EP2045556B1 - Plattenwärmetauscher - Google Patents

Plattenwärmetauscher Download PDF

Info

Publication number
EP2045556B1
EP2045556B1 EP08164770A EP08164770A EP2045556B1 EP 2045556 B1 EP2045556 B1 EP 2045556B1 EP 08164770 A EP08164770 A EP 08164770A EP 08164770 A EP08164770 A EP 08164770A EP 2045556 B1 EP2045556 B1 EP 2045556B1
Authority
EP
European Patent Office
Prior art keywords
row
depressions
heat exchanger
elevations
plate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08164770A
Other languages
English (en)
French (fr)
Other versions
EP2045556A2 (de
EP2045556A3 (de
Inventor
Klaus Otahal
Josef Hofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle International GmbH
Original Assignee
Mahle International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle International GmbH filed Critical Mahle International GmbH
Publication of EP2045556A2 publication Critical patent/EP2045556A2/de
Publication of EP2045556A3 publication Critical patent/EP2045556A3/de
Application granted granted Critical
Publication of EP2045556B1 publication Critical patent/EP2045556B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • F28F3/027Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements with openings, e.g. louvered corrugated fins; Assemblies of corrugated strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the invention relates to a plate heat exchanger according to the preamble of claim 1.
  • a heat exchanger is off EP-A-1 172 625 known.
  • Plate heat exchangers in particular oil / water heat exchangers, consist of a plurality of plates stacked one above the other, each of which alternately forms layers through which a first and a second medium, for example oil and water, flow.
  • the erected edge of the plates encloses each heat exchanger layer and extends beyond the edge of the subsequent plate, so that in the manufacturing process, a dense solder joint can set to the outside.
  • the flow of the plates via openings in the corners of the predominantly rectangular running plates.
  • the heat exchange units of heat exchangers with internal turbulizers to improve the heat exchanger characteristics of the heat exchanger.
  • the turbulators cause the medium, which flows through the heat exchanger unit, to flow in a turbulent manner, thereby improving the heat exchange characteristics of the heat exchanger.
  • a plate heat exchanger with a plurality of parallel partitions is known, wherein the partitions alternately spanning a flow space for a first medium and a second medium.
  • a turbulence generator is arranged, which consists of a structured sheet metal plate having juxtaposed rows with alternating elevations and depressions. Adjacent rows are offset from one another so that the medium can flow through between the rows.
  • the elevations and depressions are connected to each other via mutually inclined webs, wherein between the webs of the turbulence generator has a substantially trapezoidal cross-section.
  • the DE 298 24 920 U1 discloses a heat exchanger for heat exchange between gaseous media, consisting of superimposed profile elements, wherein the stacked profile elements alternately form an angle with the longitudinal direction of the heat exchanger and these profile elements have smooth surfaces and are not provided with additional structures.
  • the profile elements may have a sawtooth-like shape or a trapezoidal, pleated or wavy profile. With such profile elements, however, no optimal heat dissipation is guaranteed.
  • the object of the invention is to avoid these disadvantages and to increase the heat transfer performance in a plate heat exchanger in the simplest possible way and to keep the production cost as low as possible.
  • this is achieved in that the webs of each row are formed in the same direction inclined with respect to the partitions, wherein between a partition wall and the webs in each case an acute angle is clamped.
  • the angle is at least 40 °, preferably about 50 ° to 80 °, particularly preferably about 60 ° to 70 °.
  • the elevations and / or depressions of at least one row are substantially flat, preferably substantially parallel to the adjacent dividing wall.
  • the medium is deflected in the direction of the partition, resulting in good mixing and thus good heat transfer.
  • the same direction inclination of the webs large opening cross sections between the individual rows, resulting in low pressure loss and a homogeneous flow.
  • the turbulence generator is produced in two stages:
  • a cost-effective and process-stable roll-embossing process is performed.
  • the height of the turbulence generator, as well as the horizontal offset of the elevations is adjusted by the same direction inclined ridges by a leveling tool to the distance of the partitions.
  • the openings between the individual rows are widened.
  • a particular advantage is that the height of the turbulence generator is adjustable to the particular application.
  • an optimal adaptation of the parameters pressure loss, heat transfer performance and height to various heat exchanger applications is possible.
  • the plate heat exchanger 1 consists of a stack 2 of deep-drawn, trough-shaped metal plates 3, wherein the metal plates 3 at a distance from each other and parallel partition walls 10 form. From the partitions 10, a first flow space 12 is alternately spanned for a first medium and a second flow space 14 for a second medium.
  • the first medium may be oil to be cooled
  • the second medium may be a cooling medium formed by water, for example.
  • plate-like turbulence generators 16 are arranged both in the first flow space 12 and in the second flow space 14.
  • Each turbulence generator 16 has a plurality of juxtaposed strand-like rows 18, 20 with elevations 22 and depressions 24.
  • the elevations 22 are connected to the depressions 24 via webs 26, 28.
  • Two immediately adjacent rows are formed offset from each other, so that the elevations 22 and depressions 24 of a row 18 with respect to each immediately adjacent row 18, 20 are formed offset.
  • Each row 18 thus has per side wall 26, 28 a transition region 30, 32 between the two rows 18, 20, so that the depressions 24 of each row 18, 20 are in flow communication with the projections 22 of the adjacent row 20, 18.
  • the webs 26, 28 of each row 18, 20 are arranged substantially parallel to each other and inclined in the same direction, the webs 26, 28 with the adjacent partition wall 10 an angle span ⁇ , which in the exemplary embodiment is about 60 ° to 70 °.
  • the elevations 22 and depressions 24 are substantially flat, in particular formed parallel to the partitions 10.
  • the turbulence generators 16 are soldered to the adjacent partitions 10 in the region of the elevations 22 and depressions 24.
  • the production of the turbulence generator 16 can take place in two stages. In a first stage, a conventional, inexpensive and process-stable roll embossing process is carried out. In a second stage, using a leveling tool, a defined height H and a specific horizontal offset of the elevations 22 with respect to the depressions 24 are realized. In this step, the crossing areas 30, 32 are widened. During the mentioned second production stage, the height H of the turbulence generator is adjustable to the respective application. Thus, an optimal adaptation of the parameters pressure loss, heat transfer performance and height to various applications is possible.

Description

  • Die Erfindung betrifft einen Plattenwärmetauscher nach dem Oberbegriff des Anspruchs 1. So ein Wärmetauscher ist aus EP-A-1 172 625 bekannt.
  • Plattenwärmetauscher, insbesondere Öl/Wasser-Wärmetauscher, bestehen aus mehreren übereinander gestapelten Platten, die jeweils abwechselnd mit einem ersten und einem zweiten Medium, beispielsweise Öl und Wasser, durchflossene Lagen bilden. Der aufgestellte Rand der Platten umschließt jede Wärmetauscherlage und ragt bis über den Rand der darauffolgenden Platte, so dass sich im Herstellverfahren eine dichte Lötverbindung nach außen einstellen kann. Die Anströmung der Platten erfolgt über Öffnungen in den Eckbereichen der vorwiegend rechteckig ausgeführten Platten.
  • Es ist bekannt, die Wärmetauscheinheiten von Wärmetauschern mit internen Turbulenzerzeugern auszustatten, um die Wärmetauschercharakteristika des Wärmetauschers zu verbessern. Im Allgemeinen veranlassen die Turbulenzerzeuger das Medium, welches durch die Wärmetauschereinheit entströmt, in einer turbulenten Art und Weise zu strömen, wobei die Wärmetauschcharakteristika des Wärmetauschers verbessert werden.
  • Bei einem bekannten Öl/Wasser-Wärmetauscher befinden sich zwischen den einzelnen Lagen von Platten Turbulenzbleche, die mit den jeweiligen Ober- und Unterseiten der angrenzenden Platten im Herstellverfahren verlötet sind. Die Turbulenzbleche erfüllen dabei wesentliche Aufgaben:
    • Vergrößerung der Oberfläche für bessere Wärmeübertragung;
    • Verwirbelung der durchströmenden Medien für bessere Wärmeübertragung;
    • Verlängerung des Strömungsweges;
    • Abstützung der dünnwandigen Platten gegen Druckbeaufschlagung;
    • Abstützung der dünnwandigen Platten gegen Verformung beim Lötprozess.
  • Diese Turbulenzbleche bilden somit das Kernelement des Wärmetauschers und bestimmen maßgebend die Wärmeübertragungsleistung, den Strömungswiderstand beider Medien und die mechanische Druckbeständigkeit. Bei der Konzeptionierung eines Öl/Wasser-Wärmetauschers stellen sich folgende Anforderungen an den Konstrukteur:
    • höchstmögliche Wärmeübertragungsleistung vom Ölsystem in das Kühlmittel;
    • geringer Differenzdruck ölseitig;
    • geringe bzw. passend abgestimmter Differenzdruck kühlmittelseitig;
    • geringes Bauvolumen;
    • geringster Materialaufwand;
    • einfache Struktur; und
    • Druckbeständigkeit gegen schwellenden Druckverlauf.
  • Die Hauptanforderung nach hoher Wärmeübertragungsleistung verhält sich in der Praxis allerdings entgegengesetzt zu fast allen anderen Anforderungen. So sorgt zum Beispiel eine enge Struktur des Turbulenzbleches für hohe Verwirbelung und damit für einen guten Wärmeübergang, aber auch für hohen Differenzdruck. Auch steigt die Wärmeübertragungsleistung mit dem Bauvolumen (Plattenanzahl, Plattenfläche) an, welches jedoch aus Bauraum- und Kostengründen stets zu minimieren ist. Ein wesentlicher Aspekt bei der Auswahl des Turbulenzbleches ist außerdem die Herstellbarkeit. Üblich sind perforierte Aluminiumbleche, welche durch ein Roll- oder Stanzverfahren geformt werden.
  • Aus der EP 1 241 426 B1 ist ein Plattenwärmetauscher mit mehreren parallelen Trennwänden bekannt, wobei die Trennwände abwechselnd jeweils einen Durchflussraum für ein erstes Medium und für ein zweites Medium aufspannen. In den Durchflussräumen für eines der beiden Medien ist ein Turbulenzerzeuger angeordnet, welcher aus einer strukturierten Blechplatte besteht, welche nebeneinander angeordnete Reihen mit abwechselnden Erhebungen und Senken aufweist. Benachbarte Reihen sind dabei versetzt zueinander angeordnet, so dass zwischen den Reihen das Medium hindurchströmen kann. Die Erhebungen und Senken sind über zueinander geneigte Stege miteinander verbunden, wobei zwischen den Stegen der Turbulenzerzeuger einen im Wesentlichen trapezförmigen Querschnitt aufweist. Um eine optimale Wärmeableitung zu erreichen, ist es erforderlich, dass der Turbulenzerzeuger im Bereich der Erhebungen und Senken an den benachbarten Trennwänden aufliegt und diese kontaktiert. Dadurch ist es allerdings erforderlich, dass der Turbulenzerzeuger passgenau für den jeweiligen Anwendungsfall gefertigt wird. Nachteilig ist, dass für Wärmetauscher mit unterschiedlich beabstandeten Trennwänden separate Turbulenzerzeuger gefertigt werden müssen. Weiters haben Untersuchungen gezeigt, dass mit diesen bekannten Turbulenzerzeugern nicht in jedem Fall eine optimale Wärmeableitung gewährleistet ist.
  • Die DE 298 24 920 U1 offenbart einen Wärmetauscher für den Wärmetausch zwischen gasförmigen Medien, bestehend aus übereinander angeordneten Profilelementen, wobei die übereinander angeordneten Profilelemente alternierend jeweils eines Winkel mit der Längsrichtung des Wärmetauschers bilden und diese Profilelemente glatte Oberflächen aufweisen und nicht mit zusätzlichen Strukturen versehen sind. Die Profilelemente können dabei eine sägezahnartige Form oder ein trapez-, falten- oder wellenförmiges Profil aufweisen. Mit derartigen Profilelementen ist allerdings keine optimale Wärmeableitung gewährleistet.
  • Aufgabe der Erfindung ist es, diese Nachteile zu vermeiden und bei einem Plattenwärmetauscher die Wärmeübertragungsleistung auf möglichst einfache Weise zu erhöhen und den Fertigungsaufwand so gering wie möglich zu halten.
  • Erfindungsgemäß wird dies dadurch erreicht, dass die Stege jeder Reihe gleichsinnig in Bezug auf die Trennwände geneigt ausgebildet sind, wobei zwischen einer Trennwand und den Stegen jeweils ein spitzer Winkel aufgespannt ist.
  • Besonders gute Ergebnisse können erzielt werden, wenn der Winkel mindestens 40° , vorzugsweise etwa 50° bis 80°, besonders vorzugsweise etwa 60° bis 70° beträgt.
  • Für eine rasche Wärmeableitung ist es von großem Vorteil, wenn die Erhebungen und/oder Senken zumindest einer Reihe im Wesentlichen flach, vorzugsweise im Wesentlichen parallel zur benachbarten Trennwand, ausgebildet sind.
  • Dadurch, dass die Stege jeder Reihe zueinander im Wesentlichen parallel und gleichsinnig in Bezug auf die Trennwände geneigt ausgebildet sind, wird das Medium in Richtung der Trennwand abgelenkt, was zu guter Durchmischung und somit zu guter Wärmeübertragung führt. Durch die gleichsinnige Neigung der Stege ergeben sich große Öffnungsquerschnitte zwischen den einzelnen Reihen, was zu geringem Druckverlust und zu einer homogenen Durchströmung führt.
  • Die Herstellung des Turbulenzerzeugers erfolgt in zwei Stufen:
  • Zuerst wird in üblicher Weise ein kostengünstiges und prozessstabiles Walz-Prägeverfahren durchgeführt. In einer zweiten Stufe wird die Höhe des Turbulenzerzeugers, sowie der horizontale Versatz der Erhöhungen durch die gleichsinnig geneigten Stege durch ein Planierwerkzeug an den Abstand der Trennwände angepasst. Dabei werden die Öffnungen zwischen den einzelnen Reihen aufgeweitet.
  • Ein besonderer Vorteil ist, dass die Höhe des Turbulenzerzeugers an den jeweiligen Anwendungsfall einstellbar ist. Damit ist eine optimale Anpassung der Parameter Druckverlust, Wärmeübertragungsleistung und Bauhöhe auf verschiedene Wärmetauscherapplikationen möglich.
  • Die Erfindung wird im Folgenden anhand der Figuren näher erläutert. Es zeigen:
  • Fig. 1
    einen erfindungsgemäßen Plattenwärmetauscher im Längsschnitt;
    Fig. 2
    das Detail II des Wärmetauschers im Schnitt; und
    Fig. 3
    einen Turbulenzerzeuger in einer Schrägansicht.
  • Der Plattenwärmetauscher 1 besteht aus einem Stapel 2 aus tiefgezogenen, wannenförmigen Blechplatten 3, wobei die Blechplatten 3 mit Abstand zueinander und parallel angeordnete Trennwände 10 bilden. Von den Trennwänden 10 wird abwechselnd ein erster Durchflussraum 12 für ein erstes Medium und ein zweiter Durchflussraum 14 für ein zweites Medium aufgespannt. Das erste Medium kann beispielsweise zu kühlendes Öl, das zweite Medium etwa durch Wasser gebildetes Kühlmedium ausgebildet sein.
  • Im Ausführungsbeispiel sind sowohl im ersten Durchflussraum 12, als auch im zweiten Durchflussraum 14 plattenartige Turbulenzerzeuger 16 angeordnet. Jeder Turbulenzerzeuger 16 weist mehrere nebeneinander angeordnete strangförmige Reihen 18, 20 mit Erhebungen 22 und Senken 24 auf. Die Erhebungen 22 sind dabei mit den Senken 24 über Stege 26, 28 verbunden. Zwei unmittelbar aneinander grenzende Reihen sind dabei zueinander versetzt ausgebildet, so dass die Erhebungen 22 und Senken 24 einer Reihe 18 in Bezug auf jede unmittelbar benachbarte Reihe 18, 20 versetzt ausgebildet sind. Jede Reihe 18 weist somit pro Seitenwand 26, 28 einen Übertrittsbereich 30, 32 zwischen den beiden Reihen 18, 20 auf, so dass die Senken 24 jeder Reihe 18, 20 mit den Erhebungen 22 der benachbarten Reihe 20, 18 in Strömungsverbindung stehen.
  • Die Stege 26, 28 jeder Reihe 18, 20 sind im Wesentlichen parallel zueinander angeordnet und gleichsinnig geneigt, wobei die Stege 26, 28 mit der benachbarten Trennwand 10 einen Winkel α aufspannen, welcher im Ausführungsbeispiel etwa 60° bis 70° beträgt. Um eine gute Wärmeübertragung zwischen Turbulenzerzeugern 16 und den Trennwänden 10 zu ermöglichen, sind die Erhebungen 22 und Senken 24 im Wesentlichen flach, insbesondere parallel zu den Trennwänden 10 ausgebildet. Die Turbulenzerzeuger 16 sind dabei im Bereich der Erhebungen 22 und Senken 24 mit den benachbarten Trennwänden 10 verlötet.
  • Durch die gleichsinnig Neigung der Stege 26, 28 ergeben sich große Übertrittsbereiche 30, 32 zwischen den einzelnen Reihen 18, 20, wodurch ein geringer Druckverlust und eine homogene Durchströmung gewährleistet ist. Die Neigung der Stege 26, 28 um den spitzen Winkel α bewirkt darüber hinaus eine Ablenkung des Mediums in Richtung der Trennwände 10, was zu guter Durchmischung und somit guter Wärmeübertragung führt.
  • Die Herstellung der Turbulenzerzeuger 16 kann in zwei Stufen erfolgen. In einer ersten Stufe wird ein übliches, kostengünstiges und prozessstabiles Walz-Prägeverfahren durchgeführt. In einer zweiten Stufe wird unter Einsatz eines Planierwerkzeuges eine definierte Höhe H und ein bestimmter horizontaler Versatz der Erhebungen 22 bezüglich der Senken 24 verwirklicht. In diesem Schritt werden die Übertrittsbereiche 30, 32 aufgeweitet. Während der erwähnten zweiten Herstellungsstufe ist die Höhe H des Turbulenzerzeugers auf den jeweiligen Anwendungsfall einstellbar. Damit ist eine optimale Anpassung der Parameter Druckverlust, Wärmeübertragungsleistung und Bauhöhe auf verschiedene Anwendungen möglich.

Claims (4)

  1. Plattenwärmetauscher mit mehreren übereinander gestapelten Trennwänden (10), die abwechselnd jeweils einen ersten und einen zweiten Durchflussraum (12, 14) für ein erstes, bzw. zweites Medium aufspannen, wobei in zumindest einem Durchflussraum (12, 14) zumindest ein vorzugsweise aus Blech bestehender Turbulenzerzeuger (16) angeordnet ist, welcher aus einer Platte mit mehreren nebeneinander angeordneten bandartigen Reihen (18, 20) alternierend hintereinander folgender Erhebungen (22) und Senken (24) besteht, welche über geradlinige Stege (26, 28) miteinander verbunden sind, wobei die Erhebungen (22) und Senken (24) jeder Reihe (18, 20) in Bezug auf jede unmittelbar benachbarte Reihe (20; 18) versetzt sind, und wobei jede der Reihen (18, 20) zumindest einen Übertrittsbereich (30, 32) für das Medium zur unmittelbar angrenzenden Reihe (20; 18) aufweist, so dass die Senken (24) jeder Reihe (18, 20) mit unmittelbar angrenzenden Erhebungen (22) zumindest einer unmittelbar benachbarten Reihe (20, 18) in Strömungsverbindung stehen, wobei die Stege (26, 28) jeder Reile (18, 20) zueinander im Wesentlichen parallel angeordnet und dadurch gekennzeichnet, dass die Stege (26, 28) jeder Reihe (18, 20) gleichsinnig in Bezug auf die Trennwände (10) geneigt ausgebildet sind, wobei zwischen jeder Trennwand (10) und den Stegen (26, 28) jeweils ein spitzer Winkel (α) aufgespannt ist.
  2. Plattenwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass der spitze Winkel (α) mindestens 40°beträgt.
  3. Plattenwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Erhebungen (22) und/oder Senken (24) zumindest einer Reihe (18, 20) im Wesentlichen flach, vorzugsweise im Wesentlichen parallel zur benachbarten Trennwand (10), ausgebildet sind.
  4. Verfahren zur Herstellung eines Turbulenzerzeugers (16) für einen Plattenwärmetauscher nach einem der Ansprüche 1 bis 3, wobei die Erhebungen (22) und Senken (24) mittels eines Walz-Prägeverfahrens gefertigt werden, dadurch gekennzeichnet, dass die Höhe (H) des Turbulenzerzeugers (16) und der horizontale Versatz der Erhebungen (22) bezüglich der Senken (24) durch Neigen der Stege (26, 28) im gleichen Sinne mittels eines Planierwerkzeuges an den Abstand zwischen den Trennwänden (10) angepasst werden.
EP08164770A 2007-10-04 2008-09-22 Plattenwärmetauscher Active EP2045556B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0156607A AT505300B1 (de) 2007-10-04 2007-10-04 Plattenwärmetauscher

Publications (3)

Publication Number Publication Date
EP2045556A2 EP2045556A2 (de) 2009-04-08
EP2045556A3 EP2045556A3 (de) 2010-03-17
EP2045556B1 true EP2045556B1 (de) 2012-11-28

Family

ID=40104795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08164770A Active EP2045556B1 (de) 2007-10-04 2008-09-22 Plattenwärmetauscher

Country Status (4)

Country Link
US (1) US8418752B2 (de)
EP (1) EP2045556B1 (de)
CN (1) CN101469957B (de)
AT (1) AT505300B1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202009006409U1 (de) 2009-05-05 2009-08-13 Ifg Solar Kg Wärmetauscher zur Wärmeübertragung
US20120125580A1 (en) * 2010-11-19 2012-05-24 Te-Jen Ho aka James Ho Embossed plate external oil cooler
DE102011112512B4 (de) 2011-09-07 2013-06-06 Umicore Ag & Co. Kg Verfahren zur Herstellung von Plattenwärmetauschern
CN103252423B (zh) * 2012-02-16 2015-07-22 北京环都人工环境科技有限公司 滚边机
DE112014001028T5 (de) * 2013-02-27 2016-01-07 Denso Corporation Stapelwärmetauscher
JP2015058824A (ja) * 2013-09-19 2015-03-30 三菱重工オートモーティブサーマルシステムズ株式会社 扁平熱交換チューブ、それを用いた熱媒体加熱装置および車両用空調装置
US10422588B2 (en) 2014-08-21 2019-09-24 Trane International Inc. Heat exchanger coil with offset fins
EP3010321B1 (de) * 2014-10-14 2021-12-01 Magneti Marelli S.p.A. Flüssigkeitskühlsystem für eine elektronische komponente
DE102014226090A1 (de) * 2014-12-16 2016-06-16 Mahle International Gmbh Wärmeübertrager
JP6414482B2 (ja) * 2015-02-17 2018-10-31 株式会社デンソー オフセットフィン製造方法およびオフセットフィン製造装置
US20160377350A1 (en) * 2015-06-29 2016-12-29 Honeywell International Inc. Optimized plate fin heat exchanger for improved compliance to improve thermal life
US10094624B2 (en) * 2016-01-08 2018-10-09 Hanon Systems Fin for heat exchanger
DE112018006027T5 (de) * 2017-11-27 2020-09-17 Dana Canada Corporation Verbesserte wärmeübertragungsfläche
WO2019210413A1 (en) * 2018-05-01 2019-11-07 Dana Canada Corporation Heat exchanger with multi-zone heat transfer surface

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2360123A (en) * 1942-09-18 1944-10-10 Gen Motors Corp Oil cooler
US3521707A (en) * 1967-09-13 1970-07-28 Ass Eng Ltd Heat exchangers
US3568461A (en) * 1967-11-22 1971-03-09 Mc Donnell Douglas Corp Fractionation apparatus
US3542124A (en) * 1968-08-08 1970-11-24 Garrett Corp Heat exchanger
US3612494A (en) * 1968-09-11 1971-10-12 Kobe Steel Ltd Gas-liquid contact apparatus
US3768149A (en) * 1972-10-30 1973-10-30 Philco Ford Corp Treatment of metal articles
US4146090A (en) * 1977-03-28 1979-03-27 Hisaka Works Ltd. Plate type heat exchanger
US4273183A (en) * 1979-07-31 1981-06-16 The United States Of America As Represented By The Secretary Of The Air Force Mechanical heat transfer device
JPS56130594A (en) * 1980-03-19 1981-10-13 Hitachi Ltd Heat exchanger
JPS61262593A (ja) * 1985-05-15 1986-11-20 Showa Alum Corp 熱交換器
US5107922A (en) * 1991-03-01 1992-04-28 Long Manufacturing Ltd. Optimized offset strip fin for use in contact heat exchangers
JP3158983B2 (ja) * 1994-10-03 2001-04-23 住友精密工業株式会社 Lsiパッケージ冷却用コルゲート型放熱フィン
AT405571B (de) * 1996-02-15 1999-09-27 Ktm Kuehler Gmbh Plattenwärmetauscher, insbesondere ölkühler
JP3858324B2 (ja) * 1997-01-08 2006-12-13 株式会社デンソー インナーフィンおよびその製造方法
US6273183B1 (en) * 1997-08-29 2001-08-14 Long Manufacturing Ltd. Heat exchanger turbulizers with interrupted convolutions
DE29824920U1 (de) * 1998-03-25 2003-07-31 Fpl Waermerueckgewinnung Lueft Turbulenzwärmerückgewinner und Anwendungen desselben
US6032503A (en) * 1998-11-23 2000-03-07 Modine Manufacturing Company Method and apparatus for roll forming a plurality of heat exchanger fin strips
US6247527B1 (en) * 2000-04-18 2001-06-19 Peerless Of America, Inc. Fin array for heat transfer assemblies and method of making same
AU4359000A (en) * 1999-04-19 2000-11-02 Peerless Of America, Inc. An improved fin array for heat transfer assemblies and method of making same
US6598669B2 (en) * 1999-04-19 2003-07-29 Peerless Of America Fin array for heat transfer assemblies and method of making same
US6216343B1 (en) * 1999-09-02 2001-04-17 The United States Of America As Represented By The Secretary Of The Air Force Method of making micro channel heat pipe having corrugated fin elements
JP4231610B2 (ja) * 2000-02-09 2009-03-04 サンデン株式会社 熱交換器用フィンの製造方法
FR2807828B1 (fr) * 2000-04-17 2002-07-12 Nordon Cryogenie Snc Ailette ondulee a decalage partiel pour echangeur de chaleur a plaques et echangeur de chaleur a plaques correspondant
FR2811747B1 (fr) * 2000-07-11 2002-10-11 Air Liquide Ailette d'echange thermique pour echangeur de chaleur a plaques brasees, et echangeur de chaleur correspondant
US20020074109A1 (en) * 2000-12-18 2002-06-20 Rhodes Eugene E. Turbulator with offset louvers and method of making same
US20020162646A1 (en) * 2001-03-13 2002-11-07 Haasch James T. Angled turbulator for use in heat exchangers
KR20040017920A (ko) * 2002-08-22 2004-03-02 엘지전자 주식회사 열교환기의 응축수 배출장치
US7063047B2 (en) * 2003-09-16 2006-06-20 Modine Manufacturing Company Fuel vaporizer for a reformer type fuel cell system
CN1805133A (zh) * 2005-01-14 2006-07-19 杨洪武 板式热管散热器
US7686070B2 (en) * 2005-04-29 2010-03-30 Dana Canada Corporation Heat exchangers with turbulizers having convolutions of varied height
DE102007031912A1 (de) * 2006-07-11 2008-02-07 Denso Corp., Kariya Abgaswärmetauscher
EP1918668B1 (de) * 2006-10-27 2010-06-02 Behr GmbH & Co. KG Vorrichtung zur Aufnahme eines Fluids mittels Kapillarkräften und Verfahren zur Herstellung der Vorrichtung
US9780421B2 (en) * 2010-02-02 2017-10-03 Dana Canada Corporation Conformal heat exchanger for battery cell stack

Also Published As

Publication number Publication date
US8418752B2 (en) 2013-04-16
EP2045556A2 (de) 2009-04-08
CN101469957B (zh) 2012-07-25
CN101469957A (zh) 2009-07-01
US20090095456A1 (en) 2009-04-16
EP2045556A3 (de) 2010-03-17
AT505300A4 (de) 2008-12-15
AT505300B1 (de) 2008-12-15

Similar Documents

Publication Publication Date Title
EP2045556B1 (de) Plattenwärmetauscher
DE19528116B4 (de) Wärmeübertrager mit Platten-Sandwichstruktur
DE102006048305B4 (de) Plattenwärmetauscher
EP1910764B2 (de) Plattenelement für einen plattenkühler
EP3531055B1 (de) Plattenwärmetauscher und verfahren zu dessen herstellung
EP1992898B1 (de) Wärmetauscher für gasförmige Medien
EP1091185A2 (de) Plattenwärmetauscher
DE102004036951A1 (de) Wärmeübertrager sowie Verfahren zu dessen Herstellung
DE60022572T2 (de) Verdampfer
EP1256772A2 (de) Wärmetauscher
EP1612499A2 (de) Plattenwärmetauscher
EP0978874A2 (de) Kühler
EP1525427A1 (de) Wärmetauschervorrichtung
DE3239004A1 (de) Packungsnut in plattenelement fuer plattenwaermetauscher
DE102005010341A1 (de) Wärmetauscherplatte und Plattenpaket
DE112009000983T5 (de) Wärmetauscher mit Streckgitterwirbelerzeuger
AT411397B (de) Turbulenzerzeuger für einen wärmetauscher
AT508058B1 (de) Plattenwärmetauscher
EP1500895A2 (de) Strömungskanal für einen Wärmeaustauscher
DE19853750A1 (de) Kühler zur Verwendung als Wärmesenke für elektrische oder elektronische Komponenten
DE3011011A1 (de) Plattenwaermetauscher
EP3507046B1 (de) Verfahren zur herstellung eines plattenwärmeübertragerblocks mit gezielter applikation des lotmaterials auf, insbesondere fins und sidebars
DE10218274A1 (de) Wärmetauscherplatte für einen Kreuzstromwärmetauscher
DE3424116C2 (de) Feststoffabsorber für einen Absorptionskreisprozeß
DE102004025333B4 (de) Vorrichtung zum Verbinden von nebeneinander angeordneten von einem Fluid durchströmbaren Einbauelementen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE INTERNATIONAL GMBH

17P Request for examination filed

Effective date: 20100909

17Q First examination report despatched

Effective date: 20101007

AKX Designation fees paid

Designated state(s): AT DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 586402

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008008759

Country of ref document: DE

Effective date: 20130124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130829

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008008759

Country of ref document: DE

Effective date: 20130829

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220920

Year of fee payment: 15

Ref country code: AT

Payment date: 20220920

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220926

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 16