EP1992898B1 - Wärmetauscher für gasförmige Medien - Google Patents
Wärmetauscher für gasförmige Medien Download PDFInfo
- Publication number
- EP1992898B1 EP1992898B1 EP08008665A EP08008665A EP1992898B1 EP 1992898 B1 EP1992898 B1 EP 1992898B1 EP 08008665 A EP08008665 A EP 08008665A EP 08008665 A EP08008665 A EP 08008665A EP 1992898 B1 EP1992898 B1 EP 1992898B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- walls
- flow channels
- heat exchanger
- spacers
- exchanger according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0031—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
- F28D9/0037—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2240/00—Spacing means
Definitions
- the invention relates to a heat exchanger of the type specified in the preamble of claim 1.
- heat exchangers of this type are preferably used as condensers in tumble dryers (eg. EP 0 982 427 B1 . EP 1 106 729 B1 . DE 102 18 274 A1 . DE 103 56 417 A1 ). They are mainly characterized by the fact that the flow channels are limited by walls made of highly thermally conductive plastic or metal foils and z. B. by vacuum thermoforming, thermoforming or otherwise brought into their final form. A benefit obtained thereby is that the walls can be easily and in one piece provided with profiles that improve the heat exchange performance, as well as with spacers that keep the relatively flexible walls at a distance.
- the structurally predetermined flow cross sections change during operation, which not only has an unfavorable influence on the performance of the heat exchangers, but also, in the case of tumble-dryer condensers, the formation of depressions in the process air Can cause flow channels.
- condensed water can accumulate in an undesired manner (puddling), which affects the condensation performance and should actually drain into a collecting container provided for this purpose.
- the present invention seeks to provide the heat exchanger of the type described above in such a way that they have increased performance and greater compressive strength despite reduction of manufacturing costs.
- the profilings are additionally provided with knobs known per se, a noticeable increase in performance also occurs when walls made of film material are used.
- the inventive design and arrangement of the spacers allows the use of a sufficiently large number of spacers, without thereby increasing the pressure losses during operation excessively.
- a significant cost reduction is made possible by not only the first flow channels at their lateral edges, but also the second flow channels are connected at their front and rear end faces by welding. This results in a coherent block which can be used as a whole in the frames, which only has to be connected to the frame at its periphery by gluing. This leads to the saving of glue and laborious steps in the production.
- a heat exchanger comprises a block 1 provided with first and second flow channels, which is fastened to two longitudinal ends in a respective frame 2.
- the first flow channels are in a first, indicated by arrows 3 direction
- the second flow channels in a second, indicated by arrows 4 direction, which is preferably perpendicular to the first direction in the manner of a cross-flow heat exchanger, flows through each of a gas.
- a heat exchanger suitable in particular as a condenser for a tumble dryer is described, through which the process air flows in the direction of the arrows 3 and the cooling air flows through in the direction of the arrows 4.
- Fig. 2 shows a inventively designed, first flow channel 5, of two accordingly 3 and 4 trained walls 6 and 7 is limited, as in particular also from Fig. 5 is apparent.
- Fig. 6 shows a plurality of superimposed, first flow channels 5, which are arranged at preselected intervals and therefore form between them second flow channels 8, which according to FIG Fig. 1 in the direction of the arrows 4 z. B. are flowed through by cooling air.
- the first flow channels 5 limiting, alternately superimposed plates or walls 6 and 7 are made of a film material, for.
- a film material for.
- a polypropylene or aluminum foil prepared and have a useful consistently constant wall thickness, which is preferably 0.2 mm to 0.5 mm.
- the walls 6 and 7 have a substantially rectangular shape.
- the two walls 6 and 7 have, in particular Fig. 3 to 5 can recognize, parallel to the first direction and in the exemplary embodiment also parallel to their longitudinal sides extended side strips 6a and 7a, which are connected in a gas-tight manner by welding ( Fig. 5 ). This creates flow channels 5 in the form of laterally closed, open at their front and rear ends of pipes.
- the first flow channels 5 are further provided with inner, ie inwardly projecting spacers 9 which are connected to the in Fig. 4 . 5 and 6 bottom walls 7 are formed, substantially perpendicularly rise from these and rest with their free ends to the overlying upper walls 6. Thereby, the walls 6 and 7 of the flow channels 5 are kept at a preselected distance.
- the in Fig. 3 . 5 and 6 overhead walls 6 are provided with outer spacers 10. These do not protrude into the first flow channels 5, but stand from their walls 6 substantially perpendicular to the outside.
- the stacked Condition of walls 6 and 7 lie the free ends of these outer spacers 10 on the undersides of the overlying walls 7 and therefore set the distances between the stacked flow channels 5 and the heights of the second flow channels 8 located between them.
- Heat exchangers of the type described are essentially known from the publications mentioned above and therefore need not be explained in more detail to the person skilled in the art.
- Profiles 11 are provided with at least partially planar sections according to the invention. Trapezoidal profilings 11 which are in accordance with cross section are particularly advantageous Fig. 2 to 4 in the second direction (arrows 4 in FIG Fig. 2 to 4 and 6 ) rising portions 11a, sloping portions 11b and these connecting portions 11c have.
- the profiles 11 have according to Fig. 5 Wavelengths 1 and heights h, which are preferably in a ratio 1 / h to each other, which is at least five, and preferably less than twenty.
- the sections 11a, 11b are particularly flat while the sections 11c are preferably flat and parallel to the second direction.
- the sections 11a, 11b and 11c according to the invention are provided with preferably lenticular nubs 12, which lead to increased heat exchange performance and in particular lead to no significant increase in pressure losses, especially in the second direction for the cooling air when its depth is approximately between 0.2 and 0.8 times the distance between the upper and lower walls 6 and 7 is.
- the other dimensions and also the shapes of the nubs 12 are dependent on the performance increases desired in the individual case or to accept the maximum purchase losses to be accepted.
- lenticular knobs it is also possible to provide those with oval or angular bases as well as diamond-shaped or pyramid-shaped or otherwise suitably shaped studs 12.
- the nubs 12 can, in particular 3 and 4 show, are formed by forms that protrude from opposite broad sides of the walls 6, 7, therefore optionally in the first or in the second flow channels 5 and 8 protrude and lead on their backs to corresponding recesses. If the heat exchangers are arranged in use such that the walls 6 each form an upper boundary and the walls 7 respectively form a lower boundary of the flow channels 5, then in the case of tumble-dryer condensers, the lower walls 7 are to face the flow channels 5 Inner sides only with raised projecting, in the flow channels 5 projecting nubs to provide.
- spacers 9 and 10 are preferably elongate and flat oval or biconvex in plan view. They extend with their longitudinal axes expedient in the first flow channels 5 parallel to the first direction and in the second flow channels 8 parallel to the second direction.
- the leading edges of the spacers 9, 10 are preferably provided with small radii of curvature, which has favorable flow conditions and small pressure losses result.
- the number of spacers 9 and 10 remains within certain limits. If the number of spacers is too large, on the one hand the pressure losses increase, while on the other hand the area remaining for the attachment of the studs 12 is reduced. On the other hand, if the number of spacers is too low, then there is a risk that the walls 6, 7 will be deformed too much during operation because of the then prevailing pressure conditions due to the natural flexibility of the film material, as they will buckle and thus also lead to pressure losses. In the context of the present invention, it has been found that the number of spacers 9, 10 should not be less than four pieces per 100 cm 2 wall area with a uniform distribution, wherein under such a wall surface preferably a substantially square area piece of approximately 10 cm.
- the spacers 9, 10 should come to lie alternately one above the other in the finished stack, so that from top to bottom continuous, preferably perpendicular to the two directions 3 and 4 extending support lines are obtained, as can be seen in particular Fig. 6 results. If the spacers 9 and 10 are arranged with an arbitrary lateral offset relative to one another, then there is a risk that pressure differences occurring during operation lead to moments, in particular in the area of individual support points, which could result in undesired deformations of the walls 6 and 7.
- the Walls 6 and 7 are arranged over the entire surface substantially parallel to each other and thus the flow channels 5 and 8 have a constant height, except of course, where the spacers 9, 10 arranged, provided in opposite directions nubs 12 and the walls , 7 are connected at their edges. As a result, almost uniform flow conditions are achieved throughout.
- Fig. 5 and 6 show, the two walls 6 and 7, each forming one of the first flow channels 5, each connected at their lateral edges firmly together.
- the trapezoidal walls 6 are provided at their sides with obliquely downwardly and outwardly curved or angled transition regions 6b, to which the side strips 6a adjoin outwardly.
- the walls 7, however, are provided at their edges with obliquely upwardly and outwardly curved or angled transition sections 7b, to which the side strips 7a connect.
- Both side strips 6a, 7a are preferably arranged substantially flat and both parallel to one another and parallel to imaginary center planes of the walls 6, 7.
- the invention provides, the walls 6, 7 also at their front and rear end faces by welding gas-tightly connected to each other, thereby sealing the second flow channels 8 laterally.
- the walls 6, 7 are provided at their front and rear ends with connecting strips 6c, 7c which, like the side strips 6a, 7a, are arranged substantially both parallel to each other and parallel to the imaginary center planes of the walls 6, 7 ,
- the connecting strips 6c, 7c are also connected to the walls 6, 7 by means of short transition sections arranged at an angle to the middle planes.
- these non-illustrated transition sections are curved or angled in the opposite direction in each case compared to the attached to the same walls 6, 7 side strips 6a, 7a, ie, for example in the in Fig. 2 and 5 upper wall 6 upwards and at the in Fig. 2 and 5 bottom wall 7 down. Therefore, two flow channels 5, consisting of two walls 6 and 7, respectively Fig. 6 and 7 superimposed, then these two flow channels 5 are kept not only by the appropriately sized spacers 10, but also to form the lateral flow channels 8 through the coming to rest connection strips 6c, 7c at a distance. After the welding of the connecting strips 6c, 7c of all the flow channels 5 present in the stack, a coherent heat exchanger block 1 (FIG. Fig.
- a further advantage of the construction described is that the side and connecting strips 6a, 7a and 6c, 7c are connected to the walls 6, 7 by means of the additional transition sections 6b, 7b and therefore project beyond the actual flow channels 5, 8 ,
- the side and connecting strips 6a, 7a and 6c, 7c for the welding tools are easily accessible, and there are no internal holders od.
- the side and connecting strips 6a, 7a and 6c, 7c for the welding tools are easily accessible, and there are no internal holders od.
- the side and connecting strips 6a, 7a and 6c, 7c for the welding tools are easily accessible, and there are no internal holders od.
- the side and connecting strips 6a, 7a and 6c, 7c for the welding tools are easily accessible, and there are no internal holders od.
- the walls 6, 7 of the individual flow channels 5 laterally welded and the latter then stacked and welded to the front sides or conversely only all the walls 6, 7 stacked and then welded laterally and frontally.
- the walls 6 and 7, which may also be referred to as plates or shells, not identical and arranged only rotated by 180 °. They differ rather by the position and direction of their side and connecting strips 6a, 6c and 7a and 7c, their spacers 9 and 10 and possibly their nubs 12th
- side parts 14 ( Fig. 1 ) arranged from a thick-walled, mechanically stable material. These preferably form at least with the end-side walls 6 a further flow channel 8 by resting on the spacers 10.
- the side parts 14 lie directly against the undersides of the walls 7.
- the front ends of the side parts 14 also project into the frame 2 and are firmly connected with these.
- the side parts 14 serve the purpose of supporting the two frames 2 against each other and thereby relieving the stack formed by the walls 6, 7 of any occurring assembly and sealing forces.
- the side parts 14 serve to clamp the stack lying between them perpendicular to the directions 3 and 4 and thereby hold the spacers 9, 10 with the associated walls 6, 7 in abutment.
- Fig. 8 is different from that Fig. 2 to 7 especially in that the process air flows through the second flow channels 8 and the cooling air flows through the first flow channels 5 secured in the frame 2, as through the opposite Fig. 6 reversed arrows 3 and 4 is indicated. Therefore, the profilings 11 in this case are preferably extended in the direction of the first flow channels 5. Moreover, unlike Fig. 2 to 6 each of the inner spacers 9 and the outer spacers 10 is formed continuously, ie, over the entire length or at least approximately over the entire length of the first and second flow channels 5 and 8, respectively. Therefore, to achieve sufficient stability, not the number of spacers themselves, but the number of their crossing points should have a certain minimum value.
- crossing points in this case are those areas (or rather their centers) at which the spacers 9, 10, which are perpendicular to each other and lie in different planes, intersect each other. It has proved to be expedient to provide at least four such crossing points per 100 cm 2 or preferably per 10 cm ⁇ 10 cm wall surface. The location and arrangement of the remaining parts is opposite Fig. 2 to 7 unchanged.
- the invention is not limited to the described embodiment, which can be modified in many ways. This applies, as already mentioned, in particular for the waveform of the profilings 11 used in the individual case. Preference is given in particular to those waveforms which have the same wavelengths 1 throughout and in which the ascending and descending sections 11a, 11b are substantially the same length. Also, the size of the radii in the connecting zones between the sections 11a, 11b, 11c, and preferably also in the connecting zones between the transition sections 6b, 7b and the adjacent Wall parts or side and connecting strips 6a, 7a and 6c, 7c are provided, can be selected depending on the individual case. In addition, the spacers 9,10 other than the Fig. 6 and 8th have apparent lengths.
- the heat exchangers described may be used for purposes other than those specified and gases other than air or steam.
- the first flow channels 5 are shorter than the second flow channels 8.
- the statements "above” and “below” with respect to the walls 6, 7 relate only to the described embodiment, in which the first flow channels 5 each bounded above by the walls 6 and below through the walls 7 while the reverse applies to the second flow channels 8.
- the heat exchanger can of course also z. B. in a slightly oblique position or in a rotated position by 90 ° are applied so that the flow channels 5 or 8 are arranged vertically.
- the various features may be applied in combinations other than those described and illustrated.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE202007007169U DE202007007169U1 (de) | 2007-05-16 | 2007-05-16 | Wärmeaustauscher für gasförmige Medien |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1992898A2 EP1992898A2 (de) | 2008-11-19 |
EP1992898A3 EP1992898A3 (de) | 2010-08-04 |
EP1992898B1 true EP1992898B1 (de) | 2013-03-27 |
Family
ID=39682480
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08008665A Not-in-force EP1992898B1 (de) | 2007-05-16 | 2008-05-08 | Wärmetauscher für gasförmige Medien |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1992898B1 (zh) |
KR (1) | KR20080101692A (zh) |
CN (1) | CN101307995B (zh) |
DE (1) | DE202007007169U1 (zh) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITVI20090204A1 (it) * | 2009-07-30 | 2011-01-31 | Aldo Polidoro | Scambiatore di calore da utilizzare, in particolare, con un bruciatore di gas combustibile |
SG183934A1 (en) * | 2010-03-08 | 2012-10-30 | Arvind Accel Ltd | Heat exchange element, a heat exchanger comprising the elements, and an equipment for the manufacture of the elements |
CN103486876B (zh) * | 2013-06-21 | 2016-01-13 | 无锡小天鹅股份有限公司 | 换热装置及其干衣机或洗干一体机 |
DE102013213398A1 (de) * | 2013-07-09 | 2015-01-15 | Elringklinger Ag | Verfahren zur Verbindung von mehreren Funktionselementen |
CN103822521B (zh) * | 2014-03-04 | 2017-02-08 | 丹佛斯微通道换热器(嘉兴)有限公司 | 换热板及板式换热器 |
CN103983132A (zh) * | 2014-05-16 | 2014-08-13 | 王一敏 | 一种板式气液热交换器及其换热装置 |
CN104197755B (zh) * | 2014-09-05 | 2016-04-13 | 甘肃蓝科石化高新装备股份有限公司 | 一种由全焊接板管构成的可拆卸式热交换器板束 |
US20160223262A1 (en) | 2014-10-31 | 2016-08-04 | Baltimore Aircoil Company, Inc. | Cooling tower integrated inlet louver fill |
CN105780424A (zh) * | 2014-12-17 | 2016-07-20 | 无锡小天鹅股份有限公司 | 干衣机及其换热装置 |
CN105091637B (zh) * | 2015-06-25 | 2017-04-26 | 咀香园健康食品(中山)有限公司 | 一种气液热交换装置 |
CN105157458A (zh) * | 2015-10-23 | 2015-12-16 | 广州市雷子克电气机械有限公司 | 气气换热器 |
EP3168561A1 (en) * | 2015-11-11 | 2017-05-17 | Air To Air Sweden AB | A device for exchange of heat and/or mass transfer between fluid flows |
PT3306253T (pt) * | 2016-10-07 | 2019-07-12 | Alfa Laval Corp Ab | Placa de permutação de calor e permutador de calor |
KR101972523B1 (ko) * | 2017-11-28 | 2019-04-26 | 조선대학교산학협력단 | 내압성이 향상된 용접형 판형 열교환기 |
CN111359239A (zh) * | 2020-04-14 | 2020-07-03 | 杭州蕴泽环境科技有限公司 | 喷雾干燥尾气节能除湿系统及方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2462421A (en) * | 1944-10-26 | 1949-02-22 | Solar Aircraft Co | Crossflow heat exchanger |
US3372743A (en) * | 1967-01-25 | 1968-03-12 | Pall Corp | Heat exchanger |
GB1433379A (en) * | 1973-08-24 | 1976-04-28 | Nevsky Mashinostroitelny Z Im | Heat exchange apparatus |
DE4343399C2 (de) * | 1993-12-18 | 1995-12-14 | Balcke Duerr Ag | Plattenwärmetauscher |
US5730209A (en) * | 1995-04-28 | 1998-03-24 | Air Products And Chemicals, Inc. | Defrost and liquid distribution for plate-fin heat exchangers |
DE19652999C2 (de) * | 1996-12-19 | 1999-06-24 | Steag Ag | Wärmespeicherblock für regenerative Wärmetauscher |
DE19832164C2 (de) * | 1998-07-17 | 2002-12-05 | Balcke Duerr Gmbh | Plattenwärmetauscher |
EP0982427B1 (de) | 1998-08-25 | 2003-03-05 | Joma-Polytec Kunststofftechnik GmbH | Kreuzstrom-Wärmetauscher für Kondensationswäschetrockner |
EP1106729B1 (de) * | 1999-12-02 | 2003-07-23 | Joma-Polytec Kunststofftechnik GmbH | Kreuzstrom-Wärmetauscher für Kondensationswäschetrockner |
DE10014266A1 (de) * | 2000-03-22 | 2001-09-27 | Zeuna Staerker Kg | Luftgekühlter Abgaskühler für ein verbrennungsmotorisch angetriebenes Kraftfahrzeug |
GB2384299B (en) * | 2002-01-22 | 2006-03-22 | Llanelli Radiators Ltd | Automotive heat exchanger |
DE10218274A1 (de) | 2002-04-18 | 2003-11-06 | Joma Polytec Kunststofftechnik | Wärmetauscherplatte für einen Kreuzstromwärmetauscher |
DE10356417A1 (de) | 2003-11-27 | 2005-06-30 | Joma-Polytec Kunststofftechnik Gmbh | Kreuzstromwärmetauscher für Kondensationswäschetrockner |
DE202005009948U1 (de) * | 2005-06-23 | 2006-11-16 | Autokühler GmbH & Co. KG | Wärmeaustauschelement und damit hergestellter Wärmeaustauscher |
-
2007
- 2007-05-16 DE DE202007007169U patent/DE202007007169U1/de not_active Expired - Lifetime
-
2008
- 2008-05-08 EP EP08008665A patent/EP1992898B1/de not_active Not-in-force
- 2008-05-13 KR KR1020080043811A patent/KR20080101692A/ko not_active Application Discontinuation
- 2008-05-16 CN CN2008100992904A patent/CN101307995B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20080101692A (ko) | 2008-11-21 |
EP1992898A3 (de) | 2010-08-04 |
DE202007007169U1 (de) | 2008-09-25 |
CN101307995B (zh) | 2011-09-21 |
CN101307995A (zh) | 2008-11-19 |
EP1992898A2 (de) | 2008-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1992898B1 (de) | Wärmetauscher für gasförmige Medien | |
DE3752324T2 (de) | Kondensator | |
DE102006011626B4 (de) | Wärmeübertragerrohr mit Versteifungsverformungen | |
DE3107010C2 (de) | Metallkühler zum Kühlen eines unter hohem Druck durchströmenden Fluids durch Luft | |
DE2801076C3 (de) | Wärmeaustauscher bestehend aus Schichten von paarweise einander zugeordneten Wänden | |
EP3531055B1 (de) | Plattenwärmetauscher und verfahren zu dessen herstellung | |
DE102008045710B4 (de) | Flache Wärmeübertragungsröhre und Wärmetauscher | |
EP2045556B1 (de) | Plattenwärmetauscher | |
EP3572760B1 (de) | Packung für eine wärme- und/oder stoffübertragung | |
DE102006048305A1 (de) | Plattenwärmetauscher | |
DE112005001295T5 (de) | Wärmetauscher | |
DE10220532A1 (de) | Wärmetauscher | |
DE19543149A1 (de) | Wärmetauscher, insbesondere Kältemittelverdampfer | |
DE20118511U1 (de) | Wärmeaustauschernetz und damit hergestellter Wärmeaustauscher | |
DE3834822A1 (de) | Waermetauscher | |
EP1640684A1 (de) | Wärmeübertrager aus Flachrohren und Wellrippen | |
DE3006850A1 (de) | Waermetauscher und verfahren zu seiner herstellung | |
DE60015701T2 (de) | Gebogenes Rohr für Wärmetauscher und dessen Herstellung | |
DE29614186U1 (de) | Wärmetauscher, insbesondere Wäschetrocknerkondensator, und zu dessen Herstellung bestimmte Rohranordnung | |
EP1203923B1 (de) | Wärmeaustauscher, insbesondere für Kondensations-Wäschetrockner | |
WO2005028986A1 (de) | Gelötetes wärmeübertragernetz | |
DE2450739A1 (de) | Waermeaustauscher, insbesondere oelkuehler | |
DE102006037302A1 (de) | Wärmetauscher, insbesondere für eine Kraftfahrzeug-Klimaanlage | |
DE19846347C2 (de) | Wärmeaustauscher aus Aluminium oder einer Aluminium-Legierung | |
DE10151238A1 (de) | Kältemittel/Luft-Wärmeaustauschernetz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
19U | Interruption of proceedings before grant |
Effective date: 20100226 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
19W | Proceedings resumed before grant after interruption of proceedings |
Effective date: 20100701 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
17P | Request for examination filed |
Effective date: 20110203 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20111004 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 603655 Country of ref document: AT Kind code of ref document: T Effective date: 20130415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008009564 Country of ref document: DE Effective date: 20130523 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130627 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130628 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130727 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130708 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130729 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
BERE | Be: lapsed |
Owner name: AKG-THERMOTECHNIK G.M.B.H. & CO.KG Effective date: 20130531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130627 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
26N | No opposition filed |
Effective date: 20140103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140131 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008009564 Country of ref document: DE Effective date: 20140103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130627 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 603655 Country of ref document: AT Kind code of ref document: T Effective date: 20130508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140305 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130327 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130508 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20080508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502008009564 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151201 |