EP3572760B1 - Packung für eine wärme- und/oder stoffübertragung - Google Patents

Packung für eine wärme- und/oder stoffübertragung Download PDF

Info

Publication number
EP3572760B1
EP3572760B1 EP19174070.3A EP19174070A EP3572760B1 EP 3572760 B1 EP3572760 B1 EP 3572760B1 EP 19174070 A EP19174070 A EP 19174070A EP 3572760 B1 EP3572760 B1 EP 3572760B1
Authority
EP
European Patent Office
Prior art keywords
rib
package according
strip portion
foil elements
flow channels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19174070.3A
Other languages
English (en)
French (fr)
Other versions
EP3572760A1 (de
Inventor
Dr. Andreas Streng
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CTS COOLING TOWER SOLUTIONS GmbH
Original Assignee
CTS COOLING TOWER SOLUTIONS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CTS COOLING TOWER SOLUTIONS GmbH filed Critical CTS COOLING TOWER SOLUTIONS GmbH
Publication of EP3572760A1 publication Critical patent/EP3572760A1/de
Application granted granted Critical
Publication of EP3572760B1 publication Critical patent/EP3572760B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • F28C3/08Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour with change of state, e.g. absorption, evaporation, condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/08Splashing boards or grids, e.g. for converting liquid sprays into liquid films; Elements or beds for increasing the area of the contact surface
    • F28F25/087Vertical or inclined sheets; Supports or spacers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/02Direct-contact trickle coolers, e.g. cooling towers with counter-current only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • F28F25/06Spray nozzles or spray pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/10Component parts of trickle coolers for feeding gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Definitions

  • the invention relates to a packing for heat and / or mass transfer between liquid and gaseous media in countercurrent, in particular for water cooling by air in cooling towers, with a large number of film elements profiled by corrugations, the corrugations providing flow channels and the film elements being formed of contact points are arranged one behind the other in the thickness direction, with adjacent film elements being connected to one another at their contact points and with the large areas of adjacent film elements facing one another having a fine profile.
  • Cooling towers for water cooling in general and cooling fixtures for cooling towers - also called packings - in particular are well known per se from the prior art.
  • Cooling towers are used in particular to cool liquid media, i.e. fluids such as water, by means of ambient air.
  • liquid media i.e. fluids such as water
  • previously known cooling towers have a fluid cooling device which in turn has cooling components, that is to say so-called packings, and a fluid distribution device.
  • the fluid to be cooled is sprayed above the packs by means of the fluid distribution device and trickles along the packs, namely downwards following the force of gravity.
  • the packings are preferably flowed through by air for the purpose of cooling in countercurrent to the fluid to be cooled. As a result of the contact of the fluid to be cooled with the air inside the packs, the fluid to be cooled is cooled as intended.
  • a fan which promotes the air flow through the cooling tower and in particular through the cooling installations. This is typically arranged in the vertical direction of the cooling tower above the fluid cooling device. In normal operation, the fan sucks in ambient air from below the fluid cooling device, which air flows through the fluid cooling device arranged in the vertical direction of the cooling tower below the fan as cooling air. The ambient air sucked in by the fan is released into the atmosphere as heated ambient air after flowing through the packs upwards.
  • a cooling tower of the type described above is for example from WO 2009/149954 A1 known.
  • a packing construction is known from the prior art, according to which a multiplicity of foil or plate elements profiled by corrugations is provided. These film elements are arranged one behind the other in the direction of thickness, the corrugations providing flow channels. Adjacent film elements are connected to one another at their points of contact. Furthermore, the large areas of adjacent film elements facing one another have a fine profile. This fine profiling serves to optimize the heat exchange even further.
  • a generic pack is from the DE 41 22 369 C1 known.
  • the built-in element consists of touching, folded lamellae made of film-like material, arranged parallel to the column axis.
  • the folds of the lamellae lie at an angle to the column axis.
  • the folding walls of the slats are also finely corrugated and the slats have a plurality of holes distributed over their surface.
  • the corrugation results from roughening the surface of the lamellas by means of grooves or embossing patterns.
  • the DE 39 18 483 A1 relates to a packing for heat and mass transfer in countercurrent.
  • the filler body has a plurality of vertically and obliquely standing, superimposed and interconnected corrugated or folded foils or plates, which are designed and / or placed on top of one another and connected to one another such that the corrugations or folds of adjacent foils or plates cross.
  • the corrugations or folds of neighboring foils or plates only intersect in the upper part of the filling body, while they run parallel to each other in the lower part.
  • the US 6,578,829 B2 relates to a packaging section which has a plurality of vertically oriented, diagonally cross-shaped corrugated packaging sheets.
  • the packaging sheets define a section height, the section having a base region, a volume region and a top region.
  • the base region has a first specific geometry that differs from a geometry of the volume region.
  • the upper area also has a specific, second geometry which also differs from the geometry of the volume area as well as from the geometry of the base area.
  • the EP 0 056 911 B1 relates to a filling part for filling purposes in a water cooling tower, which in the basic state has vertical sheets of malleable material everywhere with a generally zig-zag-shaped, downward-pointing spiral pattern. Each sheet has a pair of opposite sides which are intended to be wetted by heated water flowing downwards over the same.
  • the malleable material is equipped with horizontal ribs that form angled depressions. It is also provided that the filling part has water cooling pockets at the sinus curve between each rib and that the pockets of the depressions are arranged at an angle with respect to the horizontal.
  • the EP 1 078 684 A1 discloses an ordered packing for separation columns which has profiled layers and channels arranged in them.
  • the channels are oriented obliquely to a main flow direction.
  • the layers are formed into a profile from film-like and fabric-like material strips.
  • the invention proposes a packing of the type mentioned at the outset, which is characterized in that the fine profiling has ribs running transversely to the flow channels with rib webs and rib grooves, a rib groove being arranged between two adjacent rib webs, the transitions are formed between successive rib webs and rib grooves essentially free of radii.
  • the fine profiling formed on the large surfaces of the film elements is formed according to the invention as ribbing.
  • the ribbing runs transversely to the flow channels of the film elements.
  • ribbing can be provided which runs parallel to the input or output edge of the film elements.
  • the ribbing has rib webs on the one hand and rib grooves on the other hand, a rib groove being arranged between two adjacent rib webs. This results in an alternating arrangement of rib webs and rib grooves in the longitudinal direction of the film elements.
  • the transitions between rib webs and rib grooves that follow one another in the longitudinal direction of the film elements or in the transverse direction of the ribs are formed essentially free of radii.
  • “essentially” means a design without transition radii, provided that it is possible in particular from a production point of view. According to the invention, it is therefore important to avoid transition radii between the successive rib webs and rib grooves, so that the result is a "sharp-edged" configuration.
  • transition radii between rib webs and rib grooves is therefore provided according to the prior art in order to be able to better remove the film elements, which are mostly made of a plastic material, from a molding tool. It was not recognized that transition radii minimize the barrier effect of fine profiling, which has a positive effect on the efficiency of a packing, and thus promote the formation of a laminar flow.
  • the sharp edges of both the rib webs and the rib grooves which are now provided according to the invention as a departure from the prior art, provide a remedy here, since as a result of this structural design, turbulent flow conditions develop during operation, which causes an improved mixing of the two media involved, which ultimately leads to leads to an increased heat exchange.
  • a disadvantage of the sharp-edged design of the transitions between rib webs and rib grooves provided according to the invention is that the gas-side, i.e. increased air-side pressure loss. This results in an increased energy expenditure for the fan for conveying the cooling air flowing through the pack.
  • this disadvantage is deliberately accepted.
  • the construction according to the invention achieves an overall increased overall efficiency. This has significant advantages for the operation of corresponding systems in a wide variety of branches of industry in the form of smaller and thus more cost-effective systems and overall lower total operating costs.
  • the corrugations provide inclined flow channels in the longitudinal direction of the film elements, preferably zig-zag flow channels, the film elements being arranged alternately in the thickness direction so that the flow channels of adjacent film elements extend with opposite inclinations and under Cross training of the points of contact.
  • the flow channels are not aligned in a straight line in the longitudinal direction of the film elements, but rather inclined thereto.
  • a zigzag configuration is preferred.
  • the inclination of the flow channels to the vertical has the positive effect that a flow path that is lengthened in relation to the height extension of the packing according to the invention results, which results in an improved heat exchange.
  • the width of a rib web in particular the width of the plateau terminating a rib web on the upper side, can serve as a reference variable for the design of the transition radii. It is therefore proposed according to a further feature of the invention that the transition radii are formed ⁇ 20%, preferably ⁇ 10%, even more preferably ⁇ 5% of the rib web plateau width of the associated rib web. If the rib web plateau width measures, for example, 5 mm, the result is a transition radius of preferably ⁇ 0.5 mm, even more preferably of ⁇ 0.25 mm.
  • transition radii The smaller the selected transition radii, the slower the demolding speed can be when a film element is demolded from the mold during manufacture. This disadvantage is consciously accepted with the design according to the invention, since the later efficiency of the film element formed in this way is significantly improved compared to the prior art. For manufacturing reasons, a transition radius of zero cannot be achieved. “Essentially” within the meaning of the invention therefore means that the transition radii are to be designed as small as possible when using conventional manufacturing processes. The more "sharp-edged" the rib design, the clearer the effect of a turbulent flow in normal operation.
  • a rib groove has a groove depth of 2.0 mm to 3.0 mm, preferably 2.2 mm to 2.8 mm, even more preferably 2.4 mm to 2.6 mm, most preferably 2.5 mm.
  • a groove depth in the specified range achieves an optimized degree of efficiency. If the groove depth falls significantly smaller or significantly larger, then flow effects occur on the rib webs and / or the rib grooves in normal operation, which oppose an effective heat and / or mass transfer between the media involved.
  • a rib groove has a groove width of 4.0 mm to 6.0 mm, preferably of 5.0 mm.
  • the large surfaces of the film elements facing one another with fine profiling as comprehensively as possible in the sense of the invention.
  • only some areas of the large surfaces of the film elements are to be left out, such as, for example, the input and output end regions of the film elements.
  • a further feature of the invention can provide that the inclination of the flow channels to the vertical in the final assembled state is ⁇ 22 °, preferably between 19 ° and 15 °, even more preferably 17 °.
  • the inclination of the flow channels to the vertical has the positive effect of lengthening the total flow path to be covered, which also results in improved heat and / or mass transfer.
  • the greater the inclination to the vertical the greater the pressure loss that occurs in the air flow during operation. In the manner already described, this leads to an inevitably necessary increase in the fan output, which has a negative effect on the overall energy balance.
  • the aim is basically to have the flow channels parallel in To run in the longitudinal direction, which then again leads to a deteriorated heat and / or mass transfer due to the shortened flow path.
  • the fine profiling according to the invention makes it possible to bring these conflicting interests into an optimized balance with one another. This enables increased heat and / or mass transfer, so that in order to minimize the pressure loss in the cooling air it is possible to make the angle of inclination of the flow channels to the vertical smaller than usual, namely smaller than 20 °. This was not to be expected against the background of the known prior art.
  • the groove depth averaged over the groove width is preferred as the groove depth in the context of the invention.
  • the groove depth with reference to the groove width in the middle of the groove can be used as a reference value.
  • the end regions of a film element which are opposite one another in the longitudinal direction are designed without fine profiling.
  • grooves running obliquely to the longitudinal extension of the film elements are formed. These grooves are preferably formed in the film elements on the liquid inlet side and the liquid outlet side of the pack. They serve in particular to allow the liquid to flow out of the pack after flowing through the pack in an improved manner and to allow it to drip off. As a result of this measure, a reduced pressure loss on the gas or air side is also achieved.
  • two channels are provided for each flow channel, which are aligned with one another in a V-shape.
  • the liquid film that forms on the inner side walls of the flow channels in the intended use can thus flow off better on the outlet side without the formation of liquid waves that would create an increased resistance to the air flowing in the opposite direction, as is the case with the prior art.
  • This improved outflow or dripping effect can also be supported by the fact that the two channels open into a common outlet which is oriented in the direction of the longitudinal extension of the film elements. This results in structures similar to ⁇ on the outlet side of the flow channels, which results in an improved outflow of the liquid applied to the packing.
  • the mutually facing flow channels of adjacent film elements form a film or plate pair channel which has a hexagonal channel cross section on the inlet and outlet sides.
  • each film element provides a flow channel that is open on one side.
  • these flow channels of the individual film elements interact with the respective formation of a film pair channel.
  • the film pair channels preferably have a channel cross-section that is polygonal, preferably hexagonal.
  • the division dimension that is to say the height of each flow channel in the depth of the formation of the film element, is preferably 12 mm, 20 mm or 30 mm. This results in a channel width for a film pair channel of 24 mm, 40 mm or 60 mm on the input or output side of the pack, based on the film spacing or film division.
  • the corrugations of the film elements have a polygonal channel cross-section on the input or output side, preferably a hexagonal cross-section, the edge lengths of which are preferably of different lengths.
  • the corrugations of the film elements have a first strip section running in the longitudinal direction of the film elements and a second and third longitudinal strip arranged thereon along its respective longitudinal edges, the second and third strip sections being oriented at an incline to the first strip section.
  • the second and third strip sections are designed to be of equal width and each have a width that exceeds the width of the first strip section. So the smaller the short edge length, i.e.
  • the preferred ratio of short to long hexagonal sides i.e. the width ratio of the first strip section and the second strip section or third strip section is between 0.3 and 0.4, preferably 0.35. This results in a favorable for an optimized heat and mass transfer, i.e. as uniform as possible a thickness of the liquid film forming on the surfaces of the flow channels.
  • the width of the first strip section or the short edge length of the channel cross-section depends on the pitch, but is at least 5 mm. With a 20 division, for example, the edge length is between 8 mm and 12 mm, preferably 10 mm. If the short edge length, ie the width of the first strip section, is significantly below these value parameters, a comparatively narrow liquid channel is created, which in the case of operation leads to a collection of liquid in this Can lead channel and what reduces the overall effectiveness of the packing according to the invention.
  • Fig. 1 shows a cooling tower 1 as it is from the prior art, for example according to the WO 2009/149954 A1 is known.
  • the cooling tower 1 has a liquid cooling device, which in turn has a liquid distribution device 14 on the one hand and cooling fixtures 12 on the other.
  • the liquid distribution device 14 is arranged in the vertical direction 13 above the cooling fixtures 12.
  • the liquid distribution device 14 has a plurality of distribution pipes 15 which are connected to a common inlet pipe 5 on the liquid side.
  • the distribution pipes 15 of the liquid distribution device 14 are equipped on the cooling component side with nozzles 16 which, when in operation, distribute the liquid fed to the liquid distribution device 14, for example water, in the direction of the arrows 17 to the cooling components 12.
  • the cooling tower 1 uses a suction fan wheel 8 as the cooling medium to supply ambient air in accordance with arrows 18 and 19 with reference to the plane of the drawing Fig. 1 guided from bottom to top.
  • the cooling fixtures 12 which in the embodiment shown are designed in three layers.
  • the liquid to be cooled by means of the cooling tower 1, for example water, is introduced into the liquid distribution device 14 via the feed pipe 5.
  • the distance between the outlet openings of the nozzles 16 and the upper edge of the cooling fixtures 12 determines the spray height, which is 600 mm, for example.
  • the water evenly distributed over the cooling fixtures 12 by means of the liquid distribution device 14 trickles through the cooling fixtures 12 in countercurrent to the cooling air conveyed from the bottom to the top.
  • the water that has cooled down after trickling through the cooling fittings 12 drips off from the cooling fittings 12 and is collected in the water collecting pan 3.
  • support struts 6 are provided to support the liquid cooling device against the water collecting trough 3, which support the liquid cooling device, ie the liquid distribution device 14 and the cooling components 12.
  • a cooling tower jacket 2, which houses the fan wheel 8, is provided in the vertical direction 13 above the liquid cooling device.
  • the fan wheel 8 is part of an axial fan 7, which also has a gear arrangement 9, a motor 10 and a shaft 11 coupling the motor 10 to the gear arrangement 9.
  • the gear arrangement 9, together with the fan wheel 8, is supported by a column 4 protruding through the liquid cooling device.
  • the cooling fixtures 12 provided in the vertical direction 13 below the liquid distribution device 14 contain packings of the type according to the invention, the structure of which is derived from the other Figures 2 to 13 results.
  • a pack 20 according to the invention for a heat and / or Mass transfer between liquid and gaseous media in countercurrent, in particular for water cooling by air in a cooling tower 1 Fig. 1 , has a multiplicity of film elements 21 profiled by corrugations 22.
  • Such a film element 21 is shown in a first embodiment in FIG Fig. 2 shown in a side view.
  • the corrugations 22 of the film element 21 provide flow channels 25, as can be seen in particular from the sectional view Fig. 3 reveals.
  • the corrugation 22 of the film element 21 is composed of successive wave crests 23 and wave troughs 24, a wave trough 24 being arranged between two wave crests and a wave crest 23 between two wave troughs 24.
  • the corrugation 22 provides flow channels 25 both on the top side and on the underside of the film element 21.
  • the flow channels 25 run as shown in the view Fig. 2 can be seen in the longitudinal direction 26 of the film element 21, ie in the intended installation in the vertical direction from top to bottom or from bottom to top.
  • the preferred embodiment of the invention according to the Figures 1 to 7 shows a film element 21, accordingly the corrugations 22 provide flow channels 25 running inclined in the longitudinal direction 26, namely flow channels 25 running in a zigzag shape.
  • the film elements 21 provided for forming a pack 20 according to the invention are arranged alternately in the thickness direction 40 - also called the depth direction - as can be seen from the illustration Fig. 8 results, so that the flow channels 25 of adjacent film elements 21 extend with opposite inclination and intersect with one another to form contact points 29.
  • adjacent film elements 21 are connected to one another, for example by gluing and / or welding.
  • the film elements 21 have their large surfaces 30 according to FIG Fig. 5 each has a fine profiling 31.
  • This fine profiling 31, also called micro-corrugation or microstructure, has ribbing 32 running transversely to the flow channels 25 Rib webs 33 and rib grooves 34, as can be seen in particular from the side view Fig. 4 and the sectional view Fig. 5 results.
  • a rib groove 34 is arranged between two adjacent rib webs 33 of the ribbing 32.
  • the transitions between successive rib webs 33 and rib grooves 34 are designed essentially free of radii. To this extent, there is a sharp-edged transition between the rib webs 33 and the rib grooves 34.
  • “essentially” designed without radii means a configuration without transition radii, provided that this is possible in particular from a production point of view. It is therefore important to avoid transition radii between the successive rib webs 33 and rib grooves 34, so that the result is a "sharp-edged" configuration. “Essentially” within the meaning of the invention means in particular that the transition radii are to be designed as small as possible in the context of the use of conventional manufacturing processes. This is because the more “sharp-edged" the rib design, the more clearly the effect of a turbulent flow that is desirable to be achieved occurs in normal operation.
  • the end regions 35 of the film element 21 lying opposite one another in the longitudinal direction 26 are free of fine profiling. This ensures in particular an improved exit of water from the pack 20 according to the invention.
  • This positive effect is further supported according to the invention by the fact that grooves 36 and 37 running obliquely to the longitudinal extension 26 of the film elements 21 are formed in the finely profiled end regions 35 of the film elements 21, like this a synopsis of the Figures 6 and 7 reveals.
  • a film element 21 has two channels 36 and 37 for each flow channel 25, which are aligned with one another in a V-shape. These two channels 36 and 37 open into a common outlet 38 which is oriented in the direction of the longitudinal extension 26 of the film elements 21.
  • FIGS. 8 and 10 show a pack 20 according to the invention which, for the sake of clarity, has only two in the illustrated embodiment Thickness direction 40 has foil elements 21 arranged one behind the other.
  • the pack 20 When used as intended, the pack 20 is shown with reference to the plane of the drawing Fig. 8 charged with air from below, as indicated by the arrows 27. The air flows into the flow channels 25, flows through the pack 20 and leaves it with reference to the plane of the drawing Fig. 8 on top again. In countercurrent to this, the pack 20 is charged with water, specifically with reference to the plane of the drawing Fig. 8 from above in correspondence with the arrows 28. The water trickles through the pack 20 with reference to the plane of the drawing Fig. 8 from top to bottom and leaves the pack 20 with respect to the plane of the drawing Fig. 8 over the lower end region 35.
  • the flow channels 25 of the film elements 21 arranged one behind the other in the thickness direction 40 complement one another to form film pair channels 39, as is shown in particular in the sectional illustration Fig. 10 reveals.
  • the film elements 21 arranged one behind the other in the direction of thickness 40 each provide zigzag running flow channels 25, the flow channels 25 of adjacent film elements 21 extending with opposite inclination and crossing one another to form the contact points 29.
  • the wave peaks 23 and wave troughs 24 of a corrugation 22 of the profile elements 21 adjoin one another in the width direction 41, as is also the case Fig. 11 can be seen.
  • the film elements 21 are equipped with flow channels 25 running in a straight line in the longitudinal direction 26, the flow channels 25 being divided into sections which are offset from one another in the width direction 41.
  • the flow channels 25 are divided into sections which are offset from one another in the width direction 41.
  • the fine profiling 31 of the film elements 21 extends over the entire surface of the large areas 30 with the exception of the end region 35.
  • the alternative Embodiment according to the Figures 12 and 13 shows a fine profiling 31, which is interrupted in the longitudinal direction 26 of the film element 21 by areas 42 without fine profiling. Such a configuration can arise in particular for manufacturing reasons.
  • the fine profiling according to the invention is formed by ribbing 32, as already described above with reference to FIG Fig. 5 described.
  • the ribbing 32 has rib webs 33 and rib grooves 34 following one another in the longitudinal direction 26, each rib web 33 providing a rib web plateau 43.
  • the transitions between successive rib webs 33 and rib grooves 34 are formed essentially without radii.
  • the width of the rib web plateaus 43 that is to say with regard to the extent of the rib web plateaus 43 in the longitudinal direction 26, it is preferred that the transition radii ⁇ 20%, preferably ⁇ 10%, even more preferably ⁇ 5% of the rib web plateau width of the associated rib web 33 are trained.
  • the combination of the flow channels 25 of two adjacent film elements 21 results in a film pair channel 39, as shown in the sectional illustration Fig. 10 in particular reveals.
  • a polygonal, preferably hexagonal configuration of the film pair channel 39 is preferred, as in FIG Fig. 10 shown.
  • a flow channel 25 delimited by three strip elements 44, 45 and 46 is provided for each film element 21.
  • the edge lengths, that is to say the widths of the strip elements 44, 45 and 46 differ from one another.
  • the width of the strip elements 45 and 46 that is, their edge length in relation to the cross section, is the same size and exceeds the width of the first strip section 44 or, in relation to the cross section, its edge length.
  • the edge length S1 of the first strip element 44 and the edge lengths S2 of the second strip element 45 and third strip element 46 are shown in FIG Fig. 10 drawn in as an example.
  • the width or edge ratio S1 / S2 is preferably between 0.3 and 0.4, most preferably 0.35.

Description

  • Die Erfindung betrifft eine Packung für eine Wärme- und/oder Stoffübertragung zwischen flüssigen und gasförmigen Medien im Gegenstrom, insbesondere für die Wasserkühlung durch Luft in Kühltürmen, mit einer Vielzahl von durch Wellungen profilierter Folienelemente, wobei die Wellungen Strömungskanäle bereitstellen und wobei die Folienelemente unter Ausbildung von Berührungspunkten in Dickenrichtung hintereinander angeordnet sind, wobei benachbarte Folienelemente in ihren Berührungspunkten miteinander verbunden sind und wobei die einander zugewandten Großflächen benachbarter Folienelemente eine Feinprofilierung aufweisen.
  • Kühltürme zur Wasserkühlung im Allgemeinen sowie Kühleinbauten für Kühltürme - auch Packungen genannt - im Speziellen sind aus dem Stand der Technik an sich gut bekannt.
  • Kühltürme dienen insbesondere dazu, flüssige Medien, das heißt Fluide wie zum Beispiel Wasser mittels Umgebungsluft abzukühlen. Zu diesem Zweck verfügen vorbekannte Kühltürme über eine Fluidkühleinrichtung, die ihrerseits Kühleinbauten, das heißt sogenannte Packungen, und eine Fluidverteileinrichtung aufweist. Das zu kühlende Fluid wird oberhalb der Packungen mittels der Fluidverteileinrichtung versprüht und rieselt an den Packungen entlang, und zwar der Schwerkraft folgend nach unten. Dabei werden die Packungen vorzugsweise im Gegenstrom zum abzukühlenden Fluid von Luft zum Zwecke der Kühlung durchströmt. Infolge des Kontakts des abzukühlenden Fluids mit der Luft innerhalb der Packungen kommt es zur bestimmungsgemäßen Abkühlung des abzukühlenden Fluids.
  • Um die als Kühlluft dienende Umgebungsluft in vorerläuterter Weise durch den Kühlturm zu führen, ist ein Ventilator vorgesehen, der die Luftströmung durch den Kühlturm und insbesondere durch die Kühleinbauten fördert. Dieser ist typischer Weise in Höhenrichtung des Kühlturms oberhalb der Fluidkühleinrichtung angeordnet. Im bestimmungsgemäßen Betriebsfall saugt der Ventilator von unterhalb der Fluidkühleinrichtung Umgebungsluft an, die als Kühlluft die in Höhenrichtung des Kühlturms unterhalb des Ventilators angeordnete Fluidkühleinrichtung durchströmt. Die vom Ventilator angesaugte Umgebungsluft wird nach einem Durchströmen der Packungen nach oben als erwärmte Umgebungsluft an die Atmosphäre abgegeben.
  • Ein Kühlturm der vorbeschriebenen Bauart ist beispielsweise aus der WO 2009/149954 A1 bekannt.
  • Um einen möglichst effektiven Wärmetausch zwischen den beteiligten Medien zu erreichen, ist aus dem Stand der Technik eine Packungskonstruktion bekannt, wonach eine Vielzahl von durch Wellungen profilierter Folien- oder Plattenelemente vorgesehen ist. Diese Folienelemente sind in Dickenrichtung hintereinander angeordnet, wobei die Wellungen Strömungskanäle bereitstellen. In ihren Berührungspunkten sind benachbarte Folienelemente miteinander verbunden. Desweiteren verfügen die einander zugewandten Großflächen benachbarter Folienelemente über eine Feinprofilierung. Dabei dient diese Feinprofilierung einem noch weiter optimierten Wärmeaustausch.
  • Eine gattungsgemäße Packung ist aus der DE 41 22 369 C1 bekannt.
  • Des Weiteren ist aus der DE 27 22 424 A1 ein Einbauelement für Stoff- und Wärmeaustauschkolonnen bekannt. Das Einbauelement besteht aus parallel zur Kolonnenachse angeordneten, sich berührenden, gefalteten Lamellen aus folienartigem Material. Dabei liegend die Faltungen der Lamellen im Winkel gegen die Kolonnenachse. Die Faltwände der Lamellen sind zusätzlich feingeriffelt und die Lamellen weisen eine Mehrzahl von über ihre Oberfläche verteilter Löcher auf. Dabei ergibt sich die Riffelung durch eine Aufrauhung der Lamellenoberfläche durch Rillen oder Einprägen von Mustern.
  • Aus der DE 27 22 556 A1 ist ein Füllkörper aus folienartigem Material mit Rieselflächen für Kolonnen für Stoff- und Wärmeaustausch bekannt. Dabei ist vorgesehen, dass die Rieselflächen abwechselnd glatte und feingeriffelte Abschnitte aufweisen, wobei sich die einzelnen Abschnitte über eine Höhe von mindestens 5 mm erstrecken.
  • Die DE 39 18 483 A1 betrifft einen Füllkörper für den Wärme- und Stoffaustausch im Gegenstrom. Der Füllkörper weist eine Vielzahl von senkrecht und schräg stehenden, aufeinandergelegten und miteinander verbundenen gewellten oder gefalteten Folien oder Platten auf, die so ausgebildet und/oder aufeinandergelegt und miteinander verbunden sind, dass sich die Wellungen oder Faltungen benachbarter Folien oder Platten kreuzen. Die Wellungen oder Faltungen benachbarter Folien oder Platten kreuzen sich nur im oberen Teil des Füllkörpers, während sie im unteren Teil parallel zueinander verlaufen.
  • Die US 6,578,829 B2 betrifft einen Verpackungsabschnitt, der eine Vielzahl von vertikal ausgerichteten, diagonal kreuzförmig gewellten Verpackungsblechen aufweist. Die Verpackungsbleche definieren eine Abschnittshöhe, wobei der Abschnitt einen Basisbereich, einen Volumenbereich und einen oberen Bereich aufweist. Der Basisbereich weist eine erste bestimmte Geometrie auf, die sich von einer Geometrie des Volumenbereichs unterscheidet. Auch der obere Bereich weist eine bestimmte, zweite Geometrie auf, die sich von der Geometrie des Volumenbereichs ebenfalls unterscheidet ebenso wie von der Geometrie des Basisbereichs.
  • Die EP 0 056 911 B1 betrifft ein Füllteil zu Füllzwecken in einem Wasserkühlturm, der im Grundzustand senkrecht stehende Bleche aus formbarem Material überall mit einem im Allgemeinen zick-zack-förmigen, nach unten weisenden spiralförmigen Muster aufweist. Jedes Blech hat ein Paar gegenüberliegender Seiten, die zur Benetzung durch erwärmtes und über dieselben nach unten strömendes Wasser bestimmt sind. Dabei ist das formbare Material mit horizontalen Rippen, die winklige Vertiefungen bilden ausgerüstet. Zudem ist vorgesehen, dass das Füllteil Wasserkühltaschen an der Sinusbiegung zwischen jeder Rippe aufweist und dass die Taschen der Vertiefungen unter einem Winkel bezüglich der Horizontalen angeordnet sind.
  • Die EP 1 078 684 A1 offenbart eine geordnete Packung für Trennkolonnen, die profilierte Lagen und in diesen angeordnete Kanäle aufweist. Die Kanäle sind schräg zu einer Hauptströmungsrichtung orientiert. Die Lagen sind aus folienartigen und gewebeförmigen Materialstreifen zu einem Profil geformt.
  • Obgleich sich die aus der DE 41 22 369 C1 vorbekannte Konstruktion einer Packung für den Wärme- und Stoffaustausch zwischen flüssigen und gasförmigen Medien im alltäglichen Praxiseinsatz bewährt hat, besteht Verbesserungsbedarf. So ist es insbesondere angestrebt, den Wirkungsgrad noch weiter zu steigern. Und dies vorzugsweise ohne signifikante Mehrkosten für die Herstellung. Es ist deshalb die Aufgabe der Erfindung, eine gattungsgemäße Packung dahingehend weiterzuentwickeln, dass im bestimmungsgemäßen Betriebsfall ein verbesserter Wärme- und Stoffaustausch zwischen den beteiligten Medien erreicht ist.
  • Zur Lösung dieser Aufgabe wird mit der Erfindung eine Packung der eingangs genannten Art vorgeschlagen, die sich dadurch auszeichnet, dass die Feinprofilierung eine quer zu den Strömungskanälen verlaufende Rippung mit Rippenstegen und Rippennuten aufweist, wobei zwischen zwei benachbarten Rippenstegen eine Rippennut angeordnet ist, wobei die Übergänge zwischen aufeinander nachfolgenden Rippenstegen und Rippennuten im Wesentlichen radienfrei ausgebildet sind.
  • Die auf den Großflächen der Folienelemente ausgebildete Feinprofilierung ist erfindungsgemäß als Rippung ausgebildet. Dabei verläuft die Rippung quer zu den Strömungskanälen der Folienelemente. So kann beispielsweise eine Rippung vorgesehen sein, die parallel zu den eingangs- beziehungsweise ausgangsseitigen Randkanten der Folienelemente verläuft.
  • Die Rippung verfügt erfindungsgemäß über Rippenstege einerseits und Rippennuten andererseits, wobei zwischen zwei benachbarten Rippenstegen eine Rippennut angeordnet ist. Es ergibt so eine in Längsrichtung der Folienelemente abwechselnde Anordnung von Rippenstegen und Rippennuten.
  • Die Übergänge zwischen in Längsrichtung der Folienelemente bzw. in Querrichtung der Rippung aufeinander nachfolgenden Rippenstegen und Rippennuten sind erfindungsgemäß im Wesentlichen radienfrei ausgebildet. Dabei meint "im Wesentlichen" eine Ausgestaltung ohne Übergangsradien, sofern insbesondere produktionstechnisch möglich. Es kommt mithin erfindungsgemäß darauf an, Übergangsradien zwischen den aufeinander nachfolgenden Rippenstegen und Rippennuten zu vermeiden, so dass sich im Ergebnis eine "scharfkantige" Ausgestaltung einstellt.
  • Untersuchungen der Anmelderin haben gezeigt, dass sich infolge der radienfreien Ausgestaltung der Übergänge zwischen aufeinander nachfolgenden Rippenstegen und Rippennuten ein verbesserter Wirkungsgrad einstellt. Dieser verbesserte Wirkungsgrad ist dadurch zu erklären, dass sich im Betriebsfall auf den senkrecht ausgerichteten Großflächen der Folienelemente ein Fluidfilm ausbildet, der der Schwerkraft folgend entlang der Großflächen strömt. Die quer hierzu verlaufende Rippung der Feinprofilierung sorgt aufgrund der scharfkantigen Ausgestaltung der Rippenstege und -nuten dafür, dass es jeweils in den Bereichen der Übergänge zwischen aufeinander nachfolgenden Rippenstegen und Rippennuten zu turbulenten Strömungsverhältnissen kommt. Diese turbulenten Strömungsverhältnisse sorgen für einen besseren Wärme- und Stoffaustausch zwischen dem abzukühlenden Fluid, beispielsweise Wasser, und dem im Gegenstrom hierzu durch die Packung geführten gasförmigen Medium, wie zum Beispiel der Umgebungsluft. Im Ergebnis kann so eine weiter optimierte Wirkungsweise der erfindungsgemäßen Packung erreicht werden.
  • Die bewusste Ausgestaltung von Übergangsradien zwischen Rippenstegen und Rippennuten ist nach dem Stand der Technik deshalb vorgesehen, um die zumeist aus einem Kunststoffmaterial gebildeten Folienelemente einem Formwerkzeug besser entnehmen zu können. Es wurde dabei nicht erkannt, dass Übergangsradien den sich positiv auf den Wirkungsgrad einer Packung auswirkenden Barriereeffekt der Feinprofilierung minieren und so die Ausbildung einer laminaren Strömung begünstigen. Die nach der Erfindung nunmehr in Abkehr zum Stand der Technik vorgesehene Scharfkantigkeit sowohl der Rippenstege als auch der Rippennuten schafft hier Abhilfe, da sich infolge dieser konstruktiven Ausgestaltung im Betriebsfall turbulente Strömungsverhältnisse ausbilden, die eine verbesserte Durchmischung der beiden beteiligten Medien bewirkt, was im Ergebnis zu einem gesteigerten Wärmeaustausch führt. Ein Nachteil der nach der Erfindung vorgesehenen scharfkantigen Ausgestaltung der Übergänge zwischen Rippenstegen und Rippennuten besteht indes darin, dass sich der gasseitige, d.h. luftseitige Druckverlust erhöht. Hierdurch ergibt sich ein vergrößerter energetischer Aufwand für den Ventilator zur Förderung der die Packung durchströmenden Kühlluft. Dieser Nachteil wird aber bewusst in Kauf genommen. Denn in Summe wird mit der erfindungsgemäßen Konstruktion ein insgesamt erhöhter Gesamtwirkungsgrad erzielt. Dies hat bedeutende Vorteile für den Betrieb entsprechender Anlagen in den verschiedensten Industriezweigen in Form kleinerer und damit kostengünstigerer Anlagen sowie insgesamt geringerer Gesamtbetriebskosten.
  • Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, dass die Wellungen in Längsrichtung der Folienelemente geneigt verlaufende Strömungskanäle bereitstellen, vorzugsweise zick-zack-förmig verlaufende Strömungskanäle, wobei die Folienelemente in Dickenrichtung alternierend angeordnet sind, so dass sich die Strömungskanäle benachbarter Folienelemente mit entgegengesetzter Neigung erstrecken und sich unter Ausbildung der Berührungspunkte kreuzen.
  • Gemäß dieser Ausführungsform der Erfindung sind die Strömungskanäle nicht geradlinig in Längsrichtung der Folienelemente, sondern geneigt hierzu ausgerichtet. Dabei ist eine zick-zack-förmige Ausgestaltung bevorzugt. Die Neigung der Strömungskanäle zur Senkrechten erbringt den positiven Effekt, dass sich ein mit Bezug auf die Höhenerstreckung der erfindungsgemäßen Packung verlängerter Strömungsweg ergibt, was einen verbesserten Wärmeaustausch erbringt.
  • Als Bezugsgröße für die Ausgestaltung der Übergangsradien kann die Breite eines Rippenstegs dienen, insbesondere die Breite des einen Rippensteg oberseitig abschließenden Plateaus. Es wird deshalb gemäß einem weiteren Merkmal der Erfindung vorgeschlagen, dass die Übergangsradien < 20%, vorzugsweise < 10%, noch mehr bevorzugt < 5% der Rippenstegplateaubreite des zugehörigen Rippenstegs ausgebildet sind. Wenn also die Rippenstegplateaubreite beispielsweise 5 mm misst, so ergibt sich ein Übergangsradius von vorzugsweise < 0,5 mm, noch mehr bevorzugt von < 0,25 mm.
  • Je kleiner die Übergangsradien gewählt werden, desto langsamer kann die Entformungsgeschwindigkeit bei der Entformung eines Folienelements aus dem Formwerkzeug während der Herstellung ausfallen. Dieser Nachteil wird mit der erfindungsgemäßen Ausgestaltung bewusst in Kauf genommen, da der spätere Wirkungsgrad des so ausgebildeten Folienelements gegenüber dem Stand der Technik deutlich verbesserst ist. Aus fertigungstechnischen Gründen wird ein Übergangsradius von Null nicht zu erreichen sein. "Im Wesentlichen" im Sinne der Erfindung meint deshalb, dass die Übergangsradien im Rahmen der Anwendung üblicher Fertigungsprozesse so klein wie möglich auszugestalten sind. Denn je "scharfkantiger" die Rippungsausgestaltung ausfällt, desto deutlicher stellt sich der Effekt einer turbulenten Strömung im bestimmungsgemäßen Betriebsfall ein.
  • Es ist gemäß einem weiteren Merkmal der Erfindung vorgesehen, dass eine Rippennut eine Nuttiefe von 2,0 mm bis 3,0 mm, vorzugsweise von 2,2 mm bis 2,8 mm, noch mehr bevorzugt von 2,4 mm bis 2,6 mm, am meisten bevorzugt von 2,5 mm aufweist. Wie Untersuchungen der Anmelderin gezeigt haben, erzielt eine Nuttiefe im angegebenen Bereich einen optimierten Wirkungsgrad. Fällt die Nuttiefe deutlich kleiner oder deutlich größer aus, so stellen sich im bestimmungsgemäßen Betriebsfall Strömungseffekte an den Rippenstegen und/oder den Rippennuten ein, die einem effektiven Wärme- und/oder Stoffaustausch zwischen den beteiligten Medien entgegenstehen. Hinzu kommt in diesem Zusammenhang, dass bei einer zu groß ausgebildeten Nuttiefe der Druckverlust innerhalb der durch den Ventilator durch die Packung hindurchgesogenen Luft deutlich ansteigt, was durch eine höhere Ventilatorleistung auszugleichen ist, was sich auf die Gesamtenergiebetrachtung negativ auswirkt. Es wird insofern mit einer Nuttiefe im erfindungsgemäßen Größenbereich ein synergetischer Effekt dahingehend erzielt, dass einerseits eine für einen verbesserten Wärme- und/oder Stoffaustausch erforderliche turbulente Strömung erreicht ist und dass andererseits der sich infolge des Durchströmens der Packung mit Umgebungsluft einstellende Druckverlust minimiert ist.
    Es ist gemäß einem weiteren Merkmal der Erfindung vorgesehen, dass eine Rippennut eine Nutbreite von 4,0 mm bis 6,0 mm, vorzugsweise von 5,0 mm aufweist. Besonders bevorzugt ist indes ein Verhältnis von Nuttiefe zu Nutbreite von 0,6 bis 0,4, vorzugsweise von 0,5. Wenn also die Nuttiefe beispielsweise 2,5 mm beträgt, so ist die Nutbreite mit 5 mm zu wählen.
  • Es ist aus den vorgenannten Gründen deshalb auch bevorzugt, die einander zugewandten Großoberflächen der Folienelemente möglichst flächendeckend mit einer Feinprofilierung im erfindungsgemäßen Sinne auszurüsten. Es sind bevorzugterweise lediglich einige Bereiche der Großoberflächen der Folienelemente auszusparen, wie beispielsweise die eingangs- und ausgangsseitigen Endbereiche der Folienelemente.
  • Zur weiteren Reduzierung des sich einstellenden luftseitigen Druckverlustes kann gemäß einem weiteren Merkmal der Erfindung vorgesehen sein, dass die Neigung der Strömungskanäle zur Senkrechten im endmontierten Zustand < 22° beträgt, vorzugsweise zwischen 19° und 15°, noch mehr bevorzugt 17°. Die Neigung der Strömungskanäle zur Senkrechten erbringt den positiven Effekt einer Verlängerung des insgesamt zurückzulegenden Strömungswegs, was ebenfalls eine verbesserte Wärme- und/oder Stoffübertragung erbringt. Je größer indes die Neigung zur Senkrechten ausfällt, desto größer ist der sich im Betriebsfall in der Luftströmung einstellende Druckverlust. Dies führt in schon vorbeschriebener Weise zu einer zwangsläufig notwendigen Steigerung der Ventilatorleistung, was sich auf die Gesamtenergiebilanz negativ auswirkt. Zur Leistungsminimierung ist es dem Grunde nach angestrebt, die Strömungskanäle parallel in Längsrichtung verlaufen zu lassen, was dann aber wieder zu einem verschlechterten Wärme- und/oder Stoffaustausch aufgrund des verkürzten Strömungsweges führt. Diese an sich wiederstreitenden Interessen in einen optimierten Ausgleich zueinander zu bringen, ermöglicht die erfindungsgemäße Feinprofilierung. Denn durch diese wird ein gesteigerter Wärme- und/oder Stoffaustausch ermöglicht, so dass es zur Minimierung des Druckverlustes in der Kühlluft möglich ist, den Neigungswinkel der Strömungskanäle zur Senkrechten kleiner als üblich auszubilden, nämlich kleiner als 20°. Dies war vor dem Hintergrund des vorbekannten Standes der Technik nicht zu erwarten.
  • Als Nuttiefe im Sinne der Erfindung gilt vorzugsweise die über die Nutbreite gemittelte Nuttiefe. Alternativ hierzu kann auch die Nuttiefe mit Bezug auf die Nutbreite in der Mitte der Nut als Bezugsgröße dienen.
  • Es ist gemäß einem weiteren Merkmal der Erfindung vorgesehen, dass die in Längsrichtung einander gegenüberliegenden Endbereiche eines Folienelements feinprofilierungsfrei ausgebildet sind.
  • Es ist insbesondere hinsichtlich des im bestimmungsgemäßen Verwendungsfall flüssigkeitseingangsseitig vorgesehenen Rand- bzw. Endbereichs der Packung bevorzugt, diesen feinprofilierungsfrei auszubilden. Dies deshalb, damit eine optimierte Verteilung des von der oberhalb der Packung angeordneten Flüssigkeitsverteileinrichtung abgegebenen Flüssigkeit auf die einzelnen Strömungskanäle der Packung stattfinden kann. Es wird so eine vergleichmäßigte Flüssigkeitbeaufschlagung sämtlicher Strömungskanäle erreicht. Eine solch gleichmäßige Flüssigkeitsverteilung kann noch durch die Bereitstellung entsprechender Düsen der Flüssigkeitsverteileinrichtung unterstützt werden.
  • Gemäß einem weiteren Merkmal der Erfindung ist vorgesehen, dass in den feinprofilierungsfreien Endbereichen der Folienelemente schräg zur Längserstreckung der Folienelemente verlaufende Rinnen ausgebildet sind. Diese Rinnen sind bevorzugterweise flüssigkeitseingangsseitig und flüssigkeitsausgangsseitig der Packung in den Folienelementen ausgebildet. Sie dienen insbesondere dazu, die Flüssigkeit aus der Packung nach einer Durchströmung derselben in verbesserter Weise ausströmen und abtropfen zu lassen. Im Ergebnis dieser Maßnahme wird auch ein reduzierter gas- bzw. luftseitiger Druckverlust erreicht. Dabei ist in diesem Zusammenhang besonders bevorzugt, dass je Strömungskanal zwei Rinnen vorgesehen sind, die V-förmig zueinander ausgerichtet sind. Der sich so im bestimmungsgemäßen Verwendungsfall an den Innenseitenwänden der Strömungskanäle ausbildende Flüssigkeitsfilm kann so ausgangsseitig besser abströmen, ohne dass sich aufstauende Flüssigkeitswellen bilden, die der entgegenströmenden Luft einen erhöhten Widerstand entgegensetzen würden, so wie dies beim Stand der Technik der Fall ist. Dieser verbesserte Abströmbeziehungsweise Abtropfeffekt kann auch dadurch unterstützt werden, dass die beiden Rinnen in einen gemeinsamen Auslauf einmünden, der in Richtung der Längserstreckung der Folienelemente ausgerichtet ist. Es ergeben sich so ausgangsseitig der Strömungskanäle Δ-ähnliche Strukturen, was einem verbesserten Ausströmen der auf die Packung aufgegebenen Flüssigkeit erbringt.
  • Es ist gemäß einem weiteren Merkmal der Erfindung vorgesehen, dass die einander zugewandten Strömungskanäle benachbarter Folienelemente einen Folien- oder Plattenpaarkanal bilden, der eingangs- und ausgangsseitig jeweils einen 6-eckigen Kanalquerschnitt aufweist.
  • Die einander zugewandten Strömungskanäle benachbarter Folienelemente bilden im endmontierten Zustand der Folienelemente einen Folienpaarkanal aus. Insoweit stellt jedes Folienelement einen einseitig offenen Strömungskanal bereit. Im endmontierten Zustand der Packung wirken diese Strömungskanäle der einzelnen Folienelemente unter jeweiliger Ausbildung eines Folienpaarkanals zusammen. Eingangs- und ausgangsseitig haben die Folienpaarkanäle vorzugsweise einen Kanalquerschnitt, der polygonal, bevorzugterweise 6-eckig ausgestaltet ist. Das Teilungsmaß, das heißt die Höhe eines jeden Strömungskanals in der Ausformungstiefe des Folienelements beträgt vorzugsweise 12 mm, 20 mm oder 30 mm. Damit ergibt sich eingangs- beziehungsweise ausgangsseitig der Packung eine Kanalbreite für einen Folienpaarkanal von 24 mm, 40 mm oder 60 mm, bezogen auf die Folienabstände bzw. Folienteilung. Da benachbarte Folienelemente an ihren Berührungspunkten einander liegen und dort bevorzugter Weise miteinander verbunden sind, entstehen eingangsseitig bzw. ausgangsseitig zunächst weite Kanäle von 24 mm, 40 mm oder 60 mm, welche Kanäle dann im weiteren Verlauf aufgrund der geneigten Schräganordnung auf die gegenüberliegenden Kanäle der benachbarten Nebenfolie treffen, so dass sich an den engsten Stellen der Kanäle eine Kanalweite von 12 mm, 20 mm oder 30 mm einstellt. Dieser Wert bestimmt im Wesentlichen den Materialaufwand und ist entscheidend für das Verhalten der erfindungsgemäßen Packung im bestimmungsgemäßen Verwendungsfall. Denn je kleiner der Abstand ist, desto dichter wird die Packung. Je höher aber die Leistungsdichte der Packung durch diese Maßnahme ist, desto stärker verschmutzt diese im Langzeitbetrieb, d.h. das sogenannte Fouling-Verhalten verschlechtert sich. Insofern ist eine sorgfältige Auswahl und Vorgabe dieser Parameter unter Berücksichtigung der am Betriebsstandort herrschenden Betriebsverhältnisse erforderlich.
  • Die Wellungen der Folienelemente weisen eingangs- bzw. ausgangsseitig einen polygonalen Kanalquerschnitt auf, vorzugsweise einen 6-eckigen Querschnitt, dessen Kantenlängen bevorzugterweise unterschiedlich lang sind. Es ist in diesem Zusammenhang bevorzugt, dass die Wellungen der Folienelemente einen in Längsrichtung der Folienelemente verlaufenden ersten Streifenabschnitt sowie daran entlang seiner jeweiligen Längskanten angeordnet einen zweiten und einen dritten Längsstreifen aufweisen, wobei der zweite und der dritte Streifenabschnitt zum ersten Streifenabschnitt geneigt ausgerichtet sind. Dabei sind der zweite und der dritte Streifenabschnitt gleich breit ausgebildet und weisen jeweils eine Breite auf, die die Breite des ersten Streifenabschnitts übersteigt. Je kleiner also die kurze Kantenlänge ist, d.h. je kleiner die Breite des ersten Streifenabschnitts ausfällt, desto mehr nähert sich der bevorzugterweise 6-eckförmig ausgebildete Kanalquerschnitt eines Folienpaarkanals einer 4-eckförmigen Ausgestaltung an. Untersuchungen der Anmelderin haben gezeigt, dass das bevorzugte Verhältnis von kurzer zu langer 6-Eck-Seitenlänge, d.h. das Breitenverhältnis von erstem Streifenabschnitt und zweitem Streifenabschnitt bzw. drittem Streifenabschnitt zwischen 0,3 und 0,4, vorzugsweise 0,35 beträgt. Es stellt sich so eine für einen optimierten Wärme- und Stoffübergang günstige, d.h. möglichst gleichmäßige Dicke des sich auf den Oberflächen der Strömungskanäle ausbildenden Flüssigkeitsfilms ein.
  • Die Breite des ersten Streifenabschnitts bzw. die kurze Kantenlänge des Kanalquerschnitts ist teilungsabhängig, beträgt aber mindestens 5 mm. Bei einer beispielsweise 20er-Teilung beträgt die Kantenlänge zwischen 8 mm bis 12 mm, vorzugsweise 10 mm. Liegt die kurze Kantenlänge, d.h. die Breite des ersten Streifenabschnitts deutlich unterhalb dieser Werteparameter, entsteht ein vergleichsweise enger Flüssigkeitskanal, was im Betriebsfall zu einer Flüssigkeitssammlung in diesem Kanal führen kann und was die Gesamteffektivität der erfindungsgemäßen Packung reduziert.
  • Weitere Untersuchungen der Anmelderin haben ergeben, dass die erfindungsgemäßen Maßnahmen eine Steigerung des Wirkungsgrads der Packung gegenüber der vorbekannter Bauformen von bis zu 8%, gegebenenfalls 10% erbringen können. Des Weiteren hat sich gezeigt, dass mit der erfindungsgemäßen Packung erhebliche Einsparungen hinsichtlich Einbauhöhe und resultierendem Einbauvolumen gegenüber bekannten Bauformen erreicht werden können. Diese betragen je nach Auslegung des Kühlturms zwischen 20% und 30%, was zu signifikanten Kostenreduzierungen beim Bau von Kühltürmen oder bei deren Neuausrüstung mit erfindungsgemäßen Packungen führt.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung anhand der Figuren. Diese zeigen
  • Fig. 1
    in schematischer Seitenansicht ein Kühlturm nach dem Stand der Technik;
    Fig. 2
    in schematischer Seitenansicht ein Folienelement einer erfindungsgemäßen Packung gemäß einer ersten Ausführungsform;
    Fig. 3
    in geschnittener Ansicht das Folienelement nach Fig. 2 gemäß Schnittlinie B-B nach Fig. 2;
    Fig. 4
    in einer stirnseitigen Ansicht das Folienelement nach Fig. 2;
    Fig. 5
    in einer Schnittdarstellung das Folienelement nach Fig. 2 gemäß Schnittlinie A-A nach Fig. 2;
    Fig. 6
    in schematisch perspektivischer Darstellung ausschnittsweise den austrittsseitigen Endabschnitt des Folienelementes nach Fig. 2;
    Fig. 7
    in einer schematischen Perspektivansicht den ausgangsseitigen Endabschnitt nach Fig. 6;
    Fig. 8
    in schematischer Ansicht eine erfindungsgemäße Packung;
    Fig. 9
    in einer Stirnansicht die Packung nach Fig. 8;
    Fig. 10
    in schematischer Schnittdarstellung die Packung nach Fig. 8 gemäß Schnittlinie AA nach Fig. 8;
    Fig. 11
    in schematisch perspektivischer Darstellung die erfindungsgemäße Packung nach Fig. 8;
    Fig. 12
    in schematischer Ansicht ein Folienelement einer erfindungsgemäßen Packung gemäß einer zweiten Ausführungsform und
    Fig. 13
    in schematischer Schnittdarstellung das Folienelement nach Fig. 12 gemäß Schnittlinie A-A nach Fig. 12.
  • Fig. 1 zeigt einen Kühlturm 1, wie er aus dem Stand der Technik beispielsweise nach der WO 2009/149954 A1 bekannt ist.
  • Der Kühlturm 1 verfügt über eine Flüssigkeitskühleinrichtung, die ihrerseits eine Flüssigkeitsverteileinrichtung 14 einerseits und Kühleinbauten 12 andererseits aufweist. Dabei ist die Flüssigkeitsverteileinrichtung 14 in Höhenrichtung 13 oberhalb der Kühleinbauten 12 angeordnet.
  • Die Flüssigkeitsverteileinrichtung 14 verfügt über eine Mehrzahl von Verteilerrohren 15, die an ein gemeinsames Zulaufrohr 5 flüssigkeitsseitig angeschlossen sind. Die Verteilerrohre 15 der Flüssigkeitsverteileinrichtung 14 sind kühleinbautenseitig mit Düsen 16 ausgerüstet, die im Betriebsfall die der Flüssigkeitsverteileinrichtung 14 aufgegebene Flüssigkeit, beispielsweise Wasser, in Richtung der Pfeile 17 auf die Kühleinbauten 12 verteilen.
  • Durch den Kühlturm 1 wird im bestimmungsgemäßen Betriebsfall mittels eines saugend angeordneten Ventilatorrades 8 als Kühlmedium Umgebungsluft in Entsprechung der Pfeile 18 und 19 mit Bezug auf die Zeichnungsebene nach Fig. 1 von unten nach oben geführt. Im Zuge des Hindurchführens der Umgebungsluft durch den Kühlturm 1 hindurch passiert die Luft die Kühleinbauten 12, die im gezeigten Ausführungsbeispiel dreilagig ausgebildet sind.
  • Die mittels des Kühlturms 1 abzukühlende Flüssigkeit, beispielsweise Wasser, wird über das Zulaufrohr 5 in die Flüssigkeitsverteileinrichtung 14 eingeleitet. Hier gelangt es zu den Verteilerrohren 15, die zum Zwecke der Flüssigkeitsabgabe mit vorzugsweise tangential angesetzten Vollkegeldüsen 16 ausgerüstet sind. Der Abstand zwischen den Austrittsöffnungen der Düsen 16 und der oberen Kante der Kühleinbauten 12 bestimmt die Sprühhöhe, welche beispielsweise 600 mm beträgt.
  • Das gleichmäßig über die Kühleinbauten 12 mittels der Flüssigkeitsverteileinrichtung 14 verteilte Wasser durchrieselt die Kühleinbauten 12 im Gegenstrom zur von unten nach oben geförderten Kühlluft.
  • Das nach einem Durchrieseln der Kühleinbauten 12 abgekühlte Wasser tropft aus den Kühleinbauten 12 ab und wird in der Wassersammelwanne 3 aufgefangen.
  • Wie sich aus der Darstellung nach Fig. 1 ferner ergibt, sind zur Abstützung der Flüssigkeitskühleinrichtung gegenüber der Wassersammelwanne 3 Stützstreben 6 vorgesehen, die die Flüssigkeitskühleinrichtung, d.h. die Flüssigkeitsverteileinrichtung 14 sowie die Kühleinbauten 12 tragen.
  • In Höhenrichtung 13 oberhalb der Flüssigkeitskühleinrichtung ist ein Kühlturmmantel 2 vorgesehen, der das Ventilatorrad 8 beherbergt. Das Ventilatorrad 8 ist Teil eines Axialventilators 7, der des Weiteren eine Getriebeanordnung 9, einen Motor 10 sowie eine den Motor 10 mit der Getriebeanordnung 9 koppelnde Welle 11 aufweist. Dabei ist die Getriebeanordnung 9 nebst Ventilatorrad 8 von einer die Flüssigkeitskühleinrichtung durchragenden Säule 4 getragen.
  • Die in Höhenrichtung 13 unterhalb der Flüssigkeitsverteileinrichtung 14 vorgesehenen Kühleinbauten 12 beinhalten Packungen der erfindungsgemäßen Art, deren Aufbau sich aus den weiteren Figuren 2 bis 13 ergibt.
  • Eine erfindungsgemäße Packung 20 (vgl. Fig. 8 und Fig. 11) für eine Wärme- und/oder Stoffübertragung zwischen flüssigen und gasförmigen Medien im Gegenstrom, insbesondere für die Wasserkühlung durch Luft in einem Kühlturm 1 nach Fig. 1, verfügt über eine Vielzahl von durch Wellungen 22 profilierter Folienelemente 21. Ein solches Folienelement 21 ist gemäß einer ersten Ausführungsform in Fig. 2 in einer Seitenansicht dargestellt.
  • Die Wellungen 22 des Folienelementes 21 stellen Strömungskanäle 25 bereit, wie sich dies insbesondere aus der geschnittenen Ansicht nach Fig. 3 erkennen lässt. Wie sich aus dieser Darstellung ergibt, setzt sich die Wellung 22 des Folienelementes 21 aus aufeinander nachfolgenden Wellenbergen 23 und Wellentälern 24 zusammen, wobei zwischen zwei Wellenbergen ein Wellental 24 bzw. zwischen zwei Wellentälern 24 ein Wellenberg 23 angeordnet ist. Mit Bezug auf die Zeichnungsebene nach Fig. 3 stellt die Wellung 22 sowohl oberseitig als auch unterseitig des Folienelementes 21 Strömungskanäle 25 bereit.
  • Die Strömungskanäle 25 verlaufen, wie dies die Ansicht nach Fig. 2 erkennen lässt, in Längsrichtung 26 des Folienelementes 21, d.h. im bestimmungsgemäßen Einbaufall in Höhenrichtung von oben nach unten bzw. von unten nach oben.
  • Die bevorzugte Ausführungsform der Erfindung nach den Figuren 1 bis 7 zeigt ein Folienelement 21, demgemäß die Wellungen 22 in Längsrichtung 26 geneigt verlaufende Strömungskanäle 25 bereitstellen, nämlich zick-zack-förmig verlaufende Strömungskanäle 25. Dies ergibt sich insbesondere aus der Darstellung nach Fig. 2. Dabei sind die zur Ausbildung einer erfindungsgemäßen Packung 20 vorgesehene Folienelemente 21 in Dickenrichtung 40 - auch Tiefenrichtung genannt - alternierend angeordnet, wie sich dies aus der Darstellung nach Fig. 8 ergibt, so dass sich die Strömungskanäle 25 benachbarter Folienelemente 21 mit entgegengesetzter Neigung erstrecken und sich unter Ausbildung von Berührungspunkten 29 miteinander kreuzen. In den Berührungspunkten 29 sind benachbarte Folienelemente 21 miteinander verbunden, beispielsweise durch Kleben und/oder Verschweißen.
  • Die Folienelemente 21 weisen auf ihren Großflächen 30 gemäß Fig. 5 jeweils eine Feinprofilierung 31 auf. Diese Feinprofilierung 31, auch Mikrowellung oder Mikrostruktur genannt, weist eine quer zu den Strömungskanälen 25 verlaufende Rippung 32 mit Rippenstegen 33 und Rippennuten 34 auf, wie sich dies insbesondere aus der Seitenansicht nach Fig. 4 und der Schnittdarstellung nach Fig. 5 ergibt.
  • Wie dies insbesondere die Schnittdarstellung nach Fig. 5 erkennen lässt, ist zwischen zwei benachbarten Rippenstegen 33 der Rippung 32 eine Rippennut 34 angeordnet. Dabei sind erfindungsgemäß die Übergänge zwischen aufeinander nachfolgenden Rippenstegen 33 und Rippennuten 34 im Wesentlichen radienfrei ausgebildet. Es ist insofern ein scharfkantiger Übergang zwischen den Rippenstegen 33 und den Rippennuten 34 gegeben.
  • "Im Wesentlichen" radienfrei ausgebildet im Sinne der Erfindung meint eine Ausgestaltung ohne Übergangsradien, sofern dies insbesondere produktionstechnisch möglich ist. Es kommt mithin darauf an, Übergangsradien zwischen den aufeinander nachfolgenden Rippenstegen 33 und Rippennuten 34 zu vermeiden, so dass sich im Ergebnis eine "scharfkantige" Ausgestaltung einstellt. "Im Wesentlichen" im Sinne der Erfindung meint insofern insbesondere, dass die Übergangsradien im Rahmen der Anwendung üblicher Fertigungsprozesse so klein wie möglich auszugestalten sind. Denn je "scharfkantiger" die Rippengestaltung ausfällt, desto deutlicher stellt sich der wünschenswerterweise zu erzielende Effekt einer turbulenten Strömung im bestimmungsgemäßen Betriebsfall ein.
  • Wie dies beispielsweise die Figuren 2 und 4 erkennen lassen, sind die in Längsrichtung 26 einander gegenüberliegende Endbereiche 35 des Folienelements 21 feinprofilierungsfrei ausgebildet. Dies gewährleistet insbesondere einen verbesserten ausgangsseitigen Austritt von Wasser aus der erfindungsgemäßen Packung 20. Dieser positive Effekt wird erfindungsgemäß dadurch noch unterstützt, dass in den feinprofilierungsfreien Endbereichen 35 der Folienelemente 21 schräg zur Längserstreckung 26 der Folienelemente 21 verlaufende Rinnen 36 und 37 ausgebildet sind, wie dies eine Zusammenschau der Figuren 6 und 7 erkennen lässt. Dabei weist ein Folienelement 21 je Strömungskanal 25 zwei Rinnen 36 und 37 auf, die V-förmig zueinander ausgerichtet sind. Diese beiden Rinnen 36 und 37 münden in einen gemeinsamen Auslauf 38 ein, der in Richtung der Längserstreckung 26 der Folienelemente 21 ausgerichtet ist.
  • Die Figuren 8 und 10 lassen eine erfindungsgemäße Packung 20 erkennen, die der besseren Übersicht wegen im gezeigten Ausführungsbeispiel über nur zwei in Dickenrichtung 40 hintereinander angeordnete Folienelemente 21 verfügt.
  • Im bestimmungsgemäßen Verwendungsfall wird die Packung 20 mit Bezug auf die Zeichnungsebene nach Fig. 8 von unten mit Luft beschickt, wie dies die Pfeile 27 erkennen lassen. Die Luft strömt in die Strömungskanäle 25 ein, durchströmt die Packung 20 und verlässt diese mit Bezug auf die Zeichnungsebene nach Fig. 8 oberseitig wieder. Im Gegenstrom hierzu wird die Packung 20 mit Wasser beschickt, und zwar mit Bezug auf die Zeichnungsebene nach Fig. 8 von oben in Entsprechung der Pfeile 28. Das Wasser durchrieselt die Packung 20 mit Bezug auf die Zeichnungsebene nach Fig. 8 von oben nach unten und verlässt die Packung 20 mit Bezug auf die Zeichnungsebene nach Fig. 8 über den unteren Endbereich 35.
  • Die Strömungskanäle 25 der in Dickenrichtung 40 hintereinander angeordneten Folienelemente 21 ergänzen sich zu Folienpaarkanälen 39, wie dies insbesondere die Schnittdarstellung nach Fig. 10 erkennen lässt.
  • Fig. 11 ist anschaulich zu entnehmen, dass die in Dickenrichtung 40 hintereinander angeordneten Folienelemente 21 jeweils zick-zack-förmig verlaufende Strömungskanäle 25 bereitstellen, wobei sich die Strömungskanäle 25 benachbarter Folienelemente 21 mit entgegengesetzter Neigung erstrecken und sich unter Ausbildung der Berührungspunkte 29 miteinander kreuzen. Dabei schließen sich die Wellenberge 23 und Wellentäler 24 einer Wellung 22 der Profilelemente 21 in Breitenrichtung 41 aneinander an, wie dies ebenfalls gut aus Fig. 11 ersichtlich ist.
  • Gemäß einer zweiten Ausführungsform der Erfindung, die in den Figuren 12 und 13 dargestellt ist, sind die Folienelemente 21 mit in Längsrichtung 26 gradlinig verlaufenden Strömungskanälen 25 ausgerüstet, wobei die Strömungskanäle 25 in Abschnitte unterteilt sind, die in Breitenrichtung 41 zueinander versetzt sind. Im Unterschied zur bevorzugten Ausführungsform nach den vorstehenden Figuren 2 bis 11 ist also keine zick-zack-förmige Ausgestaltung der Strömungskanäle 25 vorgesehen.
  • Gemäß der bevorzugten Ausführungsform nach den Figuren 2 bis 11 ist zudem vorgesehen, dass sich die Feinprofilierung 31 der Folienelemente 21 mit Ausnahme der Endbereich 35 über die gesamte Oberfläche der Großflächen 30 erstreckt. Die alternative Ausführungsform nach den Figuren 12 und 13 zeigt eine Feinprofilierung 31, die in Längsrichtung 26 des Folienelements 21 durch Bereiche 42 ohne Feinprofilierung unterbrochen ist. Eine solche Ausgestaltung kann sich insbesondere aus fertigungstechnischen Gründen ergeben.
  • Die erfindungsgemäße Feinprofilierung ist durch eine Rippung 32 ausgebildet, wie schon vorstehend anhand von Fig. 5 beschrieben. Die Rippung 32 verfügt über in Längsrichtung 26 aufeinander nachfolgende Rippenstege 33 und Rippennuten 34, wobei jeder Rippensteg 33 ein Rippenstegplateau 43 bereitstellt. Erfindungsgemäß ist vorgesehen, dass die Übergänge zwischen aufeinander nachfolgenden Rippenstegen 33 und Rippennuten 34 im Wesentlichen radienfrei ausgebildet sind. Mit Bezug auf die Breite der Rippenstegplateaus 43, das heißt mit Bezug auf die Erstreckung der Rippenstegplateaus 43 in Längsrichtung 26 ist es bevorzugt, dass die Übergangsradien <20%, vorzugsweise <10%, noch mehr bevorzugt <5% der Rippenstegplateaubreite des zugehörigen Rippenstegs 33 ausgebildet sind.
  • In Kombination der Strömungskanäle 25 zweier benachbarter Folienelemente 21 ergibt sich ein Folienpaarkanal 39, wie dies die Schnittdarstellung nach Fig. 10 im Besonderen erkennen lässt. Dabei ist eine polygonale, vorzugsweise sechseckförmige Ausgestaltung des Folienpaarkanals 39 bevorzugt, wie in Fig. 10 dargestellt.
  • Zwecks Ausgestaltung des im Querschnitt sechseckförmigen Folienpaarkanals 39 wird je Folienelement 21 ein durch drei Streifenelemente 44, 45 und 46 begrenzter Strömungskanal 25 bereitgestellt. Dabei unterscheiden sich die Kantenlängen, das heißt die Breiten der Streifenelemente 44, 45 und 46 voneinander.
  • Die Streifenelemente 45 und 46 sind in ihrer Breite, das heißt bezogen auf den Querschnitt in ihrer Kantenlänge gleich groß ausgebildet und übersteigen die Breite des ersten Streifenabschnitts 44 beziehungsweise mit Bezug auf den Querschnitt dessen Kantenlänge. Die Kantenlänge S1 des ersten Streifenelements 44 und die Kantenlängen S2 von zweitem Streifenelemente 45 und drittem Streifenelement 46 ist in Fig. 10 beispielhaft eingezeichnet. Dabei beträgt das Breiten- beziehungsweise Kantenverhältnis S1/S2 bevorzugterweise zwischen 0,3 und 0,4, am meisten bevorzugt 0,35. Bezugszeichen
    1 Kühlturm 24 Wellental
    2 Kühlturmmantel 25 Strömungskanal
    3 Wassersammelwanne 26 Längsrichtung
    4 Säule 27 Luft
    5 Zulaufrohr 28 Wasser
    6 Stützstrebe 29 Berührungspunkt
    7 Axialventilator 30 Großfläche
    8 Ventilatorrad 31 Feinprofilierung
    9 Getriebeanordnung 32 Rippung
    10 Motor 33 Rippensteg
    11 Welle 34 Rippennut
    12 Kühleinbauten 35 Endbereich
    13 Höhenrichtung 36 Rinne
    14 Flüssigkeitsverteileinrichtung 37 Rinne
    15 Verteilrohr 38 Auslauf
    16 Düse 39 Folienpaarkanal
    17 Pfeil 40 Dickenrichtung
    18 Pfeil 41 Breitenrichtung
    19 Pfeil 42 Bereich
    20 Packung 43 Rippenstegplateau
    21 Folienelement 44 erster Streifenabschnitt
    22 Wellung 45 zweiter Streifenabschnitt
    23 Wellenberg 46 dritter Streifenabschnitt

Claims (13)

  1. Packung für eine Wärme- und/oder Stoffübertragung zwischen flüssigen und gasförmigen Medien im Gegenstrom, insbesondere für die Wasserkühlung durch Luft in Kühltürmen, mit einer Vielzahl von durch Wellungen (22) profilierter Folienelemente (21), wobei die Wellungen (22) Strömungskanäle (25) bereitstellen und wobei die Folienelemente (21) unter Ausbildung von Berührungspunkten (29) in Dickenrichtung (40) hintereinander angeordnete sind, wobei benachbarte Folienelemente (21) in ihren Berührungspunkten (29) miteinander verbunden sind und wobei die einander zugewandten Großflächen (30) benachbarter Folienelemente (21) eine Feinprofilierung (31) aufweisen, dadurch gekennzeichnet, dass die Feinprofilierung (31) eine quer zu den Strömungskanälen (25) verlaufende Rippung (32) mit Rippenstegen (33) und Rippennuten (34) aufweist, wobei zwischen zwei benachbarten Rippenstegen (33) eine Rippennut (34) angeordnet ist, wobei die Übergänge zwischen aufeinander nachfolgenden Rippenstegen (33) und Rippennuten (34) im Wesentlichen radienfrei ausgebildet sind.
  2. Packung nach Anspruch 1, dadurch gekennzeichnet, dass die Wellungen (22) in Längsrichtung (26) der Folienelemente (21) geneigt, vorzugsweise zick-zack-förmig verlaufende Strömungskanäle (25) bereitstellen, wobei die Folienelemente (21) in Dickenrichtung (40) alternierend angeordnet sind, so dass sich die Strömungskanäle (25) benachbarter Folienelemente (21) mit entgegengesetzter Neigung erstrecken und sich unter Ausbildung der Berührungspunkte (29) kreuzen.
  3. Packung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Übergangsradien kleiner 20% vorzugsweise kleiner 10%, noch mehr bevorzugt kleiner 5% der Rippenstegplateaubreite des zugehörigen Rippenstegs (33) ausgebildet sind.
  4. Packung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Rippennut (34) eine Nuttiefe von 2 mm bis 3 mm, vorzugsweise von 2,2 mm bis 2,8 mm, noch mehr bevorzugt von 2,4 mm bis 2,6 mm, am meisten bevorzugt von 2,5 mm aufweist.
  5. Packung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Längsrichtung (26) einander gegenüberliegenden Endbereiche (35) eines Folienelementes (21) feinprofilierungsfrei ausgebildet sind.
  6. Packung nach Anspruch 5, dadurch gekennzeichnet, dass in den feinprofilierungsfreien Endbereichen (35) der Folienelemente (21) schräg zur Längserstreckung (26) der Folienelemente (21) verlaufende Rinnen (36, 37) ausgebildet sind, in die die Strömungskanäle (25) einmünden.
  7. Packung nach Anspruch 6, dadurch gekennzeichnet, dass ein Folienelement (21) je Strömungskanal (25) zwei Rinnen (36, 37) aufweist, die V-förmig zueinander ausgerichtet sind.
  8. Packung nach Anspruch 7, dadurch gekennzeichnet, dass die beiden Rinnen (36, 37) in einen gemeinsamen Auslauf (38) einmünden, der in Richtung der Längserstreckung (26) der Folienelemente (21) ausgerichtet ist.
  9. Packung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die einander zugewandten Strömungskanäle (25) benachbarter Folienelemente (21) einen Folienpaarkanal (39) bilden, der eingangs- und ausgangsseitig jeweils einen polygonalen, vorzugsweise 6-eckigen Kanalquerschnitt aufweist.
  10. Packung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellungen (22) der Folienelemente (21) einen in Längsrichtung (26) der Folienelemente (21) verlaufenden ersten Streifenabschnitt (44) sowie daran entlang seiner jeweiligen Längskanten angeordnet einen zweiten und einen dritten Streifenabschnitt (45, 46) aufweisen, wobei der zweite und der dritte Streifenabschnitt (45, 46) zum ersten Streifenabschnitt (44) geneigt ausgerichtet sind.
  11. Packung nach Anspruch 10, dadurch gekennzeichnet, dass der zweite und der dritte Streifenabschnitt (45, 46) gleich breit ausgebildet sind und jeweils eine die Breite des ersten Streifenabschnitts (44) übersteigende Breite aufweisen.
  12. Packung nach Anspruch 11, dadurch gekennzeichnet, dass das Breitenverhältnis von erstem Streifenabschnitt (44) und zweitem Streifenabschnitt (45) bzw. von erstem Streifenabschnitt (44) und drittem Streifenabschnitt (46) zwischen 0,3 und 0,4, vorzugsweise 0,35 beträgt.
  13. Packung nach Anspruch 10 oder 11, dadurch gekennzeichnet, dass die Breite des ersten Streifenabschnitts wenigstens 5 mm, vorzugsweise zwischen 7 mm und 18 mm, noch mehr bevorzugt zwischen 8,5 mm und 9,5 mm beträgt.
EP19174070.3A 2018-05-18 2019-05-13 Packung für eine wärme- und/oder stoffübertragung Active EP3572760B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202018102787.5U DE202018102787U1 (de) 2018-05-18 2018-05-18 Packung für eine Wärme- und/oder Stoffübertragung

Publications (2)

Publication Number Publication Date
EP3572760A1 EP3572760A1 (de) 2019-11-27
EP3572760B1 true EP3572760B1 (de) 2020-09-09

Family

ID=66529859

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19174070.3A Active EP3572760B1 (de) 2018-05-18 2019-05-13 Packung für eine wärme- und/oder stoffübertragung

Country Status (3)

Country Link
US (1) US11175097B2 (de)
EP (1) EP3572760B1 (de)
DE (1) DE202018102787U1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031753A1 (ja) * 2018-08-09 2020-02-13 富士電機株式会社 冷却器、半導体モジュール
CN110801795A (zh) * 2019-11-26 2020-02-18 衡阳旭光锌锗科技有限公司 一种反应釜快速降温装置
AU2022217238A1 (en) * 2021-02-05 2023-06-29 Evapco, Inc. Techclean direct heat exchange fill
CN113074574B (zh) * 2021-04-29 2023-01-24 西安西热节能技术有限公司 一种基于主导风向的湿式冷却塔填料布置结构

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1847216A (en) * 1928-03-31 1932-03-01 Garlock Packing Co Packing
US3618778A (en) * 1969-05-22 1971-11-09 Ethyl Corp Liquid-treating apparatus
BE788776A (fr) * 1970-05-07 1973-01-02 Serck Industries Ltd Dispositif de refroidissement d'un liquide
CH617357A5 (de) * 1977-05-12 1980-05-30 Sulzer Ag
CH618006A5 (de) * 1977-05-12 1980-06-30 Sulzer Ag
US4361426A (en) * 1981-01-22 1982-11-30 Baltimore Aircoil Company, Inc. Angularly grooved corrugated fill for water cooling tower
ATE57898T1 (de) * 1985-12-17 1990-11-15 Pannonplast Mueanyagipari Packung mit filmstroemung fuer die biologische aufbereitung von fluessigkeiten.
US4801410A (en) * 1987-07-02 1989-01-31 The Marley Cooling Tower Company Plastic fill sheet for water cooling tower with air guiding spacers
US4929399A (en) * 1988-03-17 1990-05-29 Union Carbide Industrial Gases Technology Inc. Structured column packing with liquid holdup
DE8904345U1 (de) * 1989-04-07 1989-05-18 Streng, Andreas, Dipl.-Ing., 5210 Troisdorf, De
DE3918483A1 (de) * 1989-06-06 1990-12-13 Munters Euroform Gmbh Carl Fuellkoerper
US5124087A (en) * 1990-10-04 1992-06-23 Evapco International, Inc. Gas and liquid contact body
DE4122369C1 (en) 1991-07-05 1992-10-22 Rainer Richter Gmbh, 5439 Hof, De Packaging used for heat and mass transfer between liq. and gas - consists of corrugated or folded foil, plate or mat-like packaging elements in zones, in which profiles are inclined to longitudinal axis, etc.
US5616289A (en) * 1994-01-12 1997-04-01 Mitsubishi Corporation Substance and/or heat exchanging tower
US5454988A (en) * 1994-01-12 1995-10-03 Mitsubishi Corporation Packing to be used in substance and/or heat exchanging tower
EP1078684A1 (de) * 1999-08-24 2001-02-28 Sulzer Chemtech AG Geordnete Packung für Trennkolennen
US6478290B2 (en) * 1999-12-09 2002-11-12 Praxair Technology, Inc. Packing for mass transfer column
DE202008007932U1 (de) 2008-06-13 2008-08-21 Streng, Andreas Vollkegeldüse
US8622115B2 (en) * 2009-08-19 2014-01-07 Alstom Technology Ltd Heat transfer element for a rotary regenerative heat exchanger
US20120049392A1 (en) * 2010-08-25 2012-03-01 Carlos Jose Trompiz Structured Packing with Extended Contact Area
US20160223262A1 (en) * 2014-10-31 2016-08-04 Baltimore Aircoil Company, Inc. Cooling tower integrated inlet louver fill

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11175097B2 (en) 2021-11-16
EP3572760A1 (de) 2019-11-27
DE202018102787U1 (de) 2019-08-22
US20190353425A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
EP3572760B1 (de) Packung für eine wärme- und/oder stoffübertragung
EP0529422B1 (de) Einbaukörper
EP0069241B1 (de) Packung für Stoffaustauschkolonnen und Verfahren zur Herstellung der Packung
EP1992898B1 (de) Wärmetauscher für gasförmige Medien
DE3107010C2 (de) Metallkühler zum Kühlen eines unter hohem Druck durchströmenden Fluids durch Luft
DE69914705T2 (de) Füllkörper mit Filmströmung, mit Gaswirbelströmung für Kontaktvorrichtung mit Stoff- und Wärmeaustausch, mit Rieselplatten mit Distanzstücken
DE3148375C2 (de)
EP2408553B1 (de) Stoffaustauschapparat mit einer strukturierten packung
EP2496342B1 (de) Gewelltes packungsgitter sowie geordnete, aus mehreren packungsgittern aufgebaute packung
EP2045556B1 (de) Plattenwärmetauscher
DE102006048305A1 (de) Plattenwärmetauscher
DE10220532A1 (de) Wärmetauscher
CH691328A5 (de) Deckenelement für eine Heiz- und Kühldecke.
EP2932181B1 (de) Platteneinheit, gas-gas-stofftauscher und gebäudelüftungsanlage
EP1182416A2 (de) Innenberipptes Wärmeaustauschrohr mit versetzt angeordneten Rippen unterschiedlicher Höhe
DE3347086A1 (de) Matrix fuer einen katalytischen reaktor zur abgasreinigung
CH666538A5 (de) Waermeuebertrager mit mehreren parallelen rohren und auf diesen angebrachten rippen.
DE2613747B2 (de) Röhrenwärmetauscher
EP0361225A1 (de) Füllkörper
EP3433544B1 (de) Einbauelement zum einbau in einer vorrichtung zur befeuchtung, reinigung und/oder kühlung eines fluids, insbesondere gases wie z.b. luft
EP2310756B1 (de) Einbauelement zum einbau in einer vorrichtung zur befeuchtung, reinigung und/oder kuehlung eines fluids, insbesondere gases wie z.b. luft, und verfahren zur herstellung eines einbaukörpers mit einem solchen einbauelement
DE4122369C1 (en) Packaging used for heat and mass transfer between liq. and gas - consists of corrugated or folded foil, plate or mat-like packaging elements in zones, in which profiles are inclined to longitudinal axis, etc.
EP0844454A1 (de) Gegenstromwärmetauscher
DE2312649C3 (de) Wärme- und/oder Massenaustauscher mit unmittelbarem Kontakt einer Flüssig¬
EP0268831B1 (de) Lamelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191126

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 25/08 20060101AFI20191210BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1312107

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000202

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000202

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210513

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230526

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230524

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230728

Year of fee payment: 5