high speed plating apparatus may be used to electroplate palladium metal and palladium metal alloys.
- the palladium and palladium alloys are electroplated using reel-to-reel plating apparatus; however, any apparatus which maintains a high speed plating rate may be used.
- insoluble anodes may be used with the high speed methods.
- insoluble anodes include, but are not limited to, platinized titanium, mixed oxide coated titanium and stainless steel.
- anodes with the above mentioned materials with the shield design as described in US 2006/0124451 may be used.
- Cathodes include any substrate which may be plated with palladium or a palladium alloy.
- the palladium or palladium alloy is deposited on copper, copper alloy or nickel-plated copper substrates.
- Such substrates may be electrical contacts where high wear resistance, high corrosion resistance, low electrical contact resistance, high ductility and good solderability are required. Examples of an electrical contact are lead frames and electrical connectors.
- Electronic devices which include such electrical contacts include, but are not limited to, printed circuit boards, semi-conductor devices, optoelectronic devices, electrical components and automobile components. Additionally, the high speed methods may be used to deposit palladium or palladium alloys on components for solar cell devices and jewelry as well as any article which may accept a palladium or palladium alloy coating.
- the thicknesses of the palladium and palladium alloy coatings deposited by the high speed methods may vary and depend on the function of the substrate. In general, thicknesses range from 0.1 ⁇ m to 100 ⁇ m. Typically, the thicknesses range from 0.5 ⁇ m to 20 ⁇ m.
- the rate of deposit depends on the current density used. In general, the rate may range from 1 ⁇ m/min to 30 ⁇ m/min.
- palladium/nickel alloy may be plated at 3 ⁇ m/min at 10 Amps/dm 2 and 18 ⁇ m/min at 60 Amps/dm 2 .
- the ammonia-based palladium/nickel alloy composition was added to a 1000 ml beaker with a magnetic stirrer to maintain agitation of the composition during electroplating.
- the anode was a platinzed titanium insoluble anode and the cathode was a brass substrate.
- the temperature of the composition was maintained at 50° C and the initial pH was 7.2. Electroplating was done at a high current density of 10 Amps/dm 2 . The experiment was run until 20 MTO with respect to palladium metals was achieved.
- Free ammonia in the bath was analyzed every MTO for the first 5 MTOs, then reduced to a frequency of every 3 to 5 MTOs.
- the content of the ammonia in the bath was monitored by a pH titration method using 809 Titrando TM from Metrohm. It was observed that the bath was chemically unstable once the deposition began with the initial low free ammonia concentration of 35 g/L. Bath destabilization was noticeable by a white precipitate forming at the bottom of the beaker. In order to maintain the stability and operation of the bath and achieve a bright and ductile deposit, the white precipitate was removed from the bath by filtration, and the free ammonia content was increased to 100 g/L by adding ammonium sulfate.
- the following palladium/nickel alloy aqueous, ammonia-based composition was prepared for depositing a bright and ductile palladium/nickel alloy (80/20% w/w): Table 2 COMPONENT AMOUNT (g/L) Palladium as Pd(NH 3 ) 4 SO 4 15 Nickel as NiSO 4 6 Boric acid 26 Free NH 3 as (NH) 2 SO 4 35 Urea 100 Nitrogen containing heterocyclic brightener 0.1 NH 4 OH Sufficient amount to achieve pH
- the ammonia-based palladium/nickel alloy composition was added to a 1000 ml beaker with a magnetic stirrer to maintain agitation of the composition during electroplating.
- the anode was a platinized titanium insoluble anode and the cathode was a brass substrate.
- the temperature of the composition was maintained at 50° C and the pH was 7.2. Electroplating was done at a high current density of 10 Amps/dm 2 . The experiment was run until 20 MTO with respect to palladium metal was achieved.
- Free ammonia in the bath was analyzed every MTO for the first 5 MTOs then analysis was reduced to a frequency of every 3 to 5 MTOs.
- the content of the ammonia in the bath was monitored by a pH titration method using 809 Titrando TM from Metrohm.
- Urea levels were analyzed using Genesis II FTIR Spectrometer TM from Mattson Instruments. Electroplating bath analysis showed that the ammonia/ammonium level and the pH remained stable throughout the electroplating (20 metal turnover with respect to palladium). There was no noticeable white precipitate.
- Urea replenishment was 0.7 to 0.8 g/g of palladium metal deposited.
- ammonia-based/urea electroplating composition eliminated the need to replenish ammonia during electroplating with undesirable and hazardous compounds such as NH 4 OH and ammonia gas.
- Low levels of free ammonia were easily maintained during electroplating in contrast to the bath of Example 1.
- noxious vapors were reduced due to the low free ammonia.
- the frequency and amount of urea replenishment was less than the ammonia replenishment in comparative Example 1 using NH 4 OH and ammonia gas, thus providing a more economical and cost effective process than the conventional method.
- Example 2 The palladium/nickel method described in Example 2 was repeated except that the amount of urea added to the electroplating composition was 80 g/L. The rate of urea replenishment was 0.7 to 0.8 g/g of palladium metal deposited on the brass substrate. The bath was stable throughout electroplating. The performance of this method was the same as in Example 2. A bright and ductile palladium/nickel alloy was deposited on the brass substrate.
- the following palladium/nickel alloy aqueous, ammonia-based composition was prepared for depositing a bright and ductile palladium/nickel alloy (80/20% w/w): Table 3 COMPONENT AMOUNT (g/L) Palladium as Pd(NH 3 ) 4 SO 4 25 Nickel as NiSO 4 10 Boric acid 26 Free NH 3 as (NH 4 ) 2 SO 4 35 Urea 80 Nitrogen containing heterocyclic brightener 02
- the ammonia-based palladium/nickel alloy composition was added to a 1000 ml beaker.
- the cathode was a rotating cylinder pre-plated with bright nickel. During plating the cathode was rotated at 1000 rpm.
- the pH of the ammonia-based composition was maintained at 7.2 during electroplating and the temperature was 50° C. Electroplating was done at a current density of 20 Amps/dm 2 . The bath was stable during the electroplating process.
- the palladium/nickel deposits were bright, ductile and adhered to the bright nickel.
- Example 4 Four bright nickel coated brass substrates were electroplated with the aqueous, ammonia-based palladium/nickel composition as described in Example 4. Each substrate was plated with the composition at different current densities. The current densities were 20 Amps/dm 2 40 Amps/dm 2 , 60 Amps/dm 2 and 80 amps/dm 2 . The pH of the plating composition was 7.2 with a temperature of 50° C. The high speed method was done using jet plating equipment designed for laboratory testing. The plating composition was applied to the substrates at a flow rate of 800 liters/hour. All of the palladium/nickel deposits on the bright nickel coated brass substrates were bright, ductile and adhered to the substrates.
- aqueous, ammonia-based palladium metal composition is prepared for depositing a palladium coating on a copper substrate: Table 4 COMPONENT AMOUNT (g/L) Palladium as [Pd(NH 3 ) 4 ]Cl 2 10 Free NH 3 as (NH 4 )Cl 30 Boric acid 20 Urea 100 Nitrogen containing heterocyclic brightener 0.2
- the aqueous, ammonia-based palladium composition is deposited on the copper substrate using jet plating equipment as described in Example 5.
- the pH of the composition is maintained at 8 and the temperature of the composition is maintained at 40° C.
- the current density is 20 Amps/dm 2 .
- the bath is expected to be stable during electroplating.
- the resulting palladium coatings on the substrates are expected to be semi-bright and crack-free.
- aqueous, ammonia-based palladium/cobalt alloy composition is prepared for depositing a palladium/cobalt alloy on a copper substrate: Table 5 COMPONENT AMOUNT (g/L) Palladium as [Pd(NH 3 ) 4 ]Cl 2 10 Cobalt as CoSO 4 5 Free NH 3 as NH 4 Cl 30 Urea 90 Boric acid 20 Nitrogen containing heterocyclic brightener 1
- the aqueous, ammonia-based palladium alloy composition is deposited on the copper substrate using jet plating equipment as described in Example 5.
- the pH of the bath is maintained at 7.5 and the temperature is maintained at 60° C.
- the current density is 90 Amps/dm 2 .
- the bath is expected to be stable during electroplating.
- the palladium/cobalt deposit is expected to be bright and crack-free.
- aqueous, ammonia-based palladium/zinc alloy composition is used to deposit a palladium zinc alloy on a copper/tin alloy substrate: Table 6 COMPONENT AMOUNT (g/L) Palladium as [Pd(NH 3 ) 4 ]Cl 2 15 Zinc as ZnSO 4 5 Free NH 3 as (NH4) 2 SO 4 40 citric acid 15 Urea 100 Nitrogen containing heterocyclic brightener 0.3
- the aqueous, ammonia-based palladium alloy composition is deposited on the copper/tin alloy substrate using jet plating equipment as described in Example 5.
- the pH of the composition is maintained at 7 and the temperature of the composition is maintained at 60° C.
- the current density is 30 Amps/dm 2 .
- the bath is expected to be stable during electroplating.
- a bright and crack-free palladium/zinc alloy is deposited on the copper/tin alloy.
- aqueous, ammonia-based palladium/nickel/zinc alloy composition is used to deposit a palladium/nickel/zinc alloy on a copper substrate: Table 7 COMPONENT AMOUNT (g/L) Palladium as Pd(NH 3 ) 4 SO 4 20 Nickel as NiSO 4 5 Zinc as ZnSO 4 1 Free NH 3 as (NH 4 ) 2 SO 4 40 Urea 70 Citric acid 15 Nitrogen containing heterocyclic brightener 0.5
- the aqueous, ammonia-based palladium alloy composition is deposited on the copper substrate using the jet plating equipment as described in Example 5.
- the pH of the composition is maintained at 7 and the temperature of the composition is maintained at 60° C.
- the current density is 85 Amps/dm 2 .
- the bath is expected to be stable during electroplating.
- the palladium/nickel/zinc alloy is expected to be bright and crack-free.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
- Chemically Coating (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96139307P | 2007-07-20 | 2007-07-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2017373A2 true EP2017373A2 (de) | 2009-01-21 |
EP2017373A3 EP2017373A3 (de) | 2013-09-11 |
EP2017373B1 EP2017373B1 (de) | 2018-09-26 |
Family
ID=39942904
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08160839.0A Active EP2017373B1 (de) | 2007-07-20 | 2008-07-21 | Hochgeschwindigkeitsverfahren zur plattierung von palladiumlegierungen |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090038950A1 (de) |
EP (1) | EP2017373B1 (de) |
CN (1) | CN101348928B (de) |
TW (1) | TWI391533B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022129916A1 (en) | 2020-12-18 | 2022-06-23 | Johnson Matthey Public Limited Company | Electroplating solutions |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8500983B2 (en) * | 2009-05-27 | 2013-08-06 | Novellus Systems, Inc. | Pulse sequence for plating on thin seed layers |
DE102010011269B4 (de) * | 2009-11-10 | 2014-02-13 | Ami Doduco Gmbh | Verfahren zum Abscheiden einer für das Drahtbonden geeigneten Palladiumschicht auf Leiterbahnen einer Schaltungsträgerplatte und Verwendung eines Palladiumbades in dem Verfahren |
CN101838830B (zh) * | 2010-05-07 | 2012-08-15 | 厦门大学 | 一种电镀钯镍合金的电解液 |
US9385035B2 (en) | 2010-05-24 | 2016-07-05 | Novellus Systems, Inc. | Current ramping and current pulsing entry of substrates for electroplating |
CN105401182B (zh) * | 2015-10-14 | 2017-06-23 | 佛山科学技术学院 | 一种在不锈钢上电镀厚钯的镀液配方及其电镀方法 |
CN105543913A (zh) * | 2016-02-25 | 2016-05-04 | 盈昌集团有限公司 | 钯钴合金电镀液及用其电镀眼镜框架的工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5415685A (en) | 1993-08-16 | 1995-05-16 | Enthone-Omi Inc. | Electroplating bath and process for white palladium |
US20060124451A1 (en) | 2004-12-15 | 2006-06-15 | Lam Research Corporation | Wafer support apparatus for electroplating process and method for using the same |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3458409A (en) * | 1964-10-12 | 1969-07-29 | Shinichi Hayashi | Method and electrolyte for thick,brilliant plating of palladium |
JPS4733176B1 (de) * | 1967-01-11 | 1972-08-23 | ||
CH479715A (fr) * | 1967-09-08 | 1969-10-15 | Sel Rex Corp | Procédé de placage électrolytique de palladium, et bain pour la mise en oeuvre de ce procédé |
CH572989A5 (de) * | 1973-04-27 | 1976-02-27 | Oxy Metal Industries Corp | |
US3925170A (en) * | 1974-01-23 | 1975-12-09 | American Chem & Refining Co | Method and composition for producing bright palladium electrodepositions |
US3920526A (en) * | 1974-03-12 | 1975-11-18 | Ibm | Process for the electrodeposition of ductile palladium and electroplating bath useful therefor |
GB1495910A (en) * | 1975-10-30 | 1977-12-21 | Ibm | Method and bath for electroplating palladium on an articl |
JPS5267961A (en) * | 1975-12-03 | 1977-06-06 | Mitsubishi Electric Corp | Electrode formation of semiconductor unit |
US4098656A (en) * | 1976-03-11 | 1978-07-04 | Oxy Metal Industries Corporation | Bright palladium electroplating baths |
US4066517A (en) * | 1976-03-11 | 1978-01-03 | Oxy Metal Industries Corporation | Electrodeposition of palladium |
US4100039A (en) * | 1976-11-11 | 1978-07-11 | International Business Machines Corporation | Method for plating palladium-nickel alloy |
US4092225A (en) * | 1976-11-17 | 1978-05-30 | Amp Incorporated | High efficiency palladium electroplating process, bath and composition therefor |
DE2657925A1 (de) * | 1976-12-21 | 1978-06-22 | Siemens Ag | Ammoniakfreies, waessriges bad zur galvanischen abscheidung von palladium bzw. palladiumlegierungen |
JPS5929118B2 (ja) * | 1980-09-19 | 1984-07-18 | セイコーエプソン株式会社 | パラジウム・ニツケル合金メツキ液 |
US4297177A (en) * | 1980-09-19 | 1981-10-27 | American Chemical & Refining Company Incorporated | Method and composition for electrodepositing palladium/nickel alloys |
US4545868A (en) * | 1981-10-06 | 1985-10-08 | Learonal, Inc. | Palladium plating |
US4622110A (en) * | 1981-10-06 | 1986-11-11 | Learonal, Inc. | Palladium plating |
US4454010A (en) * | 1982-08-30 | 1984-06-12 | At & T Bell Laboratories | Palladium plating procedure |
US4552628A (en) * | 1982-09-09 | 1985-11-12 | Engelhard Corporation | Palladium electroplating and bath thereof |
GB2171721B (en) * | 1985-01-25 | 1989-06-07 | Omi Int Corp | Palladium and palladium alloy plating |
US4545869A (en) * | 1985-01-29 | 1985-10-08 | Omi International Corporation | Bath and process for high speed electroplating of palladium |
US4564426A (en) * | 1985-04-15 | 1986-01-14 | International Business Machines Corporation | Process for the deposition of palladium-nickel alloy |
US4673472A (en) * | 1986-02-28 | 1987-06-16 | Technic Inc. | Method and electroplating solution for deposition of palladium or alloys thereof |
US4849303A (en) * | 1986-07-01 | 1989-07-18 | E. I. Du Pont De Nemours And Company | Alloy coatings for electrical contacts |
US4911798A (en) * | 1988-12-20 | 1990-03-27 | At&T Bell Laboratories | Palladium alloy plating process |
US4911799A (en) * | 1989-08-29 | 1990-03-27 | At&T Bell Laboratories | Electrodeposition of palladium films |
JPH05271980A (ja) * | 1992-03-30 | 1993-10-19 | Yazaki Corp | パラジウム−ニッケル合金メッキ液 |
JPH0711475A (ja) * | 1993-06-23 | 1995-01-13 | Kojima Kagaku Yakuhin Kk | パラジウムめっき液 |
TW340139B (en) * | 1995-09-16 | 1998-09-11 | Moon Sung-Soo | Process for plating palladium or palladium alloy onto iron-nickel alloy substrate |
US5976344A (en) * | 1996-05-10 | 1999-11-02 | Lucent Technologies Inc. | Composition for electroplating palladium alloys and electroplating process using that composition |
US6251249B1 (en) * | 1996-09-20 | 2001-06-26 | Atofina Chemicals, Inc. | Precious metal deposition composition and process |
-
2008
- 2008-03-17 CN CN2008100868593A patent/CN101348928B/zh active Active
- 2008-07-14 TW TW097126599A patent/TWI391533B/zh active
- 2008-07-21 EP EP08160839.0A patent/EP2017373B1/de active Active
- 2008-07-21 US US12/220,037 patent/US20090038950A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5415685A (en) | 1993-08-16 | 1995-05-16 | Enthone-Omi Inc. | Electroplating bath and process for white palladium |
US20060124451A1 (en) | 2004-12-15 | 2006-06-15 | Lam Research Corporation | Wafer support apparatus for electroplating process and method for using the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022129916A1 (en) | 2020-12-18 | 2022-06-23 | Johnson Matthey Public Limited Company | Electroplating solutions |
Also Published As
Publication number | Publication date |
---|---|
CN101348928A (zh) | 2009-01-21 |
EP2017373A3 (de) | 2013-09-11 |
CN101348928B (zh) | 2012-07-04 |
US20090038950A1 (en) | 2009-02-12 |
TW200923140A (en) | 2009-06-01 |
EP2017373B1 (de) | 2018-09-26 |
TWI391533B (zh) | 2013-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2017373B1 (de) | Hochgeschwindigkeitsverfahren zur plattierung von palladiumlegierungen | |
EP1009869B1 (de) | Cyanidfreie, monovalente kupferelektrobeschichtungslösung | |
EP3030688B1 (de) | Lösung für chemische vernickelung und verfahren | |
CN102037162B (zh) | Pd-和Pd-Ni-电镀浴 | |
US9435046B2 (en) | High speed method for plating palladium and palladium alloys | |
US4911799A (en) | Electrodeposition of palladium films | |
KR102575117B1 (ko) | 백금 전해 도금욕 및 백금 도금 제품 | |
EP3356579A1 (de) | Elektroplattierungsbad zur elektrochemischen abscheidung einer cu-sn-zn-pd-legierung, verfahren zur elektrochemischen abscheidung von dieser legierung, substrat mit dieser legierung und verwendung des substrats | |
JP5583896B2 (ja) | パラジウムおよびパラジウム合金の高速めっき方法 | |
US6743346B2 (en) | Electrolytic solution for electrochemical deposit of palladium or its alloys | |
US4715935A (en) | Palladium and palladium alloy plating | |
US5435838A (en) | Immersion plating of tin-bismuth solder | |
EP0112561B1 (de) | Wässrige Elektroplattierlösungen und Verfahren für das Elektroplattieren von Palladium-Silber-Legierungen | |
JP2022107487A (ja) | 白金電解めっき浴および白金めっき製品 | |
EP0892087A2 (de) | Elektrobeschichtung von spannungsarmem Nickel | |
EP3686319A1 (de) | Indium-elektroplattierungszusammensetzungen und indium-elektroplattierungsverfahren auf nickel | |
KR101491980B1 (ko) | 팔라듐 및 팔라듐 합금의 고속 도금 방법 | |
EP1323849A1 (de) | Nickel-Elektroplattierungslösung | |
US4545869A (en) | Bath and process for high speed electroplating of palladium | |
TW201333275A (zh) | 選擇性硬金沉積 | |
JP4740528B2 (ja) | ニッケル−モリブデン合金めっき液とそのめっき皮膜及びめっき物品 | |
US4470886A (en) | Gold alloy electroplating bath and process | |
EP3842572A1 (de) | Zinkelektroplattierungsbad und plattierungsverfahren mit verwendung davon | |
Gamburg et al. | Technologies for the electrodeposition of metals and alloys: electrolytes and processes | |
EP4162100A1 (de) | Silber-zinn-elektroplattierungsbad und verfahren zur verwendung davon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080721 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 3/50 20060101AFI20130805BHEP |
|
17Q | First examination report despatched |
Effective date: 20130906 |
|
AKX | Designation fees paid |
Designated state(s): DE FR GB |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C25D 3/50 20060101AFI20180416BHEP Ipc: C25D 3/56 20060101ALI20180416BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180514 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602008057132 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602008057132 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20190627 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190721 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190721 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240611 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240604 Year of fee payment: 17 |