EP2017103A1 - Dispositif de chauffage électrique - Google Patents

Dispositif de chauffage électrique Download PDF

Info

Publication number
EP2017103A1
EP2017103A1 EP07014118A EP07014118A EP2017103A1 EP 2017103 A1 EP2017103 A1 EP 2017103A1 EP 07014118 A EP07014118 A EP 07014118A EP 07014118 A EP07014118 A EP 07014118A EP 2017103 A1 EP2017103 A1 EP 2017103A1
Authority
EP
European Patent Office
Prior art keywords
heat
housing
struts
heating block
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07014118A
Other languages
German (de)
English (en)
Other versions
EP2017103B1 (fr
Inventor
Franz Bohlender
Michael Niederer
Michael Zeyen
Rainer Wünstel
Detlef Stephan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eberspaecher Catem GmbH and Co KG
Original Assignee
Catem GmbH and Co KG
Eberspaecher Catem GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38819961&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2017103(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Catem GmbH and Co KG, Eberspaecher Catem GmbH and Co KG filed Critical Catem GmbH and Co KG
Priority to EP07014118.9A priority Critical patent/EP2017103B1/fr
Priority to EP08015712A priority patent/EP2025541B1/fr
Priority to JP2008181638A priority patent/JP4939490B2/ja
Priority to KR1020080069770A priority patent/KR100960748B1/ko
Priority to US12/175,173 priority patent/US8362406B2/en
Priority to CN2008101316449A priority patent/CN101348067B/zh
Publication of EP2017103A1 publication Critical patent/EP2017103A1/fr
Publication of EP2017103B1 publication Critical patent/EP2017103B1/fr
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/02Details
    • H05B3/06Heater elements structurally combined with coupling elements or holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0435Structures comprising heat spreading elements in the form of fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0441Interfaces between the electrodes of a resistive heating element and the power supply means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0441Interfaces between the electrodes of a resistive heating element and the power supply means
    • F24H3/0447Forms of the electrode terminals, e.g. tongues or clips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • F24H3/0464Two-piece frames, e.g. two-shell frames, also including frames as a central body with two covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H3/00Air heaters
    • F24H3/02Air heaters with forced circulation
    • F24H3/04Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element
    • F24H3/0405Air heaters with forced circulation the air being in direct contact with the heating medium, e.g. electric heating element using electric energy supply, e.g. the heating medium being a resistive element; Heating by direct contact, i.e. with resistive elements, electrodes and fins being bonded together without additional element in-between
    • F24H3/0429For vehicles
    • F24H3/0452Frame constructions
    • F24H3/0476Means for putting the electric heaters in the frame under strain, e.g. with springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1854Arrangement or mounting of grates or heating means for air heaters
    • F24H9/1863Arrangement or mounting of electric heating means
    • F24H9/1872PTC
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic

Definitions

  • the present invention relates to an electric heater, comprising a heating block, which is held in a housing opposite the frame openings forming and parallel layers of heat-emitting and heat-generating elements and with a respective frame opening covering and stiffening the housing grid arrangement.
  • Such a heater for air conditioning the interior of a motor vehicle is for example from the EP 1 564 503 known.
  • the heat-generating elements of the heating block usually comprise a plurality of one above the other in a plane provided PTC heating elements, which are arranged between conductor tracks, which are usually formed by metal strips. These tracks are energized with different polarity.
  • the PTC elements can be glued to these tracks. It is also possible to apply the printed conductors under prestress against the PTC heating elements. In any case, it must be ensured that there is good contact between the conductor tracks and the PTC heating elements for decoupling the heat generated by the PTC heating elements and for coupling in current.
  • One or more heat-generating elements may be provided as part of the heating block.
  • the heat generated by the heat-generating elements is discharged through heat-emitting elements to the medium to be heated, ie the air.
  • the frame openings are usually parallel to each other on opposite sides of a substantially flat, frame-shaped housing.
  • the heat-emitting elements are usually formed of meandering bent metal strips that form corrugated fins. These corrugated ribs rest on one or both sides of heat-emitting elements.
  • the heating block comprises a plurality of layers of heat-emitting and heat-generating elements, wherein care must also be taken with regard to the heat extraction that the heat-emitting elements abut well on the heat-generating elements.
  • the heat-emitting elements can be firmly connected to the heat-generating elements and / or applied by at least one received in the housing spring element under bias.
  • the heat-emitting element can also be formed by an extruded aluminum profile which forms webs which extend substantially perpendicular to the layers of the layer structure comprising the heat-emitting and the heat-generating elements.
  • the trace i. the generally planar contact surface for the PTC heating element are formed by the outer surface of such an extruded aluminum profile.
  • the contact surface for the PTC heating elements are designed to be electrically conductive and electrically connected to the housing usually held in isolation from each other held contacts. In the former case, the contacts are usually formed by the exposed ends of the metal strips.
  • the layered heating block of parallel heat-emitting and heat-generating elements, optionally with the addition of one or more parallel thereto extending spring elements is preferably held in a housing having a U-shaped cross-section.
  • the frame When loading the layer structure with a spring, the frame should be dimensioned so that the spring force can hold permanently even at the elevated temperatures.
  • the insulating frame is nowadays produced not least for economic reasons as an injection molded part.
  • Usual housing today consist of a lower housing part and a housing upper part. The lower housing part forms a receptacle for the individual elements of the heating block and, if necessary, the spring element. In this lower housing part, the individual elements of the heating block are arranged.
  • the heating block is enclosed by joining the upper housing part and the lower housing part in the housing.
  • edges surrounding the frame openings may partially cover the heating block, so that the heating block is enclosed between the frame openings and held in the housing.
  • the two housing parts are then connected to each other, for example via a latching connection.
  • the housing itself should be as simple as possible.
  • the present invention is based on the problem of specifying an electric heater which can be produced more simply and thus more cost-effectively.
  • the present invention further seeks to provide a heat generating element of an electric heater which is suitable for installation in the aforementioned electric heater.
  • the invention is intended to specify a housing which can be used as part of the electrical heating device according to the present invention and which is particularly suitable for accommodating the heat-generating elements proposed by the present invention.
  • the present invention proposes an electric heater having the features of claim 1. This differs from the generic electric heater in that at right angles to the layers extending first struts of the grid assembly associated with the housing and extending parallel to the layers extending second struts are formed by the heating block.
  • the grid assembly not only by the two interconnected housing parts. Rather, the housing parts only those struts which extend at right angles to the layers of the heating block as first struts.
  • the purpose of extending at right angles and referred to as second struts grid elements are formed by the heating block.
  • the second struts serve a certain shielding of the heat-generating element, which usually comprises two parallel interconnects of different polarity and provided therebetween, juxtaposed PTC elements.
  • the second strut should preferably overlap the two interconnects in the region of the frame opening on the outside and thus prevent a foreign body penetrating from the outside through the frame opening and penetrating the air to be heated onto the longitudinal side of the heat-generating element causing a short circuit between the opposing interconnects.
  • the first and second struts of the electric heating device according to the invention preferably each contribute to a certain stiffening of the grid arrangement, which passes through the frame openings. For this purpose, however, it is not necessary that the crossing perpendicular to each other provided struts are firmly connected. Rather, a certain form fit and / or a certain support of the first and second struts is sufficient for a certain stiffening of the grid arrangement.
  • the second struts are formed by the heating block, so that the position of the corresponding second struts in the housing is determined only by the installation situation of the layers of the heating block. This makes it easier to provide the second struts in the region of the heat-generating elements, for example, to cover the conductor tracks of different polarity frontally. Contrary to the prior art described above, there is no longer the problem of close tolerance matching between the geometric configuration of the housing on the one hand and the layers of the heating block, which are sometimes movable, but at least held with some play.
  • the second struts in sections between the first struts, in such a way that the first struts are each positively fixed between two sections of the first struts, which means that the first struts substantially perpendicular to its extent, d. H. parallel to the longitudinal extent of the second struts are only slightly or not movable and are therefore held in a form-fitting manner between the respective sections.
  • the second struts can engage in recesses of the first struts adapted to the dimension of the second struts and thus produce a form-locking connection which fixes the two struts substantially immovably to one another.
  • the second struts can be designed as shielding components between or as part of the heat-emitting or heat-generating elements. Particularly reliable is an embodiment in which the second struts are formed directly by parts of the heat-generating element. It has proven to be advantageous to form the second struts by positioning frame made of an insulating material, which forms side by side receptacles for each forming at least one PTC heating element and which are arranged between interconnects on which abut the PTC heating elements electrically conductive. With this preferred development, the struts are formed as a unitary element with the heat-generating elements, so that a correct positioning of the struts can be ensured in a simple manner.
  • the structural requirements that are placed on the sections or struts insofar for fixing the interconnects can be relatively low if the interconnects in the installed state by a heating block under spring tension in the housing holding spring device is applied against the PTC heating elements, as for example from the EP 1 432 287 as well as the EP 1 564 503 is known.
  • the second struts For material-friendly production of the second struts, it is proposed according to a further preferred embodiment of the present invention to form the top and bottom of the heat-generating elements between the sections of the second struts through the conductor tracks.
  • the tracks are accordingly free between the sections of the second struts and are shielded only after installation in the housing of the first struts and thus covered.
  • the development further allows a relatively flat structure of the electric heater using relatively many standardized components, such as metal strips as interconnects.
  • this is a heat-emitting element of an electric heater of the type mentioned above, which comprises a positioning frame made of an insulating material forming side by side receptacles for each PTC heating element, which are arranged between tracks where the PTC heating elements are electrically conductive.
  • a heat-emitting element of an electric heater of the type mentioned above which comprises a positioning frame made of an insulating material forming side by side receptacles for each PTC heating element, which are arranged between tracks where the PTC heating elements are electrically conductive.
  • the heat generating element can be easily handled and easily inserted into the housing.
  • the holding webs are applied to the conductor tracks, so that the elements of the heat-emitting element are closely connected to each other and also the PTC heating elements through Concerns are fixed to the inner sides of the conductor tracks in the receptacles, so that, for example, a plurality of PTC heating elements can be arranged and fixed in a receptacle at predetermined locations.
  • the present invention further provides a housing of a heater into which the heat-generating element according to the present invention for manufacturing the electric heater of the present invention can be installed.
  • This housing is characterized in that the frame openings are penetrated by struts which extend only at right angles to the layers of heat-emitting and heat-generating elements.
  • this particularity of the struts results from a comparison between the configuration of the receiving openings for parts of the heating block, which may be provided at the front ends of the layers of the heating block, or the slots or other feedthroughs for electrical conductors of the heating block, which are also usually the front side out of the heating block and out there into the housing with the orientation of the struts of the housing .
  • a preferred embodiment of the housing according to the invention is specified in claim 15.
  • the Fig. 1 shows a perspective side view of an embodiment of the electric heater with a housing 2, consisting of a lower housing part 4 and an upper housing part 6. Both housing parts 4, 6 are positively connected to each other and take in a heating block 8, which arranged from a plurality of parallel layers to each other heat-generating elements 10 and heat-emitting elements 12 consists.
  • the heat-emitting elements 12 are formed as corrugated rib elements of meandering bent sheet metal strip.
  • contact tongues 15 are arranged one above the other in the transverse direction.
  • the contact tongues pass through recesses 16 which are recessed on the housing 2 and which in each case receive a contact tongue and are predominantly formed by the housing lower part 4, but are completed at one end face by the housing upper part 6.
  • the housing 2 has two opposite frame openings, of which in Fig. 1 only the frame opening 16 formed by the upper housing part 6 can be seen.
  • the formed by the lower housing part 4 frame opening is in Fig. 4 and identified by reference numeral 18.
  • the frame openings 16, 18 are each interspersed with struts 20 which extend at right angles to the layers of the heating block 8 and connect the opposing longitudinal beams of the lower housing part 4 and upper housing part 8 with each other.
  • the Fig. 2 shows details of the heating block 8 and its inclusion in particular in the lower housing part 4 and shows the lower housing part 4 in a plan view with the housing upper part removed.
  • the heat-emitting elements 12 are only incompletely shown at the respective front ends of the housing lower part 4. Accordingly, the illustration in Fig. 2 also a view of the frame opening 18 formed by the lower housing part 4 free.
  • the exemplary embodiment shown has four heat-generating elements 10, which are each accommodated in the housing lower part 4 in an insulating manner and with a certain mobility transverse to the layers of the layer structure (heating block 8).
  • the lower housing part 4 has for this purpose fitting element receptacles 22 which open a receptacle 24, which is formed essentially by the housing lower part 4 and accommodates the heating block 8.
  • fitting element receptacles 22a, 22b are provided in the exemplary embodiment shown (cf. Fig. 3 ).
  • the heat-generating elements 10 have at their front ends fitting elements 26a, 26b which respectively fit only in the corresponding corresponding fitting element receptacle 22a or 22b.
  • the corresponding fitting element receptacles 22 are matched to the fitting elements 26 provided corresponding thereto, that the heat-generating elements 10 are movable by a few tenths of a millimeter transversely to the longitudinal extent of the layers of the heating block 8 in the housing 2.
  • the outer fitting elements 26a are designed as a hammer head and engage in correspondingly formed fitting element receptacles 22a.
  • the fitting elements 26b associated with these elongated fitting element receptacles 22b are rod-shaped and less wide than the hammer-head-like fitting elements 26a. Due to this particular configuration, the central heat-generating elements 10 do not fit in the outer positions for heat-generating elements 10 of the heating block. In appropriate Way, the outer heat-generating elements can not be arranged in the middle of the heating block, ie insert into the housing 2.
  • the heat-generating elements 10 can not be used anywhere in the housing 2, the heat-emitting corrugated fin elements 12 are nonspecific and as lengths of a meandering curved first sheet metal strip as manufactured and cut from this continuous material to length. Each individual heat-emitting element 12 can be used at any position for a heat-emitting element within the heating block 8.
  • the fitting elements 26 are integrally formed on a positioning frame 28, which in the 6 and 7 can be seen and explained in more detail below with reference to these figures.
  • the positioning frame 28 is made of an insulating material and serves for the positioning of PTC heating elements 30.
  • a receptacle 32 in the positioning frame 28 is recessed for each individual PTC heating element 30, which surrounds this PTC heating element and thus defines it.
  • sheet metal strips 34, 36 which form electrical conductors for energizing the PTC heating elements 30 and via which the heat generated by the PTC heating elements to the heat-emitting elements 12 is passed by heat transfer. These lie directly on the metal bands 34, 36 at.
  • the front ends of the positioning frame 28 are extended over a fitting element web 38 on the position of the metal strips 34, 36 addition.
  • the respective fitting elements 26 of the positioning frame 28 At the outer end of the fitting element webs 38 are the respective fitting elements 26 of the positioning frame 28.
  • the vast extent of the position frame 28 in the width direction of the respective metal bands 34, 36 is taken.
  • the positioning frame on holding webs 40 which are provided immediately adjacent to the lateral edge of the metal strips 34, 36 and the corresponding metal strips 34, 36 project beyond the top and these overlap on the outside, preferably with the tracks 34, 36 in contact and abut this.
  • the holding webs 40 are formed in the embodiment shown in one piece by way of injection molding initially as a right angle to the main extension direction of the position frame 28 outgoing projections.
  • the distance of opposing projections is selected so that the sheet metal strip 34 or 36 just fits between these projections.
  • the one-piece component thus produced by injection molding is then provided with the essential parts of the heat-generating element 10, i. the PTC heating elements 30 are inserted into the corresponding receptacle 32 and surrounded on both sides by the metal strips 34, 36. Thereafter, the projections are plastically deformed inwardly and so the interconnects 34, 36 formed across.
  • a hot forming is used, in which the holding webs 40 forming material locally in the area of the metal strips 34, 36 warms up and thus softened.
  • the means used in each case can locally heat the position frame 28, for example by means of hot air or by heat conduction.
  • the heating effecting agent is preferably formed by a tool which simultaneously performs the transformation of the retaining webs 40.
  • the holding webs 40 are not continuous in the longitudinal direction of the heat-generating element 10, but are provided in sections 40.1 to 40.5. These sections 40.1 to 40.5 leave between them a passage 41 free, which is designed such that in each case a strut 22 in the width direction between the sections 40.1; 40.2; 40.3; 40.4 or 40.5 fits.
  • the section formed by the passage 41 in any case, projects inwards in relation to the outer surface of the retaining webs 40 to such an extent that at least half the thickness of the struts 22 fits between the retaining webs 40 and is accommodated there.
  • the struts 22 and the positioning frame 28 may also be referred to as the first strut, and the retaining webs 40, which may be referred to as the second strut 43.
  • the heat-generating element 10 is formed as a preassembled component and can thus be handled during assembly, without the risk that the conductor tracks 34, 36 or even the inserted in the position frame 28 PTC heating elements 30 are lost. It should be noted, however, that usually the holding webs only fix the metal strips 34, 36 in the position frame, but not with a contact force against the PTC heating elements 30 put, which is sufficient to energize the PTC heating elements 30 during operation safe. This is in any case effected in the embodiment discussed in the context of the present invention by a spring element, which will be described below with reference to the Fig. 8 to 10 will be explained in more detail.
  • Fig. 3 and 6 are a metal strip, namely in Fig. 6 shown sheet metal strip 34, bent out of the plane of the heat generating element 10. Accordingly, an offset 42 results between the plane in which the sheet metal strip 34 abuts against the PTC heating elements 30, and a free end 44, which by repeated, but opposite bending extends parallel to the first-mentioned main portion of the sheet metal strip 34. Again Fig. 3 can be seen, this free end 44 is mechanically and electrically connected by a crimp 46 to the associated contact tongue 14.
  • upper heat-emitting elements have an outgoing from the upper sheet metal strip 34 offset 42.3 and 42.4.
  • the lower heat generating element 10.1 has a downwardly outgoing offset 42.1.
  • the metal strips 34, 36 of the heat generating element 10 marked with reference numeral 10.2 are on both sides to form an offset 42.20 or 42.21 arc and each provided with a contact tongue 14. Due to these differences, it is possible to avoid exchanging the positions for the heat-generating elements 10.3 and 10.2 within the housing 2.
  • the embodiment allows that the two middle heat-generating elements 10.2 and 10.3 can be interchanged with one another due to the design of contact tongue receivers 48. A corresponding interchangeability is also given for the two outer heat-generating elements 10.1 and 10.4.
  • the lower housing part 4 can be molded in an injection mold that can be produced cost-effectively, since all areas significant for the housing 4 extend parallel or at right angles to the frame opening 18 of the housing lower part 4.
  • the lower housing part 4 initially substantially mutually perpendicular frame surfaces 52a-d, which surround the heating block 8 circumferentially and perpendicular to the plane containing the frame opening 18 includes.
  • the corresponding frame surface 52b opens outward via four fitting element web receivers 54 whose main walls likewise extend at right angles to the plane containing the frame opening 18.
  • a corresponding extension have those functional surfaces of the housing lower part 4, which form the contact tongue receptacle 48 and the here leading slots 15 and 50 substantially and those walls which limit the fitting element receptacle 22 and in Fig. 3 are shown.
  • the receptacles 15, 22, 50 and 54 described above are bounded on the side of the lower housing part 4 by a bottom which runs parallel to the plane containing the frame opening 18 of the housing lower part 4.
  • This receiving floor is in Fig. 4 designated by reference numeral 56.
  • This bottom 56 also forms the inner surface of the struts 22 and edge-side stops 58, 60 for the yet to be explained spring element on the one hand and for the located on the opposite longitudinal side outer heat-emitting element 12 on the other.
  • These stops 58 and 60 in turn are parallel to the plane which also contains the frame opening 18.
  • a pin guide 70 which is formed with a relatively short length and opens to a window 74, which at the Outside of the housing base 4 is located.
  • the pin guide 68 Adjacent to this central pin guide 70, the pin guide 68 is provided, each extending over about 1/3 of the length of the longitudinal bars 64, 66.
  • pin guides 70 At the outer end of these pin guides 68 are in turn pin guides 70 with associated windows 74, as described above.
  • At the front ends of the longitudinal beams 64, 66 turn relatively small pin guides 72 are formed, which extend from the inner surface of the longitudinal bars 64, 66 to the outer surface of the housing base, which also includes the frame opening 18.
  • the functional surfaces forming the pin guides 68, 70, 72 all extend at right angles to the plane containing the frame opening 18. Only the front edges of the corresponding openings 68 to 72 are slightly chamfered or rounded in order to facilitate the insertion of corresponding guide pins 76 to 80 of the upper housing part 6. To facilitate connection of the lower housing part 4 and the upper housing part, the free ends of the walls are further chamfered or rounded, which delimit the spacers 62 and the receptacles 22b, 15, 50, 48 at the end and form the upper ends of the spacers 62.
  • FIG. 5 shown in perspective housing upper part 6 also has only orthogonal or parallel to the corresponding housing opening 16 aligned functional and boundary surfaces.
  • the guide surfaces of the previously mentioned guide pins 76, 78, 80 are provided as functional surfaces, which can be introduced into the corresponding pin guides 68, 70, 72.
  • the guide pins 78 are formed as latching pins and form latching webs 82, which are surmounted on the upper side by a thickened head of the latching pin 78, which form a latching surface 86 which extends parallel to the plane which also contains the frame opening 16.
  • the latching webs 82 are derived from the top of a cover 88, which is formed as a substantially planar member and the frame opening 16 predetermines and further includes the outer surface of the struts 22.
  • the cover 88 is formed frame-shaped as a cover for the lower housing part 4. Accordingly, the guide pin 76 to 80 from the inside of the cover 88 are perpendicular from.
  • a bulge 90 is provided for the locking webs 82. In the area of the bulge 90, the edge surface of the cover 88 is retracted inwards, so that the flat planar side surface of the latching web 82 extends parallel to the guide surfaces of the guide pins 76 and 80, but inwardly to the respective outer guide surface of these guide pins 76, 80th lies.
  • the the Heating block 8 facing inner surfaces of the corresponding guide pins 78 to 80 are, however, in a plane.
  • a further guide pin 92 is provided, which cooperates with a corresponding thereto recessed on the lower housing part 4 further guide recess 94, but does not fit into the fitting element receptacles 22 and the Reeds 48, so that it is ensured that the upper housing part 6 in dismissstimmter and clearly placed on the lower housing part 4 and joined with this.
  • the walls surrounding the further pin guide 94 and forming the guide pin 92 also extend at right angles to the plane lying on the frame opening 16 or 18.
  • the Fig. 8 shows a perspective side view of a spring element 96, which rests against the edge of the heating block 8 and is in its installed position at the height of the heating block 8.
  • front side of the spring element 96 forms a flat contact surface 98, at which the adjacent, in Fig. 3 uppermost heat-emitting element rests with its lamellae. More precisely, the ends, which are bent over at the ends, lie more meandering lamellae of the corrugated ribbed strip 12 against this contact surface 98.
  • the abutment surface 98 is formed by a first flat sheet metal strip on which both sides transverse outgoing leg spring 100 have been formed by punching, which are initially within the plane of the contact surface 98 and after punching by bending in the as in the Fig. 8 . 10 . 11 and 12 recognizable shape have been brought.
  • Two spring legs 100o, 100u lie in the width direction, ie transversely to the longitudinal extent of the planar contact surface 98 and thus in the insertion direction of the spring element 96 during assembly above the other.
  • Each individual spring limb 100o, 100u forms an inclined sliding surface 102a, 102b, 102c, which in each case enclose an angle of between 35 and 55 °, preferably of approximately 45 °, between itself and the planar contact surface.
  • Between the longitudinal direction of the spring element 96 successively provided pairs of spring legs 100 are flat segments 104, in which the spring element 96 is formed as a rectangular flat sheet metal strip.
  • spring element 96 has pairs of spring legs 100o, 100u corresponding to the number of spaces between the individual spacers 62 on the longitudinal spar 64 (see. Fig. 4 ). Each pair of spring legs 100o, 100u is in the installed position of the spring element 96 between these spacers 62.
  • the flat segment 104 bridges the width of the spacers 62 and connects adjacent spring leg pairs 100o, 100u together.
  • the correspondingly produced spring can thus be introduced as a one-piece component into the housing 2, in particular in the housing lower part 4, which simplifies the production of the electrical heating device.
  • the wall portions of the frame surface 42c provided between adjacent spacers 62 accordingly form a support surface 106 for the respective pairs of spring legs 100.
  • the spring element 96 Due to the vote of the spring element 100, especially the configuration of the flat segments 104 between the pairs of superposed spring legs 100, it is not possible to introduce the spring element 96 in the wrong orientation in the lower housing part 4.
  • the spring element 96 can only be moved into its installed position, in which the spring element is accommodated at the level of the heating block 8 in the housing 2, when the flat contact surface 98 is aligned with the heating block.
  • the heating block is held by the spacers 62 at a distance from the support surfaces 106, so that the spring element 96 can be applied to these surfaces at any time and without interference from the heating block 8 when inserted into the housing base 4.
  • the spring element 96 With a progressive insertion movement of the spring element 96 in the direction of the heating block 8, ie with progressive introduction into the heating block, the spring element 96 is then forced urgently due to the spring force through the lower spring leg 100u in the direction of the heating block 8, so that the layers 10, 12th of the heating block are compressed.
  • the flat contact surface 98 then already has such an overlap with the adjacent heat-emitting element 12, that the spring element 96 is sufficiently guided in the direction of insertion between the heating block 8 and the lower housing part 4 with progressive Einbringterrorism.
  • the lower spring leg 100u As the introduction progresses, the lower spring leg 100u is finally elastically compressed.
  • the housing-side counterforce is formed by an upper edge 108 which is formed between the support surface 106 and the inner surface of the longitudinal beam 64 through the joint of the two surfaces.
  • the housing 2 has a further housing element, which cooperates with the spring element 96.
  • This further housing element is formed by an edge 110 of the housing top 6, which is formed between the inner surface of the cover 88 and a bottom 112 of the housing top 6, by the abutting edge of an outer edge 113 defining the bottom 112 of the housing top with the inner surface the cover 88.
  • the height offset between this bottom 112 and the inner surface of the cover 88 takes into account the fact that the heating block 8 projects beyond the surface formed by the longitudinal bars 64, 66 surface 63, approximately the same length as the spacers 62nd the inner surface 63 of the longitudinal bars 64, 66 projects beyond.
  • the edge 110 abuts an inclined sliding surface 102a of the spring element 96, which is formed by the upper spring leg 100o.
  • Fig. 10 and 12a it can be seen, is the upper end of the spring element 96 in a substantially pressure-free state at a distance from the bottom 112 of the upper housing part. 6
  • the individual layers 10, 12 are introduced into the lower housing part 4. Thereafter, the spring element 96 is manually inserted a little way into the lower housing part, at least until the layers of the heating block 8 against each other and the spring element 96 is provided sufficiently deep between the heating block 6 and the frame surface 52c.
  • the guide pins 76, 78, 80, 92 in this case engage in the corresponding pin guides 68, 70, 72, 94 a.
  • the spring element 96 initially remains essentially free of tension. In this state can already sufficient overlap between the guide pins and the corresponding recesses are achieved, so that the two housing parts 4, 6 can be moved relative to each other only in a linear direction. Thereafter, the joining of the housing parts 4, 6 under application of the spring force.
  • the spring legs 100o, 100u are slightly compressed until the bottom 112 of the upper housing part 6 abuts against the upper end of the spring element 96 (see. Fig. 12b ).
  • the two edges 108 and 100 have already slid over a certain distance along the inclined sliding surfaces 102a and 102b.
  • the upper spring leg 100o is elastically bent inwards so far that, as the insertion movement progresses, the free end of the leg 100o, which forms a further inclined sliding surface 100c in the center of the spring element 96, can pass the edge 108 reliably. Thereafter, a progressive joining movement between the two housing parts 4, 6 also leads to the entrainment of the spring element 96.
  • the spring element 96 has reached its end position when the two housing parts 4, 6 abut each other with their respective surfaces facing each other.
  • the spring element 96 is clamped and held in this installation position due to the spring tension between the heating block 8 and the frame surface 52c. If the spring element 96 is displaced by an unintentional force from the outside, in each case the stop 58 or the bottom 112 of the housing upper part 6 prevents the spring element 96 from being forced out of the housing 2.
  • the spring element is brought into its installation position by closing the lower housing part and the upper housing part when closing the housing, in which the spring element is at the height of the heating block, i. is arranged in the plane which is also occupied by the heating block. Furthermore, the spring element is placed under spring preload only during insertion, and that only when the two housing parts 4, 6 are guided by positive engagement of the guide pins 76 to 80 in the corresponding pin guides 68, 70, 72 relative to each other.
  • the structural design accordingly offers the possibility of stress-free to introduce the components of the heating block in the housing 24 formed by the housing 2. Only then is the spring tension, and in fact adjacent to each other and within limits against each other positioned housing parts 4, 6.
  • a spring element may be provided, which has a spring leg, which is initially substantially free of tension in the installed position.
  • This spring element is introduced stress-free together with the heating block in the receptacle 24.
  • the spring element has a spring leg, the spring leg forms a in the direction of the stop 58 outwardly and down obliquely inclined sliding surface forms, and indeed for a pin which cooperates with the spring element and the corresponding spring leg when joining the upper housing part and lower housing part under spring preload sets, so that the spring element is applied in total against the heating block 8 under spring tension.
  • the spring element is initially taken free of stress together with the heating block in the lower housing part and remains stationary when generating the spring preload relative to the joining direction.
  • the spring element is slightly displaced only in the plane of the heating block and applied to the heating block. Furthermore is the or the spring leg pivoted to produce the elastic bias.
  • the particular design of the heat generating elements 10 allows for easier assembly, since the grid assembly formed by the first and second struts 20, 43 is not completely part of the housing, but the second struts are formed with the frame 28 and thus is located where the PTC heating elements 30 come to rest within the heating block 8.
  • housing parts can be produced accordingly, which are relatively simple.
  • first and second struts 20, 43 positively support one another and thus stiffen the housing as a whole.
  • the heat-emitting element 12 is prepared as a preassembled unit and further ensured by the fitting elements 26 and the associated receptacles 22 that the heat-generating elements 12 can be installed only at predetermined locations within the housing 2, the manufacture of the electric heater, in particular the assembly of the items also be done by less experienced staff.
  • the specific embodiment of the embodiment provides an unambiguous assignment of different components of the electric heater. If this clear assignment is not met, the components of the electric heater can not be mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Resistance Heating (AREA)
  • Air-Conditioning For Vehicles (AREA)
EP07014118.9A 2007-07-18 2007-07-18 Dispositif de chauffage électrique Active EP2017103B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP07014118.9A EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique
EP08015712A EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique
JP2008181638A JP4939490B2 (ja) 2007-07-18 2008-07-11 電気加熱装置
US12/175,173 US8362406B2 (en) 2007-07-18 2008-07-17 Method of manufacturing an electric heating device and electric heating devices
KR1020080069770A KR100960748B1 (ko) 2007-07-18 2008-07-17 전기 히터
CN2008101316449A CN101348067B (zh) 2007-07-18 2008-07-18 电加热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07014118.9A EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP08015712A Division-Into EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique
EP08015712A Division EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique

Publications (2)

Publication Number Publication Date
EP2017103A1 true EP2017103A1 (fr) 2009-01-21
EP2017103B1 EP2017103B1 (fr) 2016-05-04

Family

ID=38819961

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08015712A Active EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique
EP07014118.9A Active EP2017103B1 (fr) 2007-07-18 2007-07-18 Dispositif de chauffage électrique

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08015712A Active EP2025541B1 (fr) 2007-07-18 2007-07-18 Elément d'un dispositif de chauffage produisant de la chaleur électrique

Country Status (5)

Country Link
US (1) US8362406B2 (fr)
EP (2) EP2025541B1 (fr)
JP (1) JP4939490B2 (fr)
KR (1) KR100960748B1 (fr)
CN (1) CN101348067B (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266823A1 (fr) * 2009-06-19 2010-12-29 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique
EP2637475A1 (fr) * 2012-03-08 2013-09-11 Eberspächer catem GmbH & Co. KG Elément chauffant
EP3296660A1 (fr) 2016-09-15 2018-03-21 Mahle International GmbH Chauffage électrique
DE102018200433A1 (de) 2018-01-11 2019-07-11 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
CN111263475A (zh) * 2018-12-03 2020-06-09 埃贝赫卡腾有限两合公司 电加热装置
FR3101510A1 (fr) * 2019-10-01 2021-04-02 Valeo Systemes Thermiques Bloc de chauffe d’un dispositif chauffant.

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944395B1 (fr) * 2009-04-10 2016-01-01 Valeo Systemes Thermiques Armature pour un module chauffant electrique
JP5535740B2 (ja) * 2010-04-14 2014-07-02 三菱重工業株式会社 熱媒体加熱装置およびそれを用いた車両用空調装置
EP2428746B8 (fr) * 2010-09-13 2021-12-29 MAHLE Behr GmbH & Co. KG Echangeur de chaleur
KR101146313B1 (ko) * 2010-12-06 2012-05-21 이건테크놀로지 주식회사 히터모듈과 이를 이용한 ptc 히터
DE102012000977A1 (de) * 2011-04-06 2012-10-11 W.E.T. Automotive Systems Ag Heizeinrichtung für komplex geformte Oberflächen
US8927910B2 (en) * 2011-04-29 2015-01-06 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno High power-density plane-surface heating element
EP2607121B2 (fr) * 2011-12-22 2020-07-08 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique, en particulier pour un véhicule automobile
EP3079442B1 (fr) * 2011-12-22 2019-06-26 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique et cadre associé
EP2608633B1 (fr) * 2011-12-22 2020-08-26 Eberspächer catem GmbH & Co. KG Elément générateur de chaleur
US9839072B2 (en) 2012-03-08 2017-12-05 Eberspacher Catem Gmbh & Co. Kg Heat generating element with connection structure
EP2637474B1 (fr) * 2012-03-08 2016-08-17 Eberspächer catem GmbH & Co. KG Elément chauffant
CN103517469B (zh) * 2012-06-27 2015-03-04 比亚迪股份有限公司 一种ptc电热元件、电加热装置以及电动车
DE102012013770A1 (de) * 2012-07-11 2014-01-16 Eberspächer Catem Gmbh & Co. Kg Wärme erzeugendes Element
DE102012109801B4 (de) * 2012-10-15 2015-02-05 Borgwarner Ludwigsburg Gmbh Elektrische Heizvorrichtung
JP6403363B2 (ja) * 2013-01-15 2018-10-10 東芝ライフスタイル株式会社 ヒータユニットおよび衣類乾燥機
DE102018206085B4 (de) * 2018-04-20 2021-09-23 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
DE102019202543A1 (de) * 2019-02-26 2020-08-27 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement
DE102019205848A1 (de) * 2019-04-24 2020-10-29 Eberspächer Catem Gmbh & Co. Kg PTC-Heizelement und elektrische Heizvorrichtung mit einem solchen PTC-Heizelement und Verfahren zur Herstellung eines PTC-Heizelementes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2033709A (en) * 1978-10-21 1980-05-21 Eichenauer F Electrical resistance heating element
GB1583771A (en) * 1976-03-18 1981-02-04 Fast Heat Element Mfg Co Electric heaters having resistance wire embedded in ceramic
EP0705055A2 (fr) * 1994-09-28 1996-04-03 Behr GmbH & Co. Chauffage électrique, en particulier pour des voitures
EP1061776A1 (fr) * 1999-06-15 2000-12-20 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Dispositif de chauffage destiné au réchauffement de l'air
WO2003086018A1 (fr) * 2002-04-11 2003-10-16 Valeo Climatisation Dispositif de chauffage electrique, notamment pour appareil de chauffage et ou climatisation de vehicule
EP1432287A1 (fr) * 2002-12-19 2004-06-23 Catem GmbH & Co.KG Dispositif de chauffage électrique avec boítier
EP1768459A1 (fr) * 2005-09-23 2007-03-28 Catem GmbH & Co. KG Elément chauffant d'un dispositif de chauffage

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259990A (ja) * 1985-09-10 1987-03-16 日本電気株式会社 電子フアイリング装置における原稿高速連続入力時のマルチペ−ジスクロ−ル表示制御方式
DE3902205A1 (de) * 1989-01-26 1990-08-02 Eichenauer Gmbh & Co Kg F Halteteil fuer ptc-elemente
DE3902206A1 (de) * 1989-01-26 1990-08-02 Eichenauer Gmbh & Co Kg F Vorrichtung zum erhitzen von gasen
US5377298A (en) * 1993-04-21 1994-12-27 Yang; Chiung-Hsiang Cassette PTC semiconductor heating apparatus
JPH07201454A (ja) 1993-12-28 1995-08-04 Matsushita Electric Ind Co Ltd 正特性サーミスタ発熱体
DE19900603A1 (de) * 1999-01-11 2000-07-13 Bosch Gmbh Robert Elektronisches Halbleitermodul
KR100737347B1 (ko) 2001-08-30 2007-07-09 대일공업주식회사 피티씨 소자를 이용한 발열장치
ATE458378T1 (de) 2001-12-06 2010-03-15 Eberspaecher Catem Gmbh & Co K Elektrische heizvorrichtung
ATE385470T1 (de) * 2003-03-13 2008-02-15 Behr Gmbh & Co Kg Elektrische heizeinrichtung, insbesondere für ein kraftfahrzeug
DE10316908A1 (de) * 2003-04-12 2004-10-21 Eichenauer Heizelemente Gmbh & Co. Kg Heizvorrichtung
EP1467599B1 (fr) * 2003-04-12 2008-11-26 Eichenauer Heizelemente GmbH & Co.KG Dispositif pour l'admission des éléments de chauffe en céramique et procédé pour la production de tels
GB0325574D0 (en) * 2003-11-03 2003-12-03 Delphi Tech Inc Electrical heater
KR100445723B1 (ko) * 2003-11-18 2004-08-26 우리산업 주식회사 Ptc 소자 모듈 및 이를 포함하는 차량용 프리히터
EP1564503B1 (fr) 2004-02-10 2007-12-26 Catem GmbH & Co. KG Dispositif de chauffage électrique de faible hauteur
KR100609452B1 (ko) * 2005-05-20 2006-08-03 모딘코리아 유한회사 피티씨 로드 조립체 및 이를 포함하는 차량용 프리히터
EP1768458B1 (fr) * 2005-09-23 2008-05-14 Catem GmbH & Co.KG Elément chauffant d'un dispositif de chauffage
EP1790916B1 (fr) * 2005-11-23 2014-05-21 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique avec un élément de tolérance et de chauffage à effet CTP
EP2053902A1 (fr) * 2007-10-26 2009-04-29 Calsonic Kansei Corporation Appareil de chauffage électrique, procédé de fabrication d'une unité de génération de chaleur et gabarit de pression pour une utilisation lors de sa fabrication

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1583771A (en) * 1976-03-18 1981-02-04 Fast Heat Element Mfg Co Electric heaters having resistance wire embedded in ceramic
GB2033709A (en) * 1978-10-21 1980-05-21 Eichenauer F Electrical resistance heating element
EP0705055A2 (fr) * 1994-09-28 1996-04-03 Behr GmbH & Co. Chauffage électrique, en particulier pour des voitures
EP1061776A1 (fr) * 1999-06-15 2000-12-20 David & Baader DBK Spezialfabrik elektrischer Apparate und Heizwiderstände GmbH Dispositif de chauffage destiné au réchauffement de l'air
WO2003086018A1 (fr) * 2002-04-11 2003-10-16 Valeo Climatisation Dispositif de chauffage electrique, notamment pour appareil de chauffage et ou climatisation de vehicule
EP1432287A1 (fr) * 2002-12-19 2004-06-23 Catem GmbH & Co.KG Dispositif de chauffage électrique avec boítier
EP1768459A1 (fr) * 2005-09-23 2007-03-28 Catem GmbH & Co. KG Elément chauffant d'un dispositif de chauffage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2266823A1 (fr) * 2009-06-19 2010-12-29 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique
EP2637475A1 (fr) * 2012-03-08 2013-09-11 Eberspächer catem GmbH & Co. KG Elément chauffant
EP3296660A1 (fr) 2016-09-15 2018-03-21 Mahle International GmbH Chauffage électrique
DE102018200433A1 (de) 2018-01-11 2019-07-11 Eberspächer Catem Gmbh & Co. Kg Elektrische Heizvorrichtung
EP3511645A1 (fr) 2018-01-11 2019-07-17 Eberspächer catem GmbH & Co. KG Dispositif de chauffage électrique
CN111263475A (zh) * 2018-12-03 2020-06-09 埃贝赫卡腾有限两合公司 电加热装置
FR3101510A1 (fr) * 2019-10-01 2021-04-02 Valeo Systemes Thermiques Bloc de chauffe d’un dispositif chauffant.

Also Published As

Publication number Publication date
CN101348067B (zh) 2011-03-23
KR20090009138A (ko) 2009-01-22
US20090026194A1 (en) 2009-01-29
EP2025541B1 (fr) 2013-01-02
EP2017103B1 (fr) 2016-05-04
CN101348067A (zh) 2009-01-21
KR100960748B1 (ko) 2010-06-01
US8362406B2 (en) 2013-01-29
EP2025541A1 (fr) 2009-02-18
JP4939490B2 (ja) 2012-05-23
JP2009043716A (ja) 2009-02-26

Similar Documents

Publication Publication Date Title
EP2017103B1 (fr) Dispositif de chauffage électrique
EP2017549B1 (fr) Dispositif de chauffage électrique
EP2017546B1 (fr) Procédé de fabrication d'un dispositif de chauffage électrique tout comme dispositif de chauffage électrique
EP1564503B1 (fr) Dispositif de chauffage électrique de faible hauteur
EP1432287B1 (fr) Dispositif de chauffage électrique avec boîtier
EP3493650B1 (fr) Dispositif de chauffage électrique
EP1273073B1 (fr) Piece de connexion electrique enfichable
DE102006021730B4 (de) Stabanordnung mit PTC-Heizelementen und diese enthaltender Vorwärmer
EP0899818B1 (fr) Borne de connexion électrique, notamment pour utilisation sur des plaques de circuits imprimés
EP2298582A1 (fr) Dispositif de chauffage électrique et son procédé de fabrication
EP2475057B2 (fr) Dispositif de support de câble
EP0964480A2 (fr) Elément de connecteur électrique
DE102008034055B4 (de) Sicherheitsraum
EP2264363B1 (fr) Lampe, capuchon terminal et bande lumineuse
DE4431274C2 (de) Verfahren zum Herstellen eines Elektro-Installationsgerätes sowie Elektro-Installationsgerät
EP2017547B1 (fr) Dispositif de chauffage électrique
EP2754803A2 (fr) Crémone de fenêtre ou de porte
DE102018107687A1 (de) Bauelement in Brandschutzausführung und Verfahren zur Montage eines Bauelementes in Brandschutzausführung
DE19602943C2 (de) Verfahren zur Herstellung von Kühlkörpern zum Anbau an Halbleiterbauelemente sowie Schalenprofile zur Herstellung solcher Kühlkörper
EP1862622B1 (fr) Pièce d'assemblage d'angle pour un ensemble de manoeuvre-têtière, pour fenêtres, portes ou similaires
DE102016201409A1 (de) Kamm für ein schmales Relais, Kammanordnung und Relais
DE102021131401A1 (de) Verfahren zum Herstellen eines elektrischen Steckverbinders mit einem kraftarm gesicherten Flachleiter
EP4084577A2 (fr) Dispositif de chauffage électrique et son procédé de fabrication
EP2268103B1 (fr) Dispositif de chauffage électrique
WO2008092701A1 (fr) Dispositif d'inspection et son procédé de réalisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20081222

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EBERSPAECHER CATEM GMBH & CO. KG

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20130527

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007014778

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B60H0001220000

Ipc: F24H0009180000

RIC1 Information provided on ipc code assigned before grant

Ipc: F24H 9/18 20060101AFI20150206BHEP

Ipc: B60H 1/22 20060101ALI20150206BHEP

Ipc: F24H 3/04 20060101ALI20150206BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150518

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150922

INTG Intention to grant announced

Effective date: 20151211

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007014778

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007014778

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170207

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160804

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160504

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20190204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230724

Year of fee payment: 17

Ref country code: DE

Payment date: 20230720

Year of fee payment: 17